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Theory of anisotropic plasmons
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We develop the complete theory for the collective plasmon modes of an interacting electron system in the
presence of explicit mass (or velocity) anisotropy in the corresponding noninteracting situation, with the effective
Fermi velocity being different along different axes. Such effective mass anisotropy is common in solid state
materials (e.g., silicon or germanium), where the Fermi surface is often not spherical. We find that the plasmon
dispersion itself develops significant anisotropy in such systems, and the commonly used isotropic approximation
of using a density of states or optical effective mass does not work for the anisotropic system. We predict a
qualitatively new phenomenon in anisotropic systems with no corresponding isotropic analog, where the plasmon
mode along one direction decays into electron-hole pairs through Landau damping while the mode remains
undamped and stable along a different direction.
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Plasmons are collective modes of interacting electron sys-
tems with Coulomb coupling. They are the quantum versions
of plasma waves in charged plasmas in the way phonons are
quantum versions of sound waves in matter. The long-range
Coulomb coupling between the electrons produces a self-
sustaining oscillation if the charge density is disturbed and,
quantum mechanically, this leads to an elementary collective
excitation, the “plasmon.” Plasmons have been extensively
studied in three-dimensional (3D), two-dimensional (2D), and
one-dimensional (1D) electron materials for almost 70 years,
both theoretically and experimentally, and plasmons are of
technological interest in the context of creating intense and
controllable confined electric fields in the applied subject of
“plasmonics” [1]. In fact, the modern many-body theory, in-
volving the study of electron-electron interactions in solids,
started as a subject in the early 1950s with the focus on
the plasmon modes in the Bohm-Pines collective coordinates
approach [2,3]. It is probably not an exaggeration to say that
plasmons are among the most studied elementary excitations
in all of condensed matter physics [4–11]. The Physical Re-
view journal series has more than 5000 publications with
the word plasmons in the title or abstract over the last
60 years. Essentially all the theoretical techniques in the ar-
senal of solid state (or condensed matter) physics have been
used to study plasmons, in fact, most of these techniques were
developed first in the study of plasmons in interacting electron
liquids, including collective coordinates [2,3], dielectric func-
tion [12–15], self-consistent field [16,17], and diagrammatic
field theories [18–20].

Given this extensive background literature spanning more
than 60 years, it would appear that all the classic problems
in the theory of plasmons in condensed matter physics have
already been studied, and new plasmon research is likely
to focus only on the collective properties of newly made

materials, which, by definition, could not have been studied
before, e.g., 2D graphene [21–24]. This is, however, untrue
as the plasmon properties in an anisotropic electron gas (EG)
have never been studied before in any depth. In particular,
plasmon properties of an anisotropic 2D (3D) (ellipsoidal)
EG, with an elliptic rather than a circular (spherical) isotropic
Fermi surface with effective masses mx and my unequal,
have been approximated by the corresponding isotropic 2DEG
plasmon dispersion [25], with the effective mass m approx-
imated as isotropic and chosen simply as some kind of an
average of mx and my, with both the density-of-states av-
erage (mxmy)1/2 and the optical average 2mxmy/(mx + my)
being used in the isotropic approximation without any real
justification. This is surprising since many electronic mate-
rials, even very simple ones, e.g., Si, Ge, manifest effective
mass anisotropy. In the current work we address this open
question in the plasmon literature, and obtain the theoretical
plasmon properties in 2DEG and 3DEG anisotropic systems
taking into account the explicit effective mass anisotropy
within the random phase approximation (RPA), which is the
standard approximation for studying plasmon properties in
interacting electron systems. Our work thus puts the theory
of plasmons for anisotropic systems on the same footing as
that for isotropic systems, correcting an important oversight
in the literature. We find that the isotropic approximation
using an averaged effective mass fails quantitatively for the
plasmon dispersion of the anisotropic system, and more im-
portantly, the isotropic approximation misses a qualitative
plasmon damping effect intrinsic to the anisotropic system,
where plasmon damping itself could be anisotropic, with the
critical wave vector for plasmon damping threshold through
particle-hole pair creation (the so-called Landau damping)
depending sensitively on the anisotropy, differing significantly
along the different directions on the Fermi surface.
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The plasmon is a collective mode of the interacting electron
system and, as such, it is a pole for the reducible polarizability
function. This is equivalent to a zero in the dynamical dielec-
tric function of the system, which is defined by

ε(q, ω) = 1 − vc(q)�(q, ω), (1)

where �(q, ω) is the electron irreducible polarizability func-
tion (the so-called electron-hole bubble diagram) and vc(q) is
the Fourier transform of the long-range Coulomb interaction
(falling off as 1/distance independent of dimensionality) in
the appropriate dimension going as 1/q (1/q2) in 2D (3D).
RPA, which is the standard approximation for obtaining plas-
mon properties, involves using the noninteracting irreducible
polarizability � = �0 in Eq. (1). RPA is an extensively used
theory for plasmons, which is exact at long wavelength (small
q). In order to obtain the anisotropic plasmon properties, we
must first calculate the irreducible electron polarizability for
a system with anisotropic effective mass. Since the polariz-
ability is in general complex for arbitrary wave vector q and
frequency ω, the complete solution of Eq. (1) requires both
real and imaginary parts of the dielectric function to vanish at
the plasmon frequency (which is a function of the wave vector
q). This can only happen as long as the plasmon cannot decay
by creating electron-hole pairs, i.e., when the plasmon disper-
sion is completely outside the electron-hole continuum single
particle excitation regime of the Fermi surface. Otherwise, the
plasmon is Landau damped through the spontaneous emission
of electron-hole pairs, and it is no longer a well-defined col-
lective mode. This implies a real solution of Eq. (1) providing
the plasmon dispersion, but the imaginary part of �(q, ω) is
finite, implying Landau damping. An important prediction of
our theory is that, in addition to the plasmon being anisotropic
by virtue of the mass anisotropy, it also manifests anisotropic
damping, and the onset of Landau damping depends explic-
itly on the direction of the wave vector. Thus, an undamped
plasmon could become damped just by virtue of changing its
direction of propagation without any change in the magnitude
of the wave vector.

We consider first the standard parabolic 2DEG and 3DEG
systems with anisotropic band dispersion (mH and mL being
the heavy and light masses with mH > mL) along different
axes (with the 3D system being chosen with a layered material
in mind so that the mass along the x direction being higher
than that in the y-z plane):

ε2D(k) = k2
x

2mH
+ k2

y

2mL
, (2)

ε3D(k) = k2
x

2mH
+ k2

y

2mL
+ k2

z

2mL
. (3)

We have explicitly calculated the irreducible noninteracting
anisotropic polarizability for 2DEG and 3DEG. Then we
solve Eq. (1) to obtain the 2D and 3D anisotropic plasmon
dispersion and plasmon damping as a function of qx and qy

for a given q = (q2
x + q2

y )1/2 in 2D and (q2
x + q2

y + q2
z )1/2 in

3D, using anisotropic effective masses mx and my. Before we
present our full numerical results, we provide the analytical

FIG. 1. A plot of 3D plasma frequency in the long wavelength
limit as a function of θ for different mass ratios mH/mL = 1, 2, 5, 10
and rs = 2.0. The angle θ is defined with respect to the high-mass
axis. Here we set qz = 0 for simplicity, without loss of generality.

long wavelength plasmon dispersion results for 2D [Eq. (4)
below] and 3D [Eq. (5)]:

ω2D
p (q → 0) =

√
2πne2q

mDOS
|M−1/2n̂|, (4)

ω3D
p (q → 0) =

√
4πne2

mDOS
|M−1/2n̂|. (5)

Here n̂ = q/|q| is the plasma propagation direction, Mi j =
mi/mDOSδi j is the mass matrix, and mDOS is the so-called den-
sity of states mass defined by mDOS = (mHmL)1/2 in 2D and
(mHm2

L)1/3 in 3D. Note that typically all anisotropic systems
are uncritically treated assuming an isotropic density of state
mass m, whereas in our work we keep the full anisotropy
explicitly in the theory.

The long wavelength exact plasmon dispersions in Eqs. (4)
and (5) go explicitly as n1/2 in density, showing the well-
known isotropic plasma frequencies (2πne2q/m)1/2 in 2D
and (4πne2/m)1/2 in 3D, but the anisotropic dispersions have
explicit and nontrivial anisotropy dependence through n̂ and
mH, mL, which are missed in the isotropic approximation
assuming a single density of states effective mass mDOS. As is
well known, the strict long wavelength (q = 0) plasmon has
a gap in 3D and vanishes in 2D by virtue of the fact that the
3D Coulomb potential is truly long ranged—this is obvious
in Eqs. (5) and (6). In order to clearly bring out the nontrivial
plasmon anisotropy, we plot in Fig. 1 the 3D q = 0 plasma
frequency as a function of the mode direction θ for different
values of the mass anisotropy parameter mH/mL for rs = 2.0,
also showing by the horizontal dashed line the corresponding
isotropic result using the density of states mass as employed in
all theoretical works so far. Here the dimensionless quantity rs

is the Wigner-Seitz radius defined through n−1 = π (rsaB)2 in
2D and n−1 = (4π/3)(rsaB)3 in 3D, where aB = h̄2/(mDOSe2)
is the Bohr radius and n is the relevant electron density. In
the following we set qz = 0 for 3D for simplicity, without
loss of generality. It is manifestly clear that the isotropic
approximation is very poor, even qualitatively, in defining
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FIG. 2. (a) 2D and (b) 3D plasmon dispersions in the high- and low-mass directions along with the isotropic dispersion using the density
of state mass. (c) 3D energy-loss function (i.e., |Im[ε(qx, qy, ω)−1]|) for a fixed ω = 1.2EF on the qz = 0 cross section of the momentum
space. The two dashed lines divide the momentum space with Imε = 0 into three regions, in each of which plasmons are damped, undamped,
and absent. Here kF(θ ) is the magnitude of the Fermi wave vector along the plasma propagating direction n̂, and kDOS

F = √
2mDOSEF. We set

rs = 2.0 and mH/mL = 10 for the calculations.

the plasma frequency at q = 0 for the anisotropic system.
The actual plasma frequency could be either below or above
the isotropic plasma frequency manifesting nontrivial angle
dependence.

In Figs. 2(a) and 2(b) we depict our numerically calcu-
lated anisotropic plasmon dispersions along the high- and
low-mass directions in both (a) 2D and (b) 3D by solving
Eq. (1) directly for θ = 0 and π/2, comparing them with the
corresponding isotropic dispersion using the density of states
mass. Here kF(n̂) = kDOS

F |M−1/2n̂|−1
is the magnitude of the

Fermi wave vector along the plasma propagating direction
n̂, where kDOS

F = √
2mDOSEF. Clearly the isotropic approxi-

mation fails not only quantitatively, but also qualitatively. In
particular, the plasmon along the heavy-mass direction gets
damped at a much smaller wave number than in the light-mass
direction by developing a finite imaginary part in the solution
corresponding to Eq. (1), i.e., no pure complex poles with both
real and imaginary parts vanishing exist for Eq. (1) indicating
Landau damping of the plasmon mode. Thus, the anisotropic
plasmon not only has very different frequencies at the same
wave number along the heavy- and light-mass directions, it
also suffers Landau damping very differently along the two
directions. It is also worth noting that for a fixed frequency
3D plasmon modes are allowed to exist only along certain
directions because the long wavelength plasma frequency is
anisotropic. This is clearly seen from Fig. 2(c), where we
plot the calculated energy-loss function for a fixed ω = 1.2EF

on the qz = 0 cross section of the momentum space. Using
Eq. (5), we can easily obtain the range of frequencies where
plasmons exist along only certain directions:√

4πne2

mH
< ω <

√
4πne2

mL
. (6)

The dramatic behavior in the Landau damping of
anisotropic plasmons is highlighted in Fig. 3. The upper two
figures show the calculated loss function, i.e., Im(1/ε), at
the plasmon frequency as a function of the direction θ for a
few fixed values of the wave number, clearly demonstrating
that the Landau damping onset depends crucially on θ even
if the wave number is fixed. By contrast, in the isotropic

system there is just a critical wave number kc above which the
plasmon is Landau damped because the plasmon dispersion
enters the particle-hole continuum at kc. For anisotropic plas-
mons, however, there is no strict kc since the Landau damping
now depends also on θ , the direction of mode propagation in
addition to depending on the magnitude of the wave number.
The critical wave number kc now depends explicitly, not only
just on mH/mL, but also on θ as shown in the lower two figures
in Fig. 3.

It is easy to see from the lower two figures of Fig. 3 that
that plasmons only with the wave vector q within the range
of qc(θ = π/2) < q < qc(θ = 0) exhibit anisotropic plasmon
damping. Outside this range, plasmons are either damped or
undamped along all directions. To analyze this, we begin with
the equations determining the critical wave vector qc given by

q̃2
c√
2rs

+ q̃3
c

4r2
s

= 1

|M−1/2n̂| (7)

FIG. 3. The upper two figures show calculated energy-loss func-
tions at the plasma frequency as a function of the direction θ for
q/kDOS

F = (1.4, 1.8, 2.0) for 2D and (0.7,0.8,0.9) for 3D. The lower
two figures show the critical wave vector kc as a function of the direc-
tion θ for mH/mL = 1, 2, 5, 10. For the calculations, we use rs = 2.0
and set qz = 0 for 3D for simplicity without loss of generality.
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for 2D and(
1+ |M−1/2n̂|q̃c

2

)
log

(
1 + 2

|M−1/2n̂|q̃c

)
= 2

( qc

kTF

)2
+ 1

(8)

for 3D, where kTF = 2/
√

π (4/9π )1/3rsaB is the Thomas-
Fermi screening wave vector, and q̃ = q/kDOS

F . For θ = 0 and
π/2, |M−1/2n̂| = (mL/mH)(d−1)/2d and (mH/mL)1/2d , respec-
tively, where d is the dimension. Using this and taking the
high mass ratio limit, we can obtain approximate solutions
for qc:

q̃c(θ = 0) = 22/3r2/3
s

(mH

mL

)1/12
,

q̃c

(
θ = π

2

)
= 21/4r1/2

s

( mL

mH

)1/8
(9)

for 2D and

q̃c(θ = 0) =
(

2
3

)1/3
r1/2

s

π2/3
W

[
(144π4)1/3

e2rs

(
mH

mL

)3/2]
,

q̃c

(
θ = π

2

)
=

(
32

9π4

)1/9

r1/3
s

(
mL

mH

)1/18

(10)

for 3D, where W (x) is the Lambert W function defined as the
inverse function of f (x) = xex. From the obtained asymptotic
forms, it is easy to see that the range of wave vector where
plasmons are anisotropically damped, i.e., q̃c(θ = π/2) <

q̃ < q̃c(θ = 0), becomes wider with increasing rs and the
mass ratio mH/mL. Even though these results are obtained
with a very large mass ratio assumed, they are qualitatively
valid for smaller values of mass ratios as shown in Fig. 4,
where we present a numerically calculated critical wave vec-
tor as a function of rs.

Results shown in Figs. 3 and 4 imply a dramatic scenario
where the anisotropic plasmon damping could be controlled
either by varying the magnitude of the wave number (as for
regular isotropic plasmons also, with q > qc being the Landau
damping regime) or by varying the direction of the plas-
mon propagation at fixed wave number. Rotating the plasmon
mode propagation direction could convert a totally damped
plasmon into a totally undamped mode and vice versa. This
spectacular new prediction could be easily verified experi-
mentally in anisotropic electronic materials. For example, one
can use momentum-resolved inelastic electron energy loss
or inelastic light scattering or infrared optical spectroscopy
(the precise technique depends on the relevant plasmon en-
ergy scale being probed) to obtain the loss function for a
fixed momentum. The measured loss function should vary
by several orders of magnitude as a function of plasmon
propagation direction, as shown in the upper two figures in
Fig. 3

Before concluding, we mention that we have also calcu-
lated the anisotropic plasmon dispersion in linearly dispersing
massless Dirac-Weyl type 2D and 3D systems, where the elec-
tron energy dispersion is linear, rather than parabolic. So, the
anisotropy here is in the effective Fermi velocity (vx, vy, vz ),
not in any effective mass. The theory follows what we describe

FIG. 4. Calculated critical wave vectors at θ = 0 (solid) and θ =
π/2 (dashed) with mH/mL = 5 and 10 as a function of rs.

above for the parabolic systems, so we just quote the long-
wavelength anisotropic plasmon dispersions for Dirac-like
linearly dispersing bands:

ω2D(q → 0) = √
rs(nπ )1/4|V n̂|√q, (11)

ω3D(q → 0) = √
rs

(
32π

3

)1/6

n1/3|V n̂|. (12)

Here rs = e2/h̄vDOS is the effective fine structure con-
stant with vDOS = (vxvy)1/2 in 2D and (vxvyvz )1/3 in 3D,
and n̂ is the unit vector defining the plasmon propaga-
tion direction. V is the velocity matrix defined to be
Vi j = viδi j where i = x, y, z. In the isotropic limit of vx =
vy = vz = v, this reduces to the well-known Dirac plas-
mon dispersion, which depends on h̄ (through the rs

dependence) even at long wavelength since Dirac systems
are quintessentially quantum mechanical with no classical
analogs [22].

To conclude, we have developed the theory for anisotropic
plasmons in electronic materials by explicitly taking into
account the anisotropic effective mass (or Fermi velocity)
dispersion of the band energy. We find both quantitative
and qualitative effects arising from anisotropy, which cannot
be captured in an isotropic approximation. In particular, the
Landau damping depends crucially on the plasmon propa-
gation direction, with the manifest possibility of a dramatic
effect where the plasmon, at the same wave number, may
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be totally undamped in one direction and totally damped
in another direction. First-principles numerical band calcula-
tions for plasmon dispersion are unable to capture the new
physics we predict. Our work should be of relevance to
anisotropic metals and semiconductors as well as to new

2D materials (e.g., black phosphorus), which are strongly
anisotropic.

This work is supported by the Laboratory for Physical
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