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Floquet higher-order topological insulator in a periodically driven bipartite lattice
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Floquet higher-order topological insulators (FHOTIs) are a novel topological phase that can occur in period-
ically driven lattices. An appropriate experimental platform to realize FHOTIs has not yet been identified. We
introduce a periodically driven bipartite (two-band) system that hosts FHOTI phases without static counterparts,
and predict that this lattice can be realized in experimentally realistic optical waveguide arrays, similar to those
previously used to study anomalous Floquet insulators. The model exhibits interesting phase transitions from
first-order to second-order topological matter by tuning a coupling strength parameter, without breaking lattice
symmetry. In the FHOTI phase, the lattice hosts corner modes at eigenphase 0 or π , which are robust against
disorder in the individual couplings.
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Introduction. Nonequilibrium topological matter generated
by periodic driving has been a frontier research topic during
the past decade [1]. Periodically driven or “Floquet” systems
can realize exotic topological phases not found in static sys-
tems, such as Floquet π modes [2,3], anomalous Floquet
insulators (AFIs) [4], and space-time symmetry protected
topological insulators [5]. This has motivated theoretical and
experimental studies of light-irradiated materials [6–10] as
well as driven cold-atom systems [11]. Floquet topological
phases can also be realized in time-independent platforms
such as coupled optical resonators or oriented scattering
networks [12–17] and optical waveguide arrays [18–24], in
which the process of scattering or wave propagation simulates
the time evolution of a wave function.

Higher-order topological insulators (HOTIs) are an in-
triguing group of topological phases [25,26] that feature
gapped first-order boundary and gapless higher-order bound-
ary. Soon after the discovery of HOTIs, several groups
have investigated the possibility of realizing Floquet HO-
TIs (FHOTIs) [27–40], such as the use of driving schemes
whose instantaneous Hamiltonians possess the symmetries of
static HOTIs [28–30,32–34], as well as the use of peculiar
space-time symmetries that are unique to periodically driven
systems [31,35,36]. To date, it remains unclear what is the
ideal experimental platform for realizing a FHOTI and study-
ing its properties.

Here, we present a periodically driven bipartite square
lattice model hosting FHOTI phases that should be easily
experimentally accessible. Unlike previous FHOTI proposals
that have required either negative hopping/coupling [33,34],
or spin-orbital or superconducting interactions [28–32,35–
40], our model involves a simple two-band single-particle
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Hamiltonian with only periodic time modulation in the on-
site potential differences and nearest-neighbor couplings, and
with all couplings strictly non-negative throughout the driving
protocol. These features allow the model to be implemented
in experimental platforms such as optical waveguide ar-
rays [18–24] and coupled optical resonator lattices [12–17]
(i.e., minor variations of the experimental setups previously
used to realize Floquet topological insulators [19–23]). Fur-
thermore, because the system has only two bands, it becomes
possible to excite the edge mode or corner mode by a
single-site source, thus simplifying experimental procedures
in probing and distinguishing between bulk, edge, and corner
modes. The model proposed here thus offers a highly promis-
ing route to the experimental realization of FHOTI phases.
These corner modes are unique to nonequilibrium systems
without static counterparts, in the sense that they exist despite
zero polarization and vanishing quadrupole moments.

Model. Consider a tight-binding model of a bipartite square
lattice containing periodically modulated stepwise nearest-
neighbor couplings. As shown in Fig. 1(a), the modulation
consists of eight steps of equal duration T/8, where T is
the modulation period. At odd steps, one of the four sets of
nearest-neighbor couplings is activated (so an instantaneous
system is dimerized). At even steps, the two sublattices A
and B (red and blue) experience a potential difference. The
time-dependent Bloch Hamiltonian thus becomes

H (k, t ) =
∑

m=1,3,5,7

θm(t )(eibm·kσ+ + H.c.) + �(t )σz, (1)

where θm(t ) is set to be θ during the mth (modulo 8) step, and
zero at other time steps; �(t ) equals � at even steps, and zero
at odd steps; σ± = (σx ± iσy)/2, where σx,y,z are Pauli ma-
trices; and the vectors b2n+1 are given by −b1 = b5 = (0, a)
and −b3 = b7 = (a, 0), where a is the lattice constant. We
always assume T = 8 and a = 1 and discuss all variables in
dimensionless units.

2469-9950/2021/103(4)/L041402(6) L041402-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7241-7038
https://orcid.org/0000-0003-1280-6493
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.L041402&domain=pdf&date_stamp=2021-01-06
https://doi.org/10.1103/PhysRevB.103.L041402


WEIWEI ZHU, Y. D. CHONG, AND JIANGBIN GONG PHYSICAL REVIEW B 103, L041402 (2021)

FIG. 1. Periodic modulation protocol for realizing a Floquet
higher-order topological insulator (FHOTI). (a) Driving protocol for
sites in a square lattice. During even time steps, the sites are de-
coupled and the two sublattices (red and blue circles) experience an
energy bias ±�. During each odd time step, one of the four possible
nearest-neighbor couplings is activated with hopping strength θ .
(b) Waveguide array equivalent to (a) for a given choice of axial (z)
propagation direction. The waveguides are helical, with neighboring
waveguides staggered by a half period along z. (c) Lattice of coupled
ring resonators, which is equivalent to (a) for a choice of light
propagation direction within the rings. Nearest-neighbor site rings
(red and blue circles) are coupled by off-resonant auxiliary coupling
rings (green circles).

Using the instantaneous Hamiltonian, we define the Flo-
quet operator (i.e., the time evolution operator over one
period), UF ≡ T exp[ − i

∫ t0+T
t0

H (τ )dτ ], where T is the
time-ordering operator and t0 is a reference time. We identify
solutions |ψ (t )〉 = e−iεt |φ(t )〉, with |φ(t )〉 = |φ(t + T )〉 and

UF |φ(t0)〉 = e−iεT |φ(t0)〉. (2)

The quasienergy ε is an angular variable with period 2π/T .
Floquet states with ε = ±π/T are called π modes in the
literature because their eigenphase is π .

The model proposed above can be realized using an op-
tical waveguide array, as depicted in Fig. 1(b), or a coupled
optical ring resonator lattice, as shown in Fig. 1(c). For the
waveguide array, the propagation of the paraxial light field
envelope maps onto a time-dependent Schrödinger equation;
the helical waveguides at the A and B sites are staggered along
the axial direction, which reproduces the stepwise activation
of the intersite couplings [18–24] and hence yields the time-
dependent Hamiltonian (1). In the coupled-ring platform,
fixed-frequency light waves propagate within a lattice of “site
rings” with a given circulation direction (i.e., either clockwise
or anticlockwise within each ring, with no back-propagation);
by accounting for the unitary scattering relations between the
coupled rings, one can derive a spectral-band problem equiv-
alent to the Floquet band eigenproblem of Eq. (2) [13,16].

FIG. 2. (a) Phase diagram of the lattice vs coupling strength θ

and �. Green (red) dashed lines are the phase transition point at the
� (X ) point. (b)–(d) Spectrum vs θ for a finite structure with eight
unit cells along each edge direction. (b) For � = 0, (c) for � = π

8 ,
and (d) for � = π

4 .

Topological phases. Figure 2(a) shows the obtained topo-
logical phase diagram, plotted against the potential bias
parameter � and the coupling strength parameter θ . A quick
inspection of Fig. 2(a) shows that several distinct topological
phases are induced by periodic time modulation: normal insu-
lator (NI), Floquet Chern insulator (CI), AFI [4], and FHOTI.
At the phase boundaries, the band-crossing points occur at
either the � or X points in the Brillouin zone, respectively
indicated by green and red dashes in Fig. 2(a). The band
crossings occur at these points because the Hamiltonian (1) is
invariant under rotation by 90◦ (C4) and a quarter-period trans-
lation in time: H (k, t ) = H (C−1

4 k, t + T/4), so that UF (k) =
UF (C−1

4 k). The AFI phases (in which the Floquet band struc-
ture has a single nontrivial band gap) exist only along the red
lines in Fig. 2(a). By contrast, the FHOTIs exist only along
the shown blue lines, requiring � = 0 (same as � = π/2) or
� = π/4. The found FHOTI phases are protected by a com-
bination of particle-hole symmetry and inversion symmetry,
as explained below.

The band diagram for � = 0 is shown in Fig. 2(b). In this
case, there is a single bulk band, and the range of ε outside
the band constitutes a single “band gap” (recall that ε is a
periodic variable). For 0 � θ < π/4, the gap is topologically
trivial; this is the NI phase. For π/4 < θ < 3π/4, the gap is
topologically nontrivial and spanned by edge modes; this is
the AFI phase [4,12,13,16]. For 3π/4 < θ < π , the system is
in the FHOTI phase with corner modes at ε = π/T (−π/T ).

To intuitively understand the emergence of Floquet corner
modes, it is useful to use the coupled ring lattice representa-
tion [13,16]. The stepwise intersite couplings in the Floquet
system of Fig. 1(a) are equivalent to a set of unitary scattering
relations. As shown in Fig. 1(c), these relations have the form
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[c, d]T = exp(−iθσx )[a, b]T , where {a, b, c, d} are complex
wave amplitudes in the incoming and outgoing arms of adja-
cent rings. For θ = π , the scattering relation reduces to −a →
c and −b → d; the rings effectively become decoupled, with
the inter-ring connection only contributing a π phase shift
with each ring. Under these circumstances, one round of prop-
agation within a bulk ring (which has four neighbors) or edge
ring (which has two neighbors) acquires an even number of π

phase shifts; however, one round around a corner ring (which
has one neighbor) brings a π phase shift. This implies that
there exist Floquet eigenstates with εT = 0 localized to each
bulk and edge site, but a separate set of Floquet eigenstates
with εT = π localized to each corner site. For θ < π , the
corner modes persist so long as the gap remains open.

Figure 2(c) shows the band diagram for � = π/8. Here,
the system supports NI, AFI, and CI phases. The AFI phase
exists only at θ = π/2, when both bulk bands collapse to
ε = 0. Figure 2(d) shows the band diagram for � = π/4.
This is the other scenario in which corner modes appear. For
0 < θ < π/2, the system is in an CI phase with two bulk
bands, a trivial gap, and a nontrivial gap spanned by edge
modes. For π/2 < θ � π , the system features the coexistence
of FHOTI and CI phases. There are two bulk bands, a gap
spanned by edge modes, and a gap containing a corner mode
pinned at ε = 0.

Symmetry analysis and robustness of FHOTIs. The cor-
ner modes are seen to only appear at � = nπ/4 where n ∈
Z. This observation deserves a symmetry-based explanation.
Interestingly, for � = nπ/4 the lattice possesses additional
symmetries that protect such FHOTI phases. That is, without
such underlying symmetries, the corner modes are unpro-
tected and the system can be perturbed into the NI phase
without closing the bulk gap, as indicated by the phase dia-
gram [Fig. 2(a)].

Specifically, for � = 0 (or, equivalently, any even mul-
tiple of π/4), the lattice obeys a particle-hole sym-
metry CH (k, t )C = −H∗(−k, t ) and inversion symmetry
IH (k, t )I = H (−k, t ), where C = σz and I = σx. As
such, in terms of the evolution operator, CUF (kx, ky)C =
U ∗

F (−kx,−ky) and IUF (kx, ky)I = UF (−kx,−ky). For � =
π/4 and other odd multiples of π/4, the evolution
operator satisfies CUF (kx, ky)C = U ∗

F (π/a − kx,−ky) and
IUF (kx, ky)I = UF (π/a − kx,−ky). With either set of sym-
metries, the lattice belongs to the D class, which is associated
with a Z2 topological invariant [41]. These FHOTI phases
are thus adequately described by the existing classification
scheme for static HOTIs.

The particle-hole symmetry guarantees that the corner
modes come in pairs with quasienergy 0 or π/T , and the
inversion symmetry further ensures that the paired corner
modes are localized at different edges. So a single pair of
corner modes cannot annihilate without bulk band closure.
To verify this, we study lattices with disorder in the cou-
pling strength that preserves the particle-hole and inversion
symmetries. This is accomplished by setting θ = θ0(1 + D),
with D randomly distributed in the range −W < D < W . As
shown in Figs. 3(a) and 3(b) for θ0 = 0.9π , both the π corner
mode (for � = 0) and the 0 corner mode (for � = π/4) are
robust against the introduced disorder. With increasing W ,

FIG. 3. Quasienergy spectra vs strength W of disorder intro-
duced to the θ parameter. The finite lattices are of the same shape
as in Fig. 1 but with eight unit cells along each direction. (a) � = 0
and (b) � = π/4.

the bulk band broadens but the corner modes remain intact,
with their quasienergies unaltered. In the Supplemental Mate-
rial [42], we show that if some disorder (weak compared with
the band gap) is introduced to �, the in-gap corner modes are
shifted from 0 or π but still survive. This indicates that even �

need not be very precisely tuned in experiments. In addition,
we investigate the role of time-dependent disorder, showing
that 2T perturbations give rise to an interesting interplay be-
tween corner modes and chiral edge modes.

Experimental proposal for FHOTIs in waveguide arrays.
Optical waveguide arrays are an appealing platform for ex-
ploring Floquet topological phases. Thus far, they have been
used to realize Floquet Chern insulators and AFIs [18–24].
Here, we present continuum simulations (not limited to the
tight-band approximation) showing that the above FHOTI
model can be realized in experimentally realistic waveg-
uide arrays. By decreasing the distance between neighboring
waveguides, one can achieve topological phase transitions
from NI to AFI, and subsequently to the FHOTI phase.

The evolution of light in a waveguide system is governed
by the Schrödinger-like equation [43,44]

i∂zψ = − 1

2k0
∇2

⊥ψ − k0δn(x, y, z)

n0
ψ, (3)

where x, y are the transverse directions, z is the axial direc-
tion, ∇2

⊥ = ∂2
x + ∂2

y , n0 is the background refractive index,
k0 = 2πn0/λ, λ is the operating wavelength in free space, and
δn(x, y, z) is the modulation in the refractive index [18,19,24].
The axial coordinate z acts as a synthetic time coordinate. We
take n0 = 1.473 and λ = 1550 nm. The modulation function
induces a bipartite square lattice with the unit cell config-
uration shown in Fig. 1(c), with both waveguides having
clockwise helicity with helix radius R = 4 μm, period Z =
2 cm, and mean waveguide separation d . Each waveguide has
δn = 2.6 × 10−3, with an elliptical cross section with major
and minor axes of 9.8 and 6.4 μm. All those parameters have
been used in a previous experiment [45].

The band structure of the waveguide array is numeri-
cally obtained by extracting the fundamental modes of the
waveguide, as described in Ref. [19]. We consider an array
with zero detuning between the two sublattices (i.e., � = 0).
For this case, the phase transition is predicted to occur at
the � point. Figure 4(a) shows the calculated bulk band
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FIG. 4. Band diagrams for waveguide arrays with � = 0.
(a) Quasienergies at � (the center of the Brillouin zone) versus
d . The band-crossing points, marked by green circles, appear to
correspond (in order of decreasing d) to the tight-binding model’s
critical coupling strengths θ ∈ {π/4, π/2, 3π/4, π}, respectively
[see Fig. 2(a)]. (b)–(d) Band structures for a semi-infinite strip
periodic along the (ex, ey ) direction and six unit cells wide along
the (ex, −ey ) direction, for (b) d = 36 μm, (c) d = 28 μm, and
(d) d = 23 μm.

quasienergies at �, as a function of the waveguide separa-
tion d . For d → ∞, the lattice must be in the NI phase
(θ → 0). With decreasing d , we observe a band crossing at
d ≈ 32.4 μm, which should correspond to the NI-to-AFI tran-
sition at θ = π/4 [Fig. 2(a)]. The third band crossing occurs
at d ≈ 25.2 μm and should correspond to the AFI-to-FHOTI
transition at θ = 3π/4.

To verify the nature of these phases, Figs. 4(b)–4(d) show
the Floquet band structures for d = 36 μm (NI), d = 28 μm
(AFI), and d = 23 μm (FHOTI), in a semi-infinite strip geom-
etry. As expected, topological edge modes are observed in the
AFI case [Fig. 4(c)]. The corner modes of the FHOTI phase
cannot be seen here [Fig. 4(d)], since the strip geometry lacks
corners.

Figure 5 shows simulation results for a finite waveguide
array, computed using the split-step Fourier method [19]. At
z = 0 (which corresponds to the maximal distance between
the waveguides in the unit cell), a corner waveguide is ex-
cited. The intensities are plotted at different final values of
z. For the NI, the initial corner excitation diffracts into the
bulk [Fig. 5(a)]. For the AFI, the corner excitation couples to
chiral edge modes that propagate around a corner [Fig. 5(b)].
For the FHOTI, the excitation remains localized, oscillating
periodically between the few sites nearest to the corner. In
Figs. 5(c) and 5(d), we plot the results at 6Z and 6.5Z , for
which the excitation is mostly confined to a single site (on
the A sublattice at 6Z and the B sublattice at 6.5Z). This
interesting oscillation reflects the expected nontrivial micro-

FIG. 5. Field intensity distributions in the optical waveguide
array for different topological phases and propagation distances.
(a) d = 36 μm (NI phase) after 7Z . (b) d = 28 μm (AFI phase) after
7Z . (c),(d) d = 23 μm (FHOTI phase) after (c) 6Z and (d) 6.5Z . The
initially excited corner waveguide is indicated by a white arrow.

scopic dynamics of an edge mode at quasienergy π/T [3,46–
48], but the observation here is even more interesting because
it is due to a corner π mode. Note that we have only used
single-site excitation to observe the differences between NI,
AFI, and FHOTI; clearer signatures of edge or corner state
localization may be obtainable by considering other initial
states. In the Supplemental Material [42], we introduce a
more complicated driving protocol that yields simultaneous
0 and π corner modes, which is of interest to studies of time
crystals [49] and quantum information applications [38].

Conclusion and discussion. The engineering of a FHOTI
phase typically started from a Floquet topological insulator
with gapless edge modes, followed by breaking a symmetry to
open a gap in the edge modes. By contrast, our model exhibits
topological transitions between normal insulator, anomalous
Floquet topological insulator, and FHOTI phases while pre-
serving lattice symmetry. The used bipartite lattice, with
strictly non-negative nearest-neighbor couplings, appears to
be the simplest setup known to date for realizing a FHOTI.
Variants of the model, based on honeycomb and triangular
lattices rather than square lattices, can also realize FHOTI
phases [42]. Continuum simulations show that our proposal
can be realized in optical waveguide arrays of the sort that
have previously been used to realize Floquet topological in-
sulators experimentally. This work provides opportunities for
studying the properties of these unusual topological phases,
such as the interactions between corner modes and chiral edge
modes.
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