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Ultrafast Mott transition driven by nonlinear electron-phonon interaction
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Nonlinear phononics holds the promise for controlling properties of quantum materials on the ultrashort
timescale. Using nonequilibrium dynamical mean-field theory, we solve a model for the description of organic
solids, where correlated electrons couple nonlinearly to a quantum phonon mode. Unlike previous works, we
exactly diagonalize the local phonon mode within the noncrossing approximation to include the full phononic
fluctuations. By exciting the local phonon in a broad range of frequencies near resonance with an ultrashort
pulse, we show it is possible to induce a Mott insulator-to-metal phase transition. Conventional semiclassical
and mean-field calculations, where the electron-phonon interaction decouples, underestimate the onset of the
quasiparticle peak. This fact, together with the nonthermal character of the photoinduced metal, suggests a
leading role of the phononic fluctuations and of the dynamic nature of the state in the vibrationally induced
quasiparticle coherence.
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I. INTRODUCTION

In the last decade, nonlinear phononics [1,2] has become
one of the most promising pathways for the nonequilib-
rium control of quantum materials [3]. Within this approach,
one can transiently stabilize a crystal structure unstable
under equilibrium conditions by coherently exciting an
infrared-active lattice mode which is nonlinearly coupled
to a Raman-active phonon [4–10]. An analogous pathway
suggests that the electronic properties of solids may be ma-
nipulated by the excitation of vibrational modes that couple
nonlinearly with the local degrees of freedom of the electronic
system [11–16].

Molecular solids provide a perfect playground for testing
this mechanism [17,18]. A paradigm example is the charge-
transfer (CT) salt ET-F2TCNQ, which is an archetypical
one-dimensional Mott insulator under equilibrium conditions
and has been widely studied under photodoping [19,20].
Upon excitation of the molecular vibration ωph = 1000 cm−1,
the CT resonance at ∼5500 cm−1 is redshifted, and an
in-gap state at 2 × h̄ωph appears [11,21]. Even more in-
triguing results have been obtained regarding light-induced
superconductivity. The fulleride K3C60 [22] shows a super-
conducting state at temperatures almost ten times higher
than the equilibrium Tc lasting a few picoseconds after ex-
citation in the frequency range related to the T1u mode
of the C60 molecule [23–25]. The organic superconductor
κ − (BEDT − TTF)2Cu[N(CN)2]Br (henceforth κ − Br) dis-
plays a similar behavior when the C = C stretching mode
of the (BEDT − TTF)+0.5 molecule is excited [26]. Because
the photoinduced superconducting response is correlated with
the presence of an equilibrium coherent quasiparticle, it is an
obvious relevant question, which will be analyzed in this Let-
ter, whether nonlinear phononics can enhance quasiparticle
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coherence in correlated electron systems. Moreover, we might
ask if it is possible at all to replace the nonlinear phonons
with some time dependent electronic Hamiltonian parameter.
The rationale beyond this idea comes from a “natural” de-
coupling of the electron-phonon interaction. A typical local
electron-phonon interaction gOiXi, where an electronic oper-
ator Oi couples to the displacement Xi of atom i, would give
a term Fi(t )Oi with a time dependent “force” Fi(t ) = g〈Xi(t )〉
in the electronic Hamiltonian when Xi is replaced by its time
dependent expectation value in a coherent (macroscopically
occupied) q = 0 phonon state. For example, the experiments
on ET-F2TCNQ and κ − Br were interpreted by an average
shift and a periodic time dependence of the local Coulomb
interaction (the Hubbard U ) [11,26,27]. However, it is clear
that the approximation OiXi ≈ Oi〈Xi(t )〉 is controlled by the
fluctuations of the local displacement operator Xi relative to
〈Xi(t )〉, which are significant even when the phonons are
globally in a macroscopic coherent mode. Even though the
decoupling approach can successfully capture some experi-
mental observations, it is, therefore, important to understand
how quantum effects become manifest in nonlinear electron
phononics [21].

In this Letter, we study a generalization of the Hubbard-
Holstein model [28,29], which applies to ET-F2TCNQ and
κ − Br, with a quadratic coupling of a local displacement Xi

to the doublon and the holon densities, so that, on average,
X 2

i modulates a local electron interaction U . The simulations
indeed predict an insulator-to-metal transition (IMT), with a
strong enhancement of the quasiparticle weight driven by the
excitation of the local vibration. The vibrationally induced
metallicity in the model cannot be accounted for by a decou-
pled Hamiltonian in which a time dependent U replaces the
effect of the phonons, but instead the full quantum dynam-
ics must be taken into account. We show that, even if the
decoupled model takes into account the back-action of the
electrons on the phonons (and vice versa), it cannot capture
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phonon-related features in the electronic spectrum (Fano res-
onances) [30,31].

II. MODEL

We consider the generalized Hubbard-Holstein model,
compactly written as

H (t ) = Hel + Hel-ph + Hph + Hdriv(t ) − μN. (1)

The purely electronic part of the Hamiltonian is given by

Hel = −v0

∑
〈i, j〉,σ

(c†
i,σ c j,σ + H.c.) + U

∑
i

ni,↑ni,↓, (2)

with nearest-neighbor hopping v0 and local Hubbard interac-
tion U ; μ is the chemical potential used to fix the occupation
of each site to 〈ni〉 = 1. v0 = 1 and h̄/v0 set the units for the
energy and the times, respectively. The bare phonon Hamil-
tonian in Eq. (1) describes a band of Einstein phonons Hph =
ωph

∑
i(a

†
i ai + 1

2 ) where a†
i (ai) is the creation (destruction)

operator for a boson.
The electron-phonon interaction is given by [21]:

Hel-ph = 2
∑

i

(hHi − dDi )X
2
i , (3)

where Hi = (1 − ni,↑)(1 − ni,↓) (Di = ni,↑ni,↓) are the holon

(doublon) operators, and Xi = a†
i +ai√

2
is the local displacement.

We take parameters ωph = 1.5, so that we are far from the
adiabatic regime, and assume the values h = 0.1 and d = 0.35
for the coupling constants. With this, the renormalized phonon
frequencies on an isolated site occupied by a holon or dou-
blon are ωh

ph ∼ 1.24 ωph and ωd
ph ∼ 0.26 ωph, respectively.

The renormalized frequency values obtained this way are in
qualitative agreement with what is found for ET-F2TCNQ,
where a stiffening of the holon oscillator and a slackening
of the doublon one is observed [21]. Note that Hel-ph with
d 	= h breaks the particle-hole symmetry even on a bipartite
lattice [32]. In experiments, the quadratic coupling of the
phonon displacement and the electrons is confirmed by the
2ωph feature in the optical absorption after phonon excitation
[21]. The last term in Eq. (1) describes a linear coupling of the
phonon displacement to an external electric field,

Hdriv(t ) =
√

2ωph f (t )
∑

i

Xi, (4)

and we use a few-cycle excitation pulse f (t ) with different
frequencies � (see Fig. 1 inset) to excite a coherent vibra-
tion of the phonon. Finally, we will compare the dynamics
obtained from Eq. (1) with a decoupled Hamiltonian, in which
the electron dynamics is determined by Eq. (2) with a time
dependent interaction U :

HU-driv(t ) = Hel[U → U (t )], (5)

with different forms of U (t ) as described in the text.
We solve the time dependent models Eqs. (1) and (5) us-

ing nonequilibrium dynamical mean-field theory (NEDMFT)
within noncrossing approximation (NCA) [33,34]. NCA has
limitations in the description of the metallic phase of the
Hubbard model at low temperatures and small U . Here,
we apply it at high temperature and intermediate values
of U (U ∼ bandwidth), where it is known to be qualita-
tively correct. NEDMFT maps the lattice problem into an
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FIG. 1. (a) Equilibrium spectral functions A(ω) for the electron-
phonon coupled system at several values of U and inverse
temperature β. (b) Same for the Hubbard model without dynamic
phonons, at β = 10. Inset: Time dependent driving field f (t ) [see
Eq. (4)]. We keep the maximum amplitude (0.05) and the duration
(20), while the frequency � is changed (� = 1.5 in the plot, equal to
ωph).

Anderson impurity model with a self-consistent hybridiza-
tion function �(t, t ′). We use a semielliptic free density of
states of width 4v0, leading to the closed form �(t, t ′) =
v2

0G(t, t ′) in terms of the local contour-ordered electronic
Green’s function G(t, t ′). For model (1), we include the full
phonon Fock space and the nonlinear local electron-phonon
dynamics exactly in the DMFT impurity model (similar to
bosonic DMFT [35]) and take the cutoff in the phonon
Hilbert space large enough (Nph = 18 for mean occupations
|〈X 〉| � 1). This avoids potential ambiguities of alternative
diagrammatic approaches for the local electron-phonon in-
teraction [36–38]. Finally, energy dissipation of electrons
to other degrees of freedom (phonons, spin fluctuations,
etc.), which is fast in correlated insulators, is taken into
account through a bosonic heat bath. The bath just adds
a term to the hybridization [39,40], �(t, t ′) = v2

0G(t, t ′) +
�Ohmic(t, t ′), where �Ohmic(t, t ′) = λG(t, t ′)DOhmic(t, t ′) is
second order in the electron-boson coupling with tempera-
ture 1/β and Ohmic density of states [bath spectral density
J (ω) = ∑

α g2
αδ(ω − ωα ) = ωθ (ωc − ω), ωc = 0.2]. We take

λ = 0.242, which is weak enough so that electronic spectra
are not affected by the coupling to the bath.

III. RESULTS

In Fig. 1(a), we plot the electronic spectral function A(ω)
of the model (1) for several values of the interaction U . At
inverse temperature β = 10, shared by both the electronic and
lattice subsystems, there is an IMT around U = 3.6, indicated
by the appearance of a quasiparticle peak at ω ∼ 0. With
increasing temperature, the quasiparticle peak vanishes, as
the system crosses over into a bad metallic regime (see data
for U = 3.0 and β = 2). The pronounced dip in the upper
Hubbard band results from the hybridization between the dou-
blon states and the phonon.
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FIG. 2. Time evolution of the expectation value of the position
operator 〈X 〉 (a), its square 〈X 2〉 (b), and the relative change of the
double occupations with respect to the initial value �d

d = d (t )−d (0)
d (0) (c),

at U = 3.7, β = 10, and field pulses f (t ) of different frequencies �.
The thin orange lines represent the results at � = 1.5 without Ohmic
bath. (d) Time dependent U s.cl

X 2 (t ), U MF
〈X 2〉(t ), U〈X 〉2 (t ), and U〈X 2〉(t ),

as defined in Eq. (6). For the protocols U〈X 〉2 (t ) and U〈X 2〉(t ) the
expectation values 〈X (t )〉 and 〈X 2(t )〉 correspond to the black line
at � = 1.5 of panels (a) and (b). (e) Time dependent �d

d as obtained
from Eq. (5), with U (t ) shown in panel (d).

We now concentrate on parameters U = 3.7 and β =
10 above the IMT and attempt to induce the transition
through phonon driving. The vibrational mode is pumped
using a few-cycle pulse f (t ) as shown in the inset of Fig. 1,
at different frequencies �. Figure 2 displays the resulting
time evolution of several observables. While 〈X 〉 oscillates
around its equilibrium position 〈X 〉 = 0 with the bare phonon

frequency ≈ ωph [Fig. 2(a)], 〈X 2〉 oscillates around a shifted
mean at a frequency ≈2ωph [Fig. 2(b)]. The most pronounced
response is observed at resonant pumping � = ωph = 1.5.
At resonance, the double occupancy increases by about 15%
compared to its initial value [Fig. 2(c)]. These changes go
along with a photoinduced metallicity, as observed from the
transient appearance of a quasiparticle peak at ω ∼ 0 in
the time-resolved spectral function (Fig. 3, upper panels). The
metallization survives the switch-off of the laser pulse up
to the latest time (t = 30) of the simulation [Fig. 3(e)]. In
addition to the quasiparticle peak, one observes oscillations
at frequency 2ωph in the spectrum, like in 〈X 2〉. The broad
range of frequencies � where we observe the onset of the peak
at ω ∼ 0 verifies the genuine metallicity of the photoinduced
state, with a small asymmetry around the observed maximum
response (see Fig. 4).

We will now contrast these results with the decoupled
model Eq. (5), where phonon variables in the electron-phonon
interaction Eq. (3) are replaced by a classical field or the
expectation value of a quantum operator, leading to a time
dependent interaction. We compare four possible Ansätze:
(i) X 2

i is replaced by a classical field X (t )2 self-consistently
determined by the semiclassical equation of motion, (ii)
a mean-field decoupling of the electron-phonon interaction
Eq. (3) (of the kind OiX 2

i → 〈Oi〉X 2
i + 〈X 2

i 〉Oi − 〈Oi〉〈X 2
i 〉)

is performed while the full quantum dynamics of phonons is
considered with the equation of motion for the density matrix,
and X 2 is substituted with (iii) 〈X (t )〉2 or (iv) 〈X 2(t )〉 obtained
from the full DMFT calculation. Those approaches lead to

U →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U − 2(d − h)X 2(t ) ≡ U s.cl
X 2 (t )

U − 2(d − h)〈X 2(t )〉 ≡ U MF
〈X 2〉(t )

U − 2(d − h)〈X (t )〉2 ≡ U〈X 〉2 (t )
U − 2(d − h)〈X 2(t )〉 ≡ U〈X 2〉(t )

, (6)

FIG. 3. Spectral functions for the dynamic phonon model at U = 3.7 (upper row) and the simplified approach U (t ) = U〈X 2〉(t ) (bottom
row). Spectral function and occupation (black and red lines, respectively) at initial time t = 0 and at latest time t = 30 are shown in the left
(a, b) and right columns (e–f), respectively. For intermediate time steps see Supplemental Material [41]. Additional lines in panels (e) and (f)
show a fit A<(ω, t ) = A(ω, t )/(1 + eβeff ω ) to the occupation functions (dotted cyan lines), and the equilibrium spectral function (dashed green
lines) for a system with the same total energy as the driven system at latest time t = 30 (β ∼ 2.083 for the phonon case, U ∼ 3.388, and
β = 10 for the U -driven case). Middle panels (c, d): Time dependent spectral weight close to the Fermi level ω = 0; spectral functions are
obtained by forward Fourier transform A(ω, t ) = − 1

π
Im

∫
dsGR(t + s, t )eiωs for t < 15 and by backward Fourier transform for t > 15 (dashed

vertical line at t = 15).
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FIG. 4. Zoom around ω ∼ 0 of the time dependent (backward)
spectral functions A(ω, t ) = − 1

π
Im

∫
dsGR(t, t − s)eiωs at t = 30 af-

ter excitation pulses with frequency � below (a) and above (b) the
bare phonon frequency ωph.

where we have assumed
∑

i Hi = ∑
i Di up to terms ∝ N̂ .

Figure 2(d) shows the resulting U (t ) for the almost-resonant
driving case � = 1.5. The two self-consistent protocols are
computed using the driving term shown in the inset of
Fig. 1. Clearly, for a general state of the quantum phonon,
〈X 〉2 	= 〈X 2〉. A time dependent function of the kind U (t ) =
U + �U [1 − cos (2ωpht )]θ (t ) can qualitatively describe the
U driving guided by the classical X or by 〈X 〉, while U〈X 2〉(t )
looks more like an interaction quench. Finally, U MF

〈X 2〉(t ), where

the time dependent 〈X 2(t )〉 is computed using the density
matrix, shows a tiny time dependence during the action
of the external pulse only. Further details about the classi-
cal and mean-field dynamics are provided in Supplemental
Material [41].

We note that U MF
〈X 2〉 and U〈X 2〉 deviate from U already in

equilibrium, where the vacuum and thermal fluctuations of
the phonon are responsible for a renormalization of U by
≈ −0.3. In equilibrium, one finds that this renormalization
rather accurately accounts for the shift of the IMT in the
generalized Hubbard-Holstein model as compared to the stan-
dard Hubbard model. In Fig. 1(b), we show the equilibrium
spectra of the Hubbard model at different U ; the IMT in
the Hubbard-Holstein model Eq. (1) is indeed lowered by ≈
−0.3 compared to the static one. This quantitative agreement
also shows that for the given parameters polaronic effects
play a minor role in localizing the quasiparticles, at least
under equilibrium conditions. In contrast to this observation,
the nonequilibrium dynamics of quasiparticles and the vibra-
tionally induced IMT in the model cannot be explained by
a renormalized time dependent interaction. We compare in
Fig. 3 the time dependent spectra A(ω, t ) for the full dy-
namical phonons simulation and the U〈X 2〉 driving protocol,
that we take as representative of all the simplified protocols
Eq. (6) [indeed, the qualitative dynamics of A(ω, t ) is the
same for all of them]. While we still notice some increase in
the spectral weight at zero frequency, the quenchlike U (t ) =

U〈X 2〉(t ) (lower panels) does not reproduce the emergence of
a zero-frequency peak. The rather different response of full
DMFT treatment and the simplified approaches (6) is evident
also in other observables: the relative change �d/d ∼ 15%
in the double occupancy at resonant driving is almost three
times larger than the change �d/d in the Hubbard model
in response to the corresponding time dependent interactions
[see Figs. 2(c) and 2(e)].

A possible explanation of the above findings is that the
simplified approaches, which generally replace the phonon
operators by semiclassical fields in the electronic problem,
have underestimated the phonon-induced dissipation which
favors metallization. However, we find that different elec-
tronic temperatures cannot explain our results. An effective
temperature 1/βeff obtained from a fit of the equilibrium
fluctuation relation A<(ω, t ) = A(ω, t )/(1 + eβeff ω ) to the oc-
cupation functions A<(ω, t ) close to ω = 0 at the latest
simulation time yields an even lower effective temperature for
the U〈X 2〉-driven case (βeff ∼ 9.5) compared to the full DMFT
results (βeff ∼ 6.2); see continuous red lines and dotted cyan
lines in Figs. 3(e) and 3(f). Moreover, 1/βeff obtained in
this way can only characterize the low-energy quasiparticles,
while the total energy at t = 30 is that of a system at inverse
temperature β ∼ 2.083 [spectrum shown by the dashed green
line in Fig. 3(e)], and 〈X 〉 is still oscillating [Fig. 2(a)]. We,
therefore, conclude that a time dependent interaction as in
Eq. (6) plus electron cooling cannot faithfully describe the
enhancement of metallicity in the photoexcited Mott insulator
with nonlinear electron-phonon coupling. An analogous anal-
ysis shows that even for states closer to the metal-insulator
transition the enhancement of metallicity is underestimated.
A possible explanation is that in addition to the static renor-
malization of U through 〈X 2〉 there is a dynamic contribution
via virtual phonon emission and absorption. Such induced
interactions go as g2/ωph in the antiadiabatic phonon regime.
In the presence of the X 2 nonlinearity, an oscillating phonon
may act similar to a dynamically modulated electron-phonon
coupling, which allows for interactions mediated via phonon-
Floquet sidebands, with an energy denominator 1/(ωph ±
�). Thus, such interactions can be strongly renormalized,
in particular close to resonance ωph = �. While the present
parameter regime, close to the IMT and with not too well-
separated energy scales between ωph and bandwidth, makes
an analytic understanding difficult, the numerical results in
Fig. 4 unambiguously demonstrate substantial enhancement
of the quasiparticle peak around the resonance. Another effect
could be driving-induced undressing of polarons [42–44], but
as we have concluded above polaronic effects are probably not
significant here.

IV. CONCLUSIONS

In this paper, we have analyzed a generalized Hubbard-
Holstein model, relevant for the description of molecular
solids, which is excited by an ultrafast pulse of local molecular
vibration. By exactly treating the quantum phononic fluc-
tuations, we show numerical evidence for the vibrationally
induced emergence of a quasiparticle peak in the electronic
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spectral function at ω ∼ 0, signaling the occurrence of an
IMT. This observation should be relevant for the understand-
ing of photoinduced superconductivity in molecular solids
[26]. More generally, the striking difference of our results to
a simplified treatment for the phonons implies the need for
careful analysis of quantum phonon effects in the phononic
control of electronic properties.
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