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The frustrated XY model on the honeycomb lattice has drawn lots of attention because of the potential
emergence of chiral spin liquid (CSL) with the increasing of frustrations or competing interactions. In this paper,
we study the extended spin- 1

2 XY model with nearest-neighbor (J1), and next-nearest-neighbor (J2) interactions
in the presence of a three-spins chiral (Jχ ) term using density matrix renormalization group methods. We obtain
a quantum phase diagram with both conventionally ordered and topologically ordered phases. In particular, the
long-sought Kalmeyer-Laughlin CSL is shown to emerge under a small Jχ perturbation due to the interplay of the
magnetic frustration and chiral interactions. The CSL, which is a nonmagnetic phase, is identified by the scalar
chiral order, the finite spin gap on a torus, and the chiral entanglement spectrum described by chiral SU (2)1

conformal field theory.
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I. INTRODUCTION

A spin liquid [1] features a highly frustrated phase with
long-range ground-state entanglement [2,3] and fractionalized
quasiparticle excitations [4–6] in the absence of conventional
order. The exotic properties [7–9] of the spin liquid are rel-
evant to both unconventional superconductivity [10–13] and
topological quantum computation [14]. Among various kinds
of spin liquids, the chiral spin liquids (CSL), which have
gapped bulk and gapless chiral edge excitations, is proposed
by Kalmeyer and Laughlin [15]. It has a nontrivial topolog-
ical order and belongs to the same topological class as the
fractional quantum Hall states.

In recent years, there have been extensive studies to iden-
tify the CSL in realistic spin models on different geometries
such as Kagome [16–20], triangle [21–24], square [25,26],
and honeycomb lattices [27]. Interestingly, for the XY model
on honeycomb lattice theoretical studies have suggested the
existence of a CSL in the highly frustrated regime that is
generated by the staggered Chern-Simons flux with nontrivial
topology [13,28]. However, so far there is no direct numerical
evidence supporting this claim [29–36], leaving the possible
existence of a CSL in the honeycomb XY model as an open
question.

Aside from the possible CSL, the XY model itself is
expected to have a rich phase diagram because of the
frustration induced by the next-nearest-neighbor coupling
J2. As the reminiscent of the debated intermediate phase
in numerical studies, density matrix renormalization group
(DMRG) [31,34] and coupled cluster method [36] studies
suggest an Ising antiferromagnetic state. However, exact di-
agonalization (ED) [29,37] and quantum Monte Carlo method
studies [30,38] suggest a Bose-metal phase with spinon Fermi
surface [39]. A very recent numerical study using ED reveals

an emergent chiral order, but the phase remains a topologically
trivial chiral spin state [40]. Up to now, the theoretical under-
standing of the phase diagram for honeycomb XY model is
far from clear.

The aim of this paper is to provide strong numerical ev-
idence of the long-sought CSL in the extended spin- 1

2 XY
model on the honeycomb lattice and clarify the conditions for
such a phase to emerge. Based on large-scale DMRG [41,42]
studies, we identify the quantum phase diagram in the pres-
ence of the nearest, next-nearest XY spin couplings and
three-spins chiral interactions

−→
Si · (

−→
S j×−→

Sk ). While there are
only magnetic ordered phases in the absence of the chiral
couplings, the CSL emerges with finite chiral interactions,
where the minimum Jχ required for the emergence of the CSL
appears in the intermediate J2 regime. This suggests possible
multiple critical points in the phase diagram, neighboring
between Ising antiferromagnetic order, collinear/dimer order,
and the CSL.

The CSL is identified in the extended regime above the
XY-Neel state and the Ising antiferromagnetic state induced
by chiral interactions. We also obtain a chiral spin state at
large Jχ with finite chiral order. The chiral spin state shows
peaks in the spin structure factor that increase with system
sizes, indicating a magnetic ordered state. The phases we find
without the chiral term agree with previous numerical studies
using DMRG [31]. Our results demonstrate the importance of
the interplay between the frustration and chiral interactions,
which leads to a rich phase diagram.

II. MODEL AND METHOD

We investigate the extended spin- 1
2 XY model with a uni-

form scalar chiral term using both infinite and finite size
DMRG methods [43,44] in the language of matrix product
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FIG. 1. The schematic phase diagram of the extended XY model
for 0.1 < J2 < 0.6 and 0 < Jχ < 0.3, based on the results from
cylindrical circumference of four unit cells. The CSL is identified
in the intermediate regime.

states [45]. We use the cylindrical geometry with circumfer-
ence up to 6 (8) unit cells in the finite (infinite) size systems
except for the calculations of spin gap, which is based on
smaller size tori to reduce boundary effect.

The Hamiltonian of the model is given as

H = J1

∑

〈i, j〉
(S+

i S−
j + H.c.) + J2

∑

〈〈i, j〉〉
(S+

i S−
j + H.c.)

+ Jχ

∑

i, j,k∈�

−→
Si · (

−→
S j×−→

Sk ). (1)

Here 〈i, j〉 refers to the nearest-neighbor sites and 〈〈i, j〉〉
refers to the next-nearest-neighbor sites. {i, j, k} in the sum-
mation

∑
� refers to the three neighboring sites of the smallest

triangle taken clockwise as shown in Fig. 1. The chiral term
could be derived as an effective Hamiltonian of the extended
Hubbard model with an additional � flux through each ele-
mentary honeycomb [17,27,46,47]. We set J1 = 1 as the unit
for the energy scale, and use the spin U(1) symmetry for better
convergence.

III. PHASE DIAGRAM

The ground-state phase diagram is illustrated in Fig. 1. We
use spin structure factors to identify magnetic ordered phases,
and entanglement spectrum to identify the topological ordered
CSL. For larger Jχ , a magnetic ordered chiral spin state with
nonzero scalar chiral order is also identified.

The static spin structure in the Brillouin zone is defined as

S(−→q ) = 1

N

∑

i, j

〈−→
Si · −→

S j
〉
ei−→q ·(−→r i−−→r j ). (2)

FIG. 2. (a) shows the peak value at � point in the spin struc-
ture S(q) at J2 = 0.2 for various Jχ where the peak vanishes at
Jχ ≈ 0.15. The inset of (a) is the spin structure of the XY-Neel
order at J2 = 0.2, Jχ = 0.06, where there are clear peaks at the �

points in the second Brillouin zone. (b) is the M point peak value at
J2 = 0.4 for various Jχ . The peak shows a sudden drop at Jχ ≈ 0.06,
indicating a phase transition. The inset of (b) is the spin structure of
the collinear order at J2 = 0.4, Jχ = 0.01, where the dominant peak
is located at the M points in the second Brillouin zone. (c) shows the
antiferromagnetic order (blue line) and the scalar chiral order (red
line) at J2 = 0.3 for various Jχ where the three corresponding phases
from left to right are Ising antiferromagnetic state, CSL, and chiral
spin state. The left dashed line is determined by the sudden drop of
antiferromagnetic order, while the right dashed line is determined
by the vanish of quasidegenerate pattern in the entanglement spec-
trum. (d) refers to the spin correlations at J2 = 0.3 for various Jχ

representing different phases. The phases at Jχ = 0.01, 0.04, 0.08,
and 0.14(0.25) refer to Ising antiferromagnetic state, phase boundary,
CSL, and chiral spin state, respectively. The x0 is chosen away from
the open boundary, and x refers to the horizontal distance between the
two spins. All of the correlations except Jχ = 0.04 show a straight
line in the log plot that indicates an exponential decay. The plots
above are based on finite DMRG results with Ly = 4×2.

For the XY-Neel state there are peaks at the Brillouin zone
� points in the static spin structure as shown in the inset of
Fig. 2(a). The magnitude of the peak is plotted as a function
of Jχ in Fig. 2(a). It decreases rapidly as Jχ increases, and
disappears as the system transits into the CSL at Jχ ≈ 0.15.
Similarly, the peak for the collinear order at various Jχ is given
in Fig. 2(b). The inset of Fig. 2(b) shows the spin structure
at Jχ = 0.01 where the phase is dominant by the collinear
order. The phase boundary could be identified by the sudden
drop and the disappearance of the peak at Jχ ≈ 0.06. In the
intermediate regime at J2 = 0.3 and small Jχ , the staggered
on-site magnetization serves as the order parameter as shown
in Fig. 2(c). This quantity shows a sudden drop from the
Ising antiferromagnetic state to the CSL at Jχ ≈ 0.04, which
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determines the phase boundary. The finite size analysis of it
indicates a possible first-order phase transition for J2 close
to 0.34, and a higher-order transition for smaller J2 (see
Supplemental Material [48]).

Besides the magnetic order parameters, other properties
such as the spin correlation, the entanglement entropy and
spectrum are also used to identify the phase boundary. We
have found consistence in those different measurements. As
shown in Fig. 2(d), the spin correlations are strongly enhanced
at Jχ ≈ 0.04 near the phase boundary between the Ising an-
tiferromagnetic phase and the CSL, while both phases have
exponentially decaying spin correlations. The phase boundary
determined by the spin correlation is the same as the one by
the staggered magnetization.

Both CSL and the chiral spin state in the larger Jχ regime
have a finite scalar chiral order that is defined as

〈χ〉 = 1

3N

∑

i, j,k∈�

−→
Si · (

−→
S j×−→

Sk ). (3)

As shown by the red curve in Fig. 2(c), the chiral order in-
creases monotonically with the increase of Jχ in the CSL and
chiral spin state, and saturates around 〈χ〉 ≈ 0.177. The spin
correlations in these two states are given in Fig. 2(d) as exam-
ples at Jχ = 0.08, and 0.14 (0.25), respectively, where they
exponentially decay. However, the spin correlation increases
generally as Jχ increases. As shown in Fig. 4(b), for the
parameters we labeled as chiral spin state, the spin structure
factors show sharp peaks, with the magnitudes of the peak
values increasing with system sizes, suggesting a magnetic or-
dered state in the larger Jχ regime. We also notice that the spin
structure in this chiral spin state shares the same peaks as the
tetrahedral phase [27,49] (see Supplemental Material [48]),
and we do not rule out the possibility of tetrahedral magnetic
order in this regime.

The extended regime of J2 > 0.6 and J2 < 0.1 are not our
main focus in this work because we are interested in the
intermediate J2 regime with strong frustration, but we do find
that the CSL extends to a relatively large Jχ ≈ 0.5 at J2 = 0.
This implies that the CSL could survive even without the
frustration induced by second-nearest-neighbor interactions
in the XY model, which may be interesting for future study.
In the regime labeled as collinear/dimer, we also find a non-
magnetic dimer ground state in close competition with the
collinear state at Jχ > 0.55. As pointed out in Ref. [31], the
actual ground state depends on the system size and XC/YC
geometry, and we will not try to resolve this close competition
here.

The phase near the critical point of J2 ≈ 0.36, Jχ ≈ 0.02
is hard to define numerically because different spin orders
are mixed together in the low-energy spectrum, thus the spin
correlation is generally large. Here the phase boundary is
measured by the unique properties of the CSL through the
entanglement spectrum as discussed below, and it will be
marked by the dashed line as a guide to the eye.

IV. CHIRAL SPIN LIQUIDS

The CSL is characterized by the twofold topological de-
generate ground states, which are called ground state in
vacuum and spinon sectors [16,50], respectively. The entan-

FIG. 3. The ES for the (a) spinon ground state and (b) the vac-
uum ground state in the CSL phase at J2 = 0.26, Jχ = 0.09, and the
ES in (c) the chiral spin state at J2 = 0.26, Jχ = 0.2 with different
spin sectors. The spectrum is calculated using infinite DMRG with
Ly = 6×2. The λi refers to the eigenvalues of the reduced density
matrix, and the ky has an increase of 2π

Ly/2 . The quasidegenerate eigen-
values are labeled by the number below each momentum. Each spin
sector is separated with the help of total Sz conservation implemented
in the algorithm.

glement spectrum (ES) of the ground state corresponds to the
physical edge spectrum that is created by cutting the system
in half [51–53]. Following the chiral SU (2)1 conformal field
theory [54], the leading ES of a gapped CSL has the degen-
eracy pattern of 1, 1, 2, 3, 5 . . . [55]. As shown in Figs. 3(a)
and 3(b), the ES in the CSL phase has such quasidegenerate
pattern with decreasing momentum in the y direction for each
spin sector, though higher degeneracy levels may not be ob-
served due to the finite numbers of momentum sectors. The
ES of the spinon ground state has a symmetry about Sz = 1

2 ,
which corresponds to a spinon at the edge of the cylinder,
while the one of the vacuum ground state has a symmetry
about Sz = 0. The ES is robust in the bulk part of the CSL
phase for various parameters and system sizes, but as we
approach the phase boundary, additional eigenstates may also
mix in the spectrum (see Supplemental Material [48]).
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FIG. 4. (a) refers to the spin structure in the CSL phase at
J2 = 0.2, Jχ = 0.16 where there is no peak as opposed to other
magnetic phases. This result is based on the cluster of 20×4×2.
(b) refers to the spin structure peaks with fixed kx = − 2π√

3
of various

parameters. The blue and red lines are obtained in the chiral spin state
with clusters of 20×4×2 and 30×6×2, respectively. The magnitude
of the peak increases as the cluster size increases. The black and
gray lines are obtained in the CSL with the same two clusters, where
there is no significant peak. (c) refers to the finite size scaling of
the spin gap on the torus geometry with clusters of 3×3×2, 4×3×2,
4×4×2, 6×4×2, and 8×5×2. (d) refers to the entanglement entropy
with various clusters on finite cylinders in the CSL phase. The x here
denotes the distance of the cut in the x direction. All of the results
are obtained at J2 = 0.2.

The main difference between the CSL and the chiral spin
state is the topological edge state that can be identified through
the ES. An example of the ES in the chiral spin state is also
given in Fig. 3(c), where the quasidegenerate pattern disap-
pears and additional low-lying states emerge, as opposed to
the ES in the CSL shown in Figs. 3(a) and 3(b). The phase
boundary between these two states are determined mainly by
the ES.

The finite chiral order represents the time-reversal symme-
try breaking chiral current in each small triangle, which is
shown in Fig. 2(c). The chiral order is significantly enhanced
as the system undergoes a phase transition from the Ising anti-
ferromagnetic state to the CSL. However, the spin correlation
remains following exponential decay, as shown by the line of
Jχ = 0.08 in Fig. 2(d). We further confirm the vanishing of
any conventional spin order in the CSL by obtaining the spin
structure in Fig. 4(a), and comparing it with the one in the
chiral spin state in Fig. 4(b). There is no significant peak in
the CSL phase as opposed to other magnetic phases.

In order to identify the excitation properties of the CSL,
we obtain the spin-1 excitation gap by the energy difference

between the lowest state in S = 0 and 1 sector. To measure
the bulk excitation gap, we use the torus geometry to reduce
the boundary effect. The finite size scaling of the spin gap
using rectanglelike clusters is shown in Fig. 4(c). The spin gap
decays slowly as the cluster grows, and remains finite after
the extrapolation, suggesting a gapped phase in the thermody-
namic limit. In addition, we study the entanglement entropy
of the subsystems by cutting at different bonds. As shown in
Fig. 4(d), the entropy becomes flat away from the boundary,
which corresponds to a zero central charge in the conformal
field theory interpretation [56]. This supports a gapped CSL
phase that is consistent with the finite spin gap.

V. SUMMARY AND DISCUSSIONS

Using large-scale DMRG, we identify the long-sought CSL
with the perturbation of three-spins chiral interactions in the
spin- 1

2 XY model on the honeycomb lattice. The CSL ex-
tends to the intermediate regime with a small Jχ , providing
evidence of the important interplay between frustration and
chiral interactions driving the CSL. Here, we demonstrate
that the chiral interactions are essential for the emergence
of the CSL, because the minimum critical Jχ of the phase
transition is around 0.02, which is stable against the increasing
of system sizes, and below the critical Jχ there is no such
quasidegenerate pattern in the ES (see Supplemental Mate-
rial [48]). Remarkably, the CSL with minimum Jχ is realized
in the intermediate J2 regime, which could be related to the
analytical theory [28] that suggests an instability towards the
CSL ground state in the same regime, and the CSL originates
from the spontaneous breaking of time-reversal and inversion
symmetry. The nature of the phase transition into the CSL
may also be compared with future studies using the Gutzwiller
projected states [30,57,58].

A chiral spin state is obtained at larger Jχ , which extends to
the wider regime of J2. The chiral spin state has a peak value
for spin structure factor growing with system sizes. Further
studies include finding the exact nature of this chiral spin state,
and the nature of the phase transition into the CSL.

Experimentally, of all the honeycomb materials that show
a quantum-spin-liquid-like behavior [59–61], the Co-based
compounds are mostly studied in the context of XY model
such as BaCo2(PO4)2 [62,63] and BaCo2(AsO4)2 [64], thus it
would be extremely interesting to search for the quantum spin
liquid in such systems. On the other hand, the results of CSL
may be tested in cold atoms experiments [65,66] as the spin
XY model could be mapped by the bosonic Kane-Mele model
in the Mott regime [40,67].
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