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Integer quantum Hall plateau transitions are usually modeled by a system of noninteracting electrons moving
in a random potential. The physics of the most relevant degrees of freedom, the edge states, is captured
by a recently proposed random network model, in which randomness is induced by a parameter-dependent
modification of a regular network. In this paper we formulate a specific map from random potentials onto
two-dimensional (2D) discrete surfaces, which indicates that 2D gravity emerges in all quantum phase transitions
characterized by the presence of edge states in a disordered environment. We also establish a connection between
the parameter in the network model and the Fermi level in the random potential.
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Introduction. The physics of plateau transitions in the
quantum Hall effect (QHE) continues to be one of the most
exciting research topics in modern condensed matter physics.
Much of the current interest is motivated by the emergence
of a similar type of physics in the context of topological
insulators. The quantum Hall plateau transition is in fact an
example of a metal-insulator transition (see [1,2] for a review)
with the plateau region between the Landau levels (LLs) cor-
responding to the insulating phase where all the bulk states are
localized due to the external magnetic field. The transition is a
disorder-induced localization/delocalization transition of An-
derson type, characterized by a divergent localization length ξ

with critical exponent ν.
Quantum Hall plateau transitions can be modeled by a

system of noninteracting electrons moving in a 2D random
potential (RP) V (r), with r = (x, y), characterized by a white-
noise Gaussian distribution. In the following we shall consider
RPs with a finite correlation length generated by Gaussian
sources placed on a regular lattice, i.e.,

V (r) =
∑
i, j

Wi, j exp

(
−|r − ri, j |2

2σ 2

)
, (1)

where σ 2 is the variance, ri, j = (i, j) is the position vector
of the generic source, and the coefficients Wi, j are randomly
chosen in [−W,W ], for some W ∈ R. In such RP land-
scape, electrons with energy smaller than the Fermi level c
are localized [3] due to the external magnetic field B and
their state corresponds semiclassically to an orbital motion
with small radius RL ∼ 1/B. They fill the Fermi sea, which
actually consists of a collection of lakes with characteristic
size l , as displayed in Fig. 1. At the boundary of a lake, the
orbital motion of (edge) electrons combines with the reflection
due to the potential giving rise to a precession motion along
equipotential lines.

When an edge electron with energy E > c approaches a
saddle point, it may either tunnel through the potential barrier
between the two neighbor lakes with probability [4]

t2 ∼ 1

1 + eε
, ε ∝ (V − E ), (2)

or continue to move along the boundary of the same lake with
probability r2 = 1 − t2 (see Fig. 2). The presence of such
quantum scattering nodes at saddle points enables electrons
to reach arbitrary distances with a finite probability and is at
the origin of the localization/delocalization transition. Tak-
ing inspiration from this semiclassical picture, Chalker and
Coddington (CC) [5] formulated a network model of quantum
scattering nodes based on a regular lattice that is meant to
provide an effective description of the physics of edge states.
Its generalization on a Kagome lattice was proposed in [6]
and a similar network model for the spin quantum Hall effect
(SQHE) was studied in [7,8]. Numerical investigations of
the localization length ξ around the critical point, i.e., ξ ∼
(t − tcrit )−ν with tcrit = 1/

√
2, resulted in ν = 2.56 ± 0.62

for a regular lattice [9–14] and ν = 2.658 ± 0.046 for the
Kagome lattice [6]. Both these values are not compatible with
the experimental value ν = 2.38 ± 0.06 measured for plateau
transitions in the integer QHE [15,16]. A possible solution to
fix the discrepancy was put forward in [17,18] by considering
random networks (RNs), which should better account for the
disorder present in a RP. The numerical estimate obtained in
this framework ν = 2.372 ± 0.017 [17,18] confirms indeed a
very good agreement with the experimental result. In fact, ran-
domness generates—in the continuum limit—fluctuations of
the background metric [17,18], namely 2D quantum gravity,
that are responsible for the change of the critical exponents in
network models, similarly to what was established by [19] in
the context of minimal models of statistical mechanics. The
primary objective of this paper is to show that 2D gravity is
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FIG. 1. RP generated by N = 2500 Gaussian sources (W = 1
and σ = √

2) placed on a torus. Points mark maxima (red), minima
(blue), and saddle points (green). The plane represents the Fermi
level (c = 0).

indeed emerging from the RPs framework by establishing a
precise correspondence between RNs and RPs. Notice that
quantum gravity is also involved in the understanding of frac-
tional QHE [20,21] revealing the physics of Laughlin wave
function. In that context, the interaction between fermions is
responsible for the emergence of gravity in the bulk. Instead,
in the present paper gravity is related to the 1+1 dimensional
edge states, which originates from the RP.

Network models with geometric disorder. Let us briefly
review the construction of RNs proposed in [17,18]. Starting
from a regular CC network, randomness is generated by mak-
ing an extreme replacement, which consists in “opening” a
scattering node in the horizontal (vertical) direction with prob-
ability p0 (p1) setting t = 0 (t = 1) (see Fig. 3), or leaving it
unchanged with probability 1 − p0 − p1. In the following we
shall set pn = p0 = p1 to maintain statistical isotropy [17,18].
In the RP picture the scattering node represents a saddle point
and the four squares surrounding it correspond to an alternate
sequence of maxima and minima (see Fig. 3). After the ex-
treme replacement, the scattering node becomes a hexagon
containing a maximum (minimum) and two adjacent triangles
both containing a minimum (maximum), as depicted in Fig. 3.
Thus, starting from a regular network where all the faces are

FIG. 2. Neighborhood of a saddle point (green dot) separating
two lakes (blue areas) in a RP. The cycloid represents the motion
of edge states along the boundary of a lake. The parameters r and
t denote the reflection and transmission probabilities, respectively,
while B is the magnetic field.

FIG. 3. Top: Opening of a scattering node in the horizontal and
vertical directions. Bottom: Result of the extreme replacement on
the network. Red, blue, and green points mark maxima, minima, and
saddle points in the corresponding RP framework.

quadrangles and randomly making the extreme replacement
with probability pn, a polygonal tiling of the plane is obtained.
In [18] it was shown that in this type of RNs the critical index
ν has a nontrivial dependence on the replacement probability
pn, with a critical line for pn ∈ [0, 1/2]. The best agreement
with the experimental value of ν in the integer QHE is found
for (pn, ν(pn)) = (1/3, 2.372 ± 0.017).

A natural question addressed in the present paper concerns
the physical interpretation of the parameter pn within the RP
model.

Random potentials and discrete surfaces. The RP (1) corre-
sponds to a 2D smooth surface characterized by Nmax maxima,
Nmin minima, Nsp saddle points (see Fig. 1), and with Euler
characteristics [22]

χ = Nmin + Nmax − Nsp. (3)

Connecting maxima and minima according to the gradient of
V (r) leads to a unique quadrangulation of the surface: a 2D
discrete surface S made of v = Nmax + Nmin vertices, e edges,
and f = Nsp quadrangular faces (see Fig. 4). Denoting by ni

the connectivity of the ith vertex, i.e., the number of edges
connected to it, the Euler characteristics χ = v − e + f of S
can be written as

2πχ =
v∑

i=1

R(ni ), R(n) = π

2
(4 − n), (4)

where, according to Gauss-Bonnet theorem, R(n) can be inter-
preted as the discrete Gaussian curvature associated with each
vertex of S. Equation (4) follows from e = 2 f = 1

2

∑v
i=1 ni,

which implies χ = v − e + f = v − f = 1
4

∑v
i=1(4 − ni ).

By construction, each face of S contains exactly one saddle
point. Therefore, connecting saddle points belonging to near-
est neighbor faces of S results in a dual 2D discrete surface S∗.
The latter surface is made of v∗ = f vertices with connectivity
4, e∗ edges, and f ∗ = v polygonal faces of size n, where n
is the connectivity of the vertex of S lying within each face
of S∗ (see Fig. 4). By duality, each polygonal face of S∗
carries a discrete Gaussian curvature R(n) and brings a local
contribution to 2πχ , as described by Eq. (4). Hence, a RP is
associated with a pair (S, S∗) of 2D discrete surfaces, which
correspond to network models where the discrete Gaussian
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FIG. 4. Topography of a RP generated by N = 900 Gaussian
sources (W = 1 and σ = √

2) placed on a torus. Points mark maxima
(red), minima (blue), and saddle points (green). White and black lines
are the edges of S and S∗, respectively.

curvature of the surfaces is encoded either in the connectivity
of the sites or in the number of sides of the polygons. In the
following, the symbols S or S∗ will stand for both the discrete
surfaces and the corresponding networks.

Random potentials vs random networks. The purpose of
this section is to establish a correspondence between RPs and
RNs in the case of a torus geometry. Consider a RP generated
by N = L2 Gaussian sources evenly distributed on a regular
square lattice of size L with unit spacing and doubly periodic
boundary conditions. Let ri, j = (i mod (L), j mod (L)) be
the position vector of the generic source on the lattice. Then,
the RP at the generic point r = (x, y) ∈ [1, L] × [1, L] is

V (r) =
L∑

i, j=1

∑
n∈Z2

Wi, j exp

(
−|r − ri, j + nL|2

2σ 2

)
, (5)

where the range of the summation index n = (nx, ny) is
restricted to {−1, 0, 1} × {−1, 0, 1} in the numerical simula-
tion. Equation (3) implies that Nmax + Nmin = Nsp, since χ =
0. In Fig. 6 the distributions of critical points per unit height h
of the potential are reported. The statistical sample consists of
m = 45 simulations with L = 300, W = 1/10, and σ = √

2.
Since at finite W and σ the potential V (r) is bounded, these
distributions are defined on a finite support, also in the limit
L → ∞. However, in the case under consideration, they are
well approximated by Gaussian distributions with expectation
values μmax = −μmin = 0.187, μsp = 0, and standard devi-
ations σmax = σmin = σsp = 0.119. Following the procedure
described in the previous section, a discrete surface S or equiv-
alently S∗ can be uniquely associated with the RP (see Fig. 4).
The introduction of a Fermi level c produces a truncated
surface Sc in which the vertices lying below c and belonging
to the same lake are replaced with a single vertex, as displayed
in Fig. 5. This operation is indeed physically meaningful since
the scattering of edge states is not affected by bulk electrons.

FIG. 5. Networks associated with the truncated discrete surfaces
Sc and S∗

c , obtained from the RP displayed in Fig. 4 with c = −1.2.
White and black lines are the links of Sc and S∗

c , respectively. The
areas highlighted in light blue indicate the regions under the Fermi
level.

Therefore, a change in the Fermi level induces a flow within
the space of discrete surfaces parametrized by c.

The removal of sites due to the truncation generates polyg-
onal faces in S∗

c with different sizes compared to those of S∗
(see Fig. 5). The net effect of this procedure is reminiscent
of that induced in the CC network by the surgery defined in
[17,18] and leading to RNs. For this reason, we expect the re-
placement probability pn of RNs to be somehow related to the
Fermi level in RPs. However, for the purpose of comparing
these two models, it is first necessary to restore the particle-
hole duality in the RP framework because the RNs, which are
described in the continuum limit by a Dirac fermion theory
[23], possess it. To this aim, the range of energies accessible to

FIG. 6. Number of maxima (�Nmax), minima (�Nmin ), and sad-
dle points (�Nsp ) in the height range [h, h + �h], with �h = 1/200,
divided by the area A of the lattice. The statistical sample consists
of m = 45 simulations with L = 300, i.e., A = mL2, W = 1/10, and
σ = √

2.
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FIG. 7. Curvature distributions for the RN (blue dots) and the
dual network S∗

c (red squares) for various values of the parameters pn

and pc which minimize the SSE.

an edge fermion in the RP should be restricted from [c,+∞]
to the symmetric interval Ic = [−|c|, |c|]. We shall refer to the
complementary interval Īc = [−∞,−|c|] ∪ [|c|,+∞] as the
nonvalid region. Next, notice that the replacement probability
pn is equivalent—at large network size—to half the ratio of
the number of removed scattering nodes to the total number
of nodes. Therefore, the quantity

pc = 1

2

No. of saddle points ∈ Īc

No. of saddle points ∈ (Ic ∪ Īc)
(6)

appears to be the most appropriate parameter of the RP to be
put in relation to pn. Since the distribution of saddle points
per unit height h is approximately Gaussian (see Fig. 6),
the parameter pc can be related to the Fermi level via the
complementary error function pc 
 1

2 erfc[|c|/(
√

2σsp)].
To find the relation between pn and pc, we consider the

distribution of discrete Gaussian curvatures R of the polygons
tiling both the RN and the dual network S∗

c for several values
of pn and pc, respectively. The criterion adopted for the asso-
ciation between pn and pc is the minimization of the sum of
squared errors,

SSE =
∑
m�1

{nn[R(m)] − nc[R(m)]}2, (7)

where nn(R) and nc(R) denote the number of polygons with
curvature R divided by the total number of polygons in the
RN and in S∗

c , respectively, with R(m) as in Eq. (4). In Fig. 7
curvature distributions in both the RN and S∗

c are compared
for some values of pn and pc that minimize the SSE. The
statistical samples consist of more than 50 RN simulations
on a 100 × 1000 network for each value of pn ∈ [0, 1/2] and
45 RP simulations on a square lattice of size L = 300 for
each value of c ∈ [0, 1/2]. A good agreement between the two

FIG. 8. Correspondence between the replacement probability pn

and pc obtained searching for the best match between the two cur-
vature distributions. The inset plot gives the estimated SSE as a
function of pc in logarithmic scale.

models is obtained for a suitable correspondence pn ↔ pc,
as reported in Fig. 8. We see that for pc � 0.35 the relation
pn(pc) is approximately pn = pc, while for smaller values
of pc the curve is deviating from the linear behavior ending
at pn(0) 
 0.178. The origin of this deviation is related to
the fact that pn = 0 corresponds to a regular network which
can be associated with a periodic potential, while the RP is
intrinsically disordered for any value of pc. Periodic potentials
have zero measure in the space of all RPs, therefore it is not
surprising that the distribution of curvatures in the RN is less
sensitive to variations of pn around pn = 0. Similar consider-
ations might also justify the discrepancy between nn(R) and
nc(R) that can be observed in the bottom right plot of Fig. 7.
We shall leave a more systematic study of this issue to the
future.

Conclusions. There are strong evidences that the field-
theory description of plateau transitions corresponds to a
model of fermions interacting with random gauge and scalar
potentials and also with structurally disordered geometry. In-
dicating that, in the scaling limit, localization transitions of
this type are correctly described by matter fields coupled to
2D quantum gravity. Starting from a random potential model,
we have explicitly constructed a map onto the 2D disordered
graphs Sc and S∗

c depending on the Fermi level. Thus, observ-
ing the appearance of the basic ingredient of random network
models [17,18] for quantum Hall plateau transitions and giv-
ing an interpretation of the replacement probability in term of
the Fermi energy. Sc and S∗

c , being quadrangular and polygo-
nal tilings of the plane, have a straightforward interpretation
as discrete random surfaces, explicitly showing the emergence
of 2D gravity. As discussed also in [17], the notion of func-
tional measure of random surfaces remains an open problem.
From the current analysis, it appears that the distribution of
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Gaussian curvatures on the random surface associated with
the random potential coincides with the corresponding dis-
tribution in the random network model, suggesting that the
functional measure of random surfaces can be defined in
terms of the measure of random potentials. In conclusion, we
revealed a deep link between random potentials in Anderson
localization problem and 2D curved surfaces, where the edge
states responsible for plateau transitions live.
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