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Origin of anomalous temperature dependence of the Nernst effect in narrow-gap semiconductors
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Based on the Boltzmann transport theory, we study the origin of the anomalous temperature dependence of
the Nernst coefficient (ν) due to the phonon-drag mechanism. For narrow-gap semiconductors, we find that there
are two characteristic temperatures at which a noticeable peak structure appears in ν. Contrarily, the Seebeck
coefficient (S) always has only one peak. While the breakdown of the Sondheimer cancellation due to the
momentum dependence of the electron relaxation time is essential for the peak in ν at low T , the contribution of
the valence band to the phonon-drag current is essential for the peak at higher T . By considering this mechanism,
we successfully reproduce ν and S of FeSb2, for which a gigantic phonon-drag effect is observed experimentally.
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Introduction. The thermoelectric effect has been exten-
sively studied for various materials due to its versatile poten-
tial applications, such as power generation, energy conversion,
and temperature sensing [1–3]. While the longitudinal See-
beck effect has been exploited in many thermoelectric devices,
those using the transverse Nernst effect are of great interest
since they have many advantages: One can design flexible
structures covering a heat source with a scalable generation
of a large thermopower and high-energy conversion efficiency
[4–9].

The thermoelectric effect is usually governed by the dif-
fusion of electrons and becomes monotonically weak below
room temperature [10]. However, in some situations there
can be another significant contribution at low temperature
(T ), which is called the phonon-drag effect. In the presence
of strong electron-phonon interaction, a momentum transfer
from nonequilibrium phonons to electrons occurs, and the
thermopower can be dramatically enhanced [11]. The phonon-
drag effect is particularly pronounced in some semiconductors
with a long phonon lifetime, and is regarded as a promising
mechanism to make high-performance thermoelectrics below
room temperature [12].

The quantitative description of phonon drag is a fascinating
problem to explore, having a long history [13–19]. Regarding
the Seebeck effect, intensive studies have been carried out
for several semiconductors in a wide range of T and carrier
concentrations [12,20–22]. On the other hand, it is not fully
understood in which materials and in which conditions the
phonon-drag contribution particularly enhances the Nernst
coefficient. One representative example is FeSb2, for which
a huge phonon-drag effect is observed. Interestingly, it has
been shown that its Nernst effect exhibits a characteristic
T dependence with multiple peaks, which are absent in the
Seebeck coefficient [23,24]. Recently, it has been proposed
that this distinct difference in the longitudinal and transverse
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thermoelectric effect can be understood by the phonon-drag
coupling to multiple in-gap states [25].

In this Letter, we investigate another mechanism of the
anomalous T dependence of the Nernst effect in narrow-gap
semiconductors. We first derive an electron-phonon coupled
quantum Boltzmann equation based on the Keldysh formal-
ism, and we calculate the Seebeck (S) and Nernst coefficient
(ν) [26–28]. In the approximation with a constant electron
relaxation time (the so-called constant-τ approximation), ν

vanishes at low T due to the Sondheimer cancellation. How-
ever, if we take account of the momentum dependence of τ , a
noticeable peak structure appears. On top of that, if the band
gap εg is sufficiently small, another peak originating from
the valence band appears at higher T . This result suggests
that when τ has momentum dependence in a narrow-gap
semiconductor, ν(T ) will have a characteristic double-peak
structure. On the other hand, we find that S(T ) always has
one featureless peak, even if we go beyond the constant-τ
approximation.

We then examine whether this mechanism plays a crucial
role in the gigantic phonon-drag effect in FeSb2. FeSb2 is a
correlated narrow-gap semiconductor with a large effective
mass [3,24,29], and it exhibits a remarkably large Seebeck
and Nernst effect at cryogenic temperatures [24,30–33]. The
maximum value of |S| and |ν| reaches 45 mV/K at 10 K [31]
and 3.2 mV/(K T) at 7 K [24], respectively. While electron-
correlation in FeSb2 is considerably strong [23,24,29,34–37],
it has been recently shown that phonon drag is responsible for
the colossal thermopower in this compound [22,25,29,33].

For S(T ), we show that the present Boltzmann approach
gives a result consistent with that obtained by an elaborate mi-
croscopic calculation based on linear-response theory [22,38].
S(T ) has a single peak, regardless of whether or not the
momentum dependence of τ is taken into account. On the
other hand, we find that ν(T ) has a double peak structure
when we go beyond the constant-τ approximation. The result
shows a good agreement with the experiment [24]. Our result
indicates the importance of the momentum dependence of τ
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in narrow-gap semiconductors, which will be a useful guiding
principle to control the phonon-drag effect and design efficient
thermoelectric devices.

Method. Starting from the Keldysh formalism [27], we de-
rive the Boltzmann transport equation that includes the effect
of an impurity state up to linear order of impurity concen-
tration. The numerical calculation shows that the effect of an
impurity state on S and ν is negligible within our approx-
imation. Hence, we start from the conventional Boltzmann
transport equation that disregards the effect of the impurity
state to simplify the discussion here. Details of the treatment
that considers the effect of the impurity state are explained in
the Supplemental Material [39].

The phonon-drag effect on the thermoelectric effect is cal-
culated from the Boltzmann transport equation in a method
similar to that by Cantrell and Butcher [40]. In the following,
we show a result for a simple case in which one electron band
and one phonon mode are involved. We neglect the effect
of the nonequilibrium electron distribution on the phonon
distribution function. The change of the electron distribution
function due to the phonon-drag effect is

[δ fqp(k)]Seebeck
ph-drag = −τel,k

∫
d3k′

(2π )3

d3q

(2π )3

τphh̄ωq

kBT 2

×(∇qωq) · (∇T )
(
Pq

kk′ − Pq
k′k

)
,

where

Pq
kk′ = 2π

h̄2 |gq|2
[
1 − f eq

qp (k)
]

f eq
qp (k′)Neq

ph (q)

×δ

(
ωq − 1

h̄
(εk − εk′ )

)
(2π )3δ(k − k′ − q)

is the transition amplitude of scattering from momentum k′

to k mediated by a phonon with momentum q. fqp and Nph

are the distribution function of electrons at the quasiparticle
peak and of the phonons, respectively. τel,k is the relaxation
time of electron excitation of momentum k. τph is the phonon
lifetime. We assumed that τph is independent of momentum
because it does not change the overall qualitative behavior of
the calculation result since the momentum dependence of τph

is not the main cause of the breakdown of the Sondheimer
cancellation. The effect of this approximation is discussed
in the Supplemental Material [39]. εk and ωq represent the
dispersions of the electron band and the phonon mode, respec-
tively. gq is the electron-phonon coupling constant. Using this
expression for [δ fqp(k)]Seebeck

ph-drag , the phonon-drag contribution
to the Seebeck coefficient can be calculated as

Sph-drag = −gs

σ

∫
d3k

(2π )3
(−evkx )

[δ fqp(k)]Seebeck
ph-drag

(∇xT )
,

where σ is the electric conductivity and gs (= 2) is the spin
degeneracy. Note that hereafter the temperature gradient is
assumed to be in the x direction. To calculate the Nernst co-
efficient, we consider the case in which an external magnetic
field is applied in the z direction, and we retain the terms that
are first order both in ∇T and in B. The change of distribution
function that contributes to the phonon-drag effect on the
Nernst coefficient is

[δ fqp(k)]Nernst
ph-drag = τel,k

1

h̄
e(vk × B) · ∇k[δ fqp(k)]Seebeck

ph-drag .

The transverse component of the linear-response coefficient
L12,yx is calculated as

L12,yx = gs

−(∇xT )/T

∫
d3k

(2π )3
(−evky)[δ fqp(k)]Nernst

ph-drag,

where the linear-response tensor L12 is defined by the rela-
tion j = σE + L12(−∇T )/T . Then, the Nernst coefficient is
written as

ν = S
1

B

(
−σyx

σxx
+ L12,yx

L12,xx

)
, (1)

using the linear-response coefficients in the weak-field limit.
L12,yx, L12,xx can be calculated from the above discussion,
and σxx, σyx can be calculated within the framework of the
conventional Boltzmann transport equation [41].

For typical semiconductors, we consider one conduction
band, one valence band, and one longitudinal acoustic (LA)
mode. We assume that the conduction and the valence band
have isotropic quadratic dispersions, and the LA phonon has
an isotropic linear dispersion with phonon velocity cL. We

use |gq|2 = h̄E2
d

2ρcL
q for the electron-phonon coupling constant,

where Ed is the deformation potential and ρ is the mass
density. It is possible to analytically carry out all the angular
integration under these assumptions and rewrite L12,xx and
L12,yx by single integrals as

Lcond
12,xx = − eh̄

3π2mc

∫ ∞

0
dk k3τel,c,kFc,ph(k), (2)

Lcond
12,yx = −Bz

e2h̄

3π2m2
c

∫ ∞

0
dk k3τ 2

el,c,kFc,ph(k) (3)

for the conduction-band contribution, where mc and τel,c,k are
the effective mass and the electron relaxation time for the
conduction band, respectively. The subscript “c” stands for the
conduction band. Fc,ph(k) is defined as

Fc,ph(k) = [δ fqp,c(k = (k, 0, 0))]Seebeck
ph-drag

τel,c,k (−∇xT )/T
, (4)

where δ fqp,c(k = (k, 0, 0)) is the change of electron distribu-
tion function in the conduction band evaluated at momentum
(kx, ky, kz ) = (k, 0, 0). The valence-band contribution to the
L12 tensor (Lval

12,xx, Lval
12,yx) can be written in a similar expression

[39]. The electric conductivity tensor can be calculated as

σ cond
xx = − eh̄

3π2mc

∫ ∞

0
dk k3τel,c,kFc,E (k), (5)

σ cond
yx = −Bz

e2h̄

3π2m2
c

∫ ∞

0
dk k3τ 2

el,c,kFc,E (k), (6)

where Fc,E (k) is the electric field correspondent of Fc,ph(k),
which is defined as

Fc,E (k) = [δ fqp,c((k, 0, 0))]E

Exτc,k
= evc,k

(
∂ f eq

qp,c

∂εc,k

)
. (7)

[δ fqp,c]E is the change of the distribution function induced by
the external electric field. The valence-band term of the elec-
tric conductivity tensor σ val can be calculated in an analogous
way [39].

The chemical potential is determined from the condition
of charge neutrality, where the band gap εg and the donor
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FIG. 1. Phonon-drag contribution to the Seebeck coefficient S
and the Nernst coefficient ν for (a) a moderate-gap semiconductor
and (b) a narrow-gap semiconductor. We set the band gap εg and the
donor binding energy εb as (a) εg = 1.0 eV and εb = 0.05 eV, and
(b) εg = 30 meV and εb = 5 meV. For other parameters, see the text.

binding energy εb play a crucial role. Note that the electron
concentration in the impurity state is nd × 1

eβ(εc,k=0−εb−μ)
/2+1

,
which is apparently different from the Fermi-Dirac statistics
because a spin-up and a spin-down electron cannot occupy the
same impurity site at the same time due to the strong Coulomb
repulsion [41].

We consider the impurity scattering and the phonon scatter-
ing process to determine 1/τel,c,k = 1/τc,imp,k + 1/τc,ph,k. For
the impurity scattering, we adopt the Brooks-Herring model
[42], in which a Yukawa-type screened Coulomb potential is
employed to represent the impurity potential,

1

τc,imp,k
= 4πεbnd

h̄k3

∫ 2

0

xdx[
x + q2

D/(2k2)
]2 ,

where nd is the donor concentration, and q2
D = nde2

εkBT . The
dielectric constant ε is calculated from εb and mc as ε =
ε0 ×

√
13.6 eV

εb

me
mc

. The electron scattering rate by the phonon

can be calculated from the Boltzmann transport equation as

1

τc,ph,k
=

(
−kBT

∂ f eq
qp,c

∂εk

)−1 ∫
d3k′

(2π )3

d3q

(2π )3

(
Pq

c,kk′ + Pq
c,k′k

)
.

Here, Pq
c,kk′ is the phonon mediated transition amplitude in the

conduction band. We assume that the hole relaxation time for
the valence band is equal to that of the conduction band.

Results and Discussion. Let us start with model cal-
culations for the following two representative cases: a
semiconductor with a moderate band gap εg = 1.0 eV and a
narrow band gap εg = 30 meV. For εb, we use 50 meV for
the former and 5 meV for the latter. The other parameters are
the same for both cases. Namely, we set nd = 1.0 × 10−8 Å−3,
cL = 5000 m/s, Ed = 1.0 eV, and ρ = 5.0 g/cm3. We assume
that the valence and conduction band have the same effective
mass (=me). We set τph(T ) = 1.0 × 10−7 × 10−T/T∗ s, where
T∗ = 20 K. The parameters are in the same order as the fitting
curve of the previous calculation result [22].

In Fig. 1, we show S(T ) and ν(T ) for the moderate-gap
case (a) and the narrow-gap case (b). For S(T ), we see that
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FIG. 2. Momentum dependence of (a) electron scattering rate
and (b) Fc,E (k) and Fc,ph(k) [see Eqs. (4) and (7) in the text] for the
narrow-gap semiconductor in Fig. 1(b) at 8 K.

there is only one peak around T = 10 K for both (a) and (b).
On the other hand, ν(T ) has only one peak for (a) but two
peaks for (b), i.e., on top of the peak around T = 10 K, one
additional peak appears around 40 K.

The origin of these two peaks in ν(T ) can be understood
in terms of Eq. (1). When T is sufficiently lower than εg, we
can neglect the contribution of the valence band, and Eq. (1)
is simplified as

ν = S

Bz

(
−σ cond

yx + σ val
yx

σ cond
xx + σ val

xx

+ Lcond
12,yx + Lval

12,yx

Lcond
12,xx + Lval

12,xx

)
(8)

� S

Bz

(
−σ cond

yx

σ cond
xx

+ Lcond
12,yx

Lcond
12,xx

)
. (9)

It should be noted that we can show that

σ cond
yx /Bz

σ cond
xx

= Lcond
12,yx/Bz

Lcond
12,xx

= eτel,c

mc

in the constant-τ approximation, so that the first and second
terms in Eq. (9) cancel with each other (the so-called Sond-
heimer cancellation) and eventually ν becomes negligibly
small.

However, if we consider the momentum dependence of
τel,c,k, this cancellation does not happen and ν(T ) can be
finite even at low T . In Fig. 2, we show 1/τel,c,k, Fc,ph(k),
and Fc,E (k) as a function of k (= |k|). We see that the peak
of Fc,ph(k) extends to k larger than that of Fc,E (k), for which
τel,c,k is longer. In this situation, the second term in Eq. (9)
dominates over the first term [see Eqs. (2), (3), (5), and (6)].
Therefore, the momentum dependence of τel,c,k is crucial for
the formation of the peak in ν(T ) around 10 K.

Let us now move on to the case of higher T . As is discussed
in the Supplemental Material [39], when εg = 5 meV and
T ∼ 30 K, the contribution of the valence band to the linear-
response coefficient (i.e., σ val and Lval) becomes comparable
to that of the conduction band (i.e., σ cond and Lcond). As we
can see from Table I, σ cond

yx and σ val
yx have opposite signs.

Contrarily, Lcond
12,yx and Lval

12,yx have the same sign, so that the
second term on the right-hand side of Eq. (8) becomes dom-
inantly larger than the first term at T ∼ 30 K, and eventually
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TABLE I. Signs of the conduction-band and the valence-band
contribution to the linear-response coefficients.

σ cond
xx σ val

xx σ cond
yx /Bz σ val

yx /Bz

+ + + −
Lcond

12,xx Lval
12,xx Lcond

12,yx/Bz Lval
12,yx/Bz

− + − −

−ν(T ) becomes large. However, it should be noted that ν(T )
vanishes in the limit of high T since S(T ) becomes negligibly
small. Thus ν(T ) has a peak at intermediate T ∼ 30 K. This
mechanism does not work when εg is larger than 1 eV ∼104 K,
so that the double-peak structure in ν(T ) appears only in
narrow-gap semiconductors.

Finally, let us consider the case of FeSb2. We show the
result for S(T ) and ν(T ) in Fig. 3. In the calculation, the effec-
tive mass of the conduction and the valence band is set to mc =
mv = 5me [22,33]. The band gap and the impurity binding
energy are set to εg = 28 meV and εb = 6 meV, respectively
[24]. We set cL = 3100 m/s and nd = 1.9 × 10−8 Å−3. The
donor concentration nd is determined so that the carrier con-
centration at low T is the same order as the experiment [24].
The deformation potential is set to Ed = 0.85 eV, which is a
typical value for semiconductors. The mass density is set to
ρ = 8.2 g/cm3. The phonon lifetime τph(T ) is determined to
reproduce the experimental result of the thermal conductivity
[22].

We see that the result is in good agreement with the ex-
periment [24]. The deviation of the calculation result from
the experiment below 5 K is due to the impurity band con-
tribution, which is discussed in the Supplemental Material
[39]. Note that the result for S(T ) is also consistent with
the previous result based on microscopic linear-response the-
ory [22]. The electric resistivity and the Hall coefficient
reach a plateau around T = 10–20 K. In this temperature
range, a large fraction of the electrons in the impurity state
is excited to the conduction band while the valence band
is still almost completely occupied. Above this plateau, the
carrier concentration increases due to excitation from the va-
lence to the conduction band, which is consistent with the
scenario for the anomalous T dependence of ν(T ) in narrow-
gap semiconductors. These results clarify that the origin of
the huge phonon-drag contribution to ν of FeSb2 at low
temperatures is the momentum dependence of τel,k and the
small εg.
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FIG. 3. (a) Electric resistivity, (b) Hall coefficient, (c) Seebeck
coefficient, and (d) Nernst coefficient of FeSb2 compared with the
experimental result [24].

Conclusion. We investigate the phonon-drag contribution
to the Seebeck and the Nernst coefficient using the Boltzmann
transport equation. We identify that the momentum-dependent
electron relaxation time is crucial to the large negative Nernst
coefficient at low temperature, which breaks the Sondheimer
cancellation. Furthermore, we find that the Nernst coefficient
has another peak at higher temperature if the band gap is
sufficiently small. Considering this mechanism, we calculate
the electric resistivity, the Hall coefficient, and the Seebeck
and the Nernst coefficient of FeSb2, and we succeed in repro-
ducing the experimental result. We showed that the effect of
the impurity band is negligible within our Boltzmann trans-
port equation approach. Our results propose another possible
origin of the anomalous temperature dependence of the Nernst
coefficient of FeSb2, which provides a possibility to utilize the
phonon-drag effect to design good thermoelectric materials.
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