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Valence bond order in a honeycomb antiferromagnet coupled to quantum phonons
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We use exact quantum Monte Carlo simulations to demonstrate that the Néel ground state of an antiferromag-
netic SU(2) spin- 1

2 Heisenberg model on the honeycomb lattice can be destroyed by a coupling to quantum
phonons. We find a clear first-order transition to a valence bond solid state with Kekulé order instead of
a deconfined quantum critical point. However, quantum lattice fluctuations can drive the transition towards
weakly first order, revealing a tunability of the transition by the retardation of the interaction. In contrast to
the one-dimensional case, our phase diagram in the adiabatic regime is qualitatively different from the frustrated
J1-J2 model. Our results suggest that a coupling to bond phonons can induce Kekulé order in Dirac systems.
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Exotic phases and phase transitions in quantum many-
particle systems have attracted a lot of interest in the last
few years. A recent focus has been on valence bond solid
(VBS) phases in two-dimensional (2D) spin- 1

2 antiferromag-
nets (AFMs) where translational symmetry is spontaneously
broken via the formation of dimers between neighboring spins
[1]. The proliferation of topological defects in the AFM/VBS
order parameter [2–4] has been proposed to drive a contin-
uous quantum phase transition between the two phases. The
scenario of a deconfined quantum critical point (DQCP) [5,6]
is beyond the Landau-Ginzburg-Wilson paradigm in which
competing orders with different broken symmetries require a
first-order transition. Furthermore, the interplay between the
topological defects of the VBS phase and disorder is currently
being explored [7].

VBS order often appears in frustrated spin models, but their
numerical study in 2D is usually restricted to small system
sizes or approximate schemes. Large-scale quantum Monte
Carlo (QMC) simulations give exact results for a class of
sign-problem-free Hamiltonians called J-Q models [8] that
are specifically designed to generate the desired orders. While
J-Q models show strong evidence of a continuous AFM-VBS
transition—most notably on the square lattice [8–10]—the
scenario of a weak first-order transition cannot be completely
ruled out [11,12]. Recently, unconventional first-order tran-
sitions with enhanced symmetry were reported [13]. It is of
current interest to find VBS phases also in more realistic
models beyond designer Hamiltonians.

In quasi-one-dimensional systems such as the organic
TTF compounds [14] and the inorganic material CuGeO3

[15], VBS order often arises from the spin-Peierls instabil-
ity [16,17], which is closely related to a 2kF Fermi-surface
instability in electronic models. A one-dimensional (1D)
Heisenberg model is unstable towards dimerization for any
finite coupling to classical phonons because the gain in mag-
netic energy is higher than the loss in elastic energy. However,
quantum lattice fluctuations can stabilize a gapless phase
with critical AFM correlations below a critical coupling.
The phase diagrams of 1D spin-phonon models have been

determined numerically [18–27]. For high phonon fre-
quencies, the spin-Peierls problem maps to the frustrated
J1-J2 model with next-nearest-neighbor Heisenberg exchange
[28–31]. In particular, the quantum phase transition at finite
phonon frequencies is in the same universality class as in the
J1-J2 model [27].

The relevance of spin-phonon interactions in 1D is ac-
knowledged by the fact that—even in other contexts—the
VBS state is sometimes called the spin-Peierls state [2,3,32].
By contrast, the nature and even the existence of VBS order
in 2D is still under debate and has been explored only on the
square lattice. The spin-Peierls model was initially studied in
the context of high-Tc superconductivity as the large-U limit
of the Peierls-Hubbard model. Different dimerization patterns
were discussed as the ground-state configurations of classical
phonons [33–39], even a resonating valence bond state was
proposed [40,41]. The stability of the spin-Peierls state was
questioned because a large Hubbard repulsion favors AFM
order and suppresses VBS order in 2D [42]. So far, exact nu-
merical simulations have been inhibited by the large bosonic
Hilbert space and difficult phonon sampling. The only avail-
able QMC study which approached the full quantum-phonon
problem did not find VBS order [43].

The honeycomb lattice has a lower coordination number
than the square lattice, which makes the VBS state energet-
ically more favorable. A columnar VBS state with Kekulé
order (see the inset of Fig. 1) was found in a J-Q model, and
its AFM-VBS transition was interpreted in terms of a DQCP
[44–47]. Similar transitions appear in Dirac systems [48,49],
where the emergence of Kekulé order has been a recent focus
of theoretical [50–58] and experimental [59,60] studies. In-
teraction effects in graphene have attracted additional interest
since the discovery of superconductivity in twisted bilayer
graphene [61].

In this Letter, we demonstrate that spin-phonon coupling
can stabilize a columnar VBS state and determine the ground-
state phase diagram of the spin-Peierls model as a function of
phonon frequency (see Fig. 1). Our simulations were made
possible by a recently developed QMC method that solves

2469-9950/2021/103(4)/L041105(7) L041105-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2047-4927
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.L041105&domain=pdf&date_stamp=2021-01-11
https://doi.org/10.1103/PhysRevB.103.L041105


MANUEL WEBER PHYSICAL REVIEW B 103, L041105 (2021)

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6

λ

ω0/J

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6

VBS

AFM

2

1
0

a1

a2

FIG. 1. Phase diagram of the spin-Peierls model (1) as a function
of phonon frequency and spin-phonon coupling from QMC simu-
lations. The large inset shows a honeycomb lattice with columnar
VBS order where strong (weak) links represent a high (low) 〈�̂i j〉.
The small inset depicts the two sites, A, B, and the three bonds,
μ = 0, 1, 2, that belong to a unit cell.

the full quantum-phonon problem efficiently using retarded
interactions [62]. The AFM-VBS transition is strongly first
order for classical phonons, but quantum lattice fluctuations
can drive the transition towards weakly first order. We discuss
how our results are related to the putative DQCP scenario on
the honeycomb lattice. Furthermore, we debate whether retar-
dation effects can induce the physics of the frustrated J1-J2

model at high phonon frequencies which are not accessible
to our simulations. At low frequencies, the two models show
different orders, unlike in the 1D case. Finally, our results
suggest that a coupling to bond phonons can induce Kekulé
order in Dirac systems.

Model and method. We consider the spin-Peierls model

Ĥ =
∑
〈i, j〉

(J + α Q̂i j ) Ŝi · Ŝ j +
∑
〈i, j〉

(
1

2M
P̂2

i j + K

2
Q̂2

i j

)
, (1)

where the antiferromagnetic exchange J is modulated via a
coupling α to optical bond phonons with frequency ω0 =√

K/M. The spin- 1
2 operators Ŝi are defined on the sites i of

a honeycomb lattice, whereas the phonon momenta P̂i j and
displacements Q̂i j act on the links between nearest neighbors
〈i, j〉. In the following, we use J = 1 as the unit of energy,
define the dimensionless coupling λ = α2/(2KJ ), and set
h̄, kB = 1.

The phonons can be integrated out exactly using the
imaginary-time path integral. The partition function becomes
Z = Z0Tr T̂τ e−Ĥ, with Ĥ = ĤJ + Ĥλ and

ĤJ = −J ′
∫ β

0
dτ

∑
〈i, j〉

�̂i j (τ ), J ′ = J

(
1 − λ

2

)
, (2)

Ĥλ = −λJ
∫∫ β

0
dτdτ ′ ∑

〈i, j〉
�̂i j (τ ) P(τ − τ ′) �̂i j (τ

′). (3)

The spin-phonon coupling leads to a retarded interaction
Ĥλ between singlet projectors �̂i j = 1

4 − Ŝi · Ŝ j at different
times τ , τ ′ and is mediated by the free-phonon propagator
P(τ ) = e−ω0τω0/(1 − e−ω0β ). Because Ŝi · Ŝ j is shifted by 1

4 ,
the Heisenberg exchange J ′ gets renormalized with λ. Here,

β = 1/T is the inverse temperature, and Z0 includes the parti-
tion function of free phonons.

For our simulations we used a recently developed QMC
method for retarded interactions [62] that is based on a di-
agrammatic expansion of Z/Z0 in Ĥ. The method is closely
related to the stochastic series expansion [63] and makes use
of efficient directed-loop updates [64]. It has only statistical
errors and is free of a sign problem for λ � 2 (J ′ � 0). The use
of retarded interactions avoids the difficulties of direct phonon
sampling which inhibited previous studies of the 2D case,
but system sizes are still limited by the generically difficult
sampling near a first-order transition. We use an exchange
Monte Carlo method [65,66] to improve simulations in the
VBS phase. Phonon observables can be recovered from the
perturbation expansion using generating functionals [67]. Fur-
ther details on our method are presented elsewhere [68].

Simulations were performed on L × L honeycomb lattices
with 2L2 spins and periodic boundary conditions. We used
βJ = 2L, which is suitable for detecting the ground-state or-
der of a continuous phase transition with dynamical exponent
z = 1 or a first-order transition.

Results. The phase diagram in Fig. 1 contains AFM and
VBS phases which can be identified from a finite-size analysis
of the (basis-dependent) order parameters [47]

�̂AFM(q) = 1

2L2

∑
r

(
ŜrA − ŜrB

)
eiq·r, (4)

�̂VBS(q) = 1

2L2

∑
r

2∑
μ=0

�̂rμ e2π iμ/3 eiq·r. (5)

Here, r is the position vector of the Bravais lattice. Each unit
cell has two sites, A, B, and three bonds, μ = 0, 1, 2, which
are chosen as depicted in Fig. 1. AFM order breaks the SU(2)
spin symmetry and appears at QAFM = (0, 0), whereas the
columnar VBS state breaks Z3 lattice symmetry such that
spin singlets are arranged in a Kekulé pattern with QVBS =
(2π/3,−2π/3), as shown in Fig. 1. We measure Cα (q) =
〈|�̂z

α (q)|2〉 after replacing Ŝi → Ŝz
i in Eqs. (4) and (5) to

calculate the correlation ratios [69]

Rα = 1 − Cα (Qα + δq)

Cα (Qα )
, (6)

with δq = (0, 2π/L). When L → ∞, Rα (L) → 1 in the cor-
responding ordered phase, and Rα (L) → 0 in the disordered
phase. The same holds for the Binder cumulant UVBS = 2 −
〈|�̂z

VBS(QVBS)|4〉/〈|�̂z
VBS(QVBS)|2〉2.

Figure 2 shows our results for the retardation-driven AFM-
VBS transition at λ = 2 [70]. Both orders can be identified
from the correlation ratios in Fig. 2(a), which indicate a sharp
transition at ω0,c/J ≈ 0.47. The Binder ratio in Fig. 2(b)
develops a negative peak that diverges with L—a typical
finite-size effect at a first-order transition and a result of phase
coexistence separated by an energy barrier [71]. Further evi-
dence is given by an emerging discontinuity in the free-energy
derivative dF/dω0 in Fig. 2(c). Precise extrapolation of ω0,c is
complicated by the nonmonotonic drift of finite-size estimates
towards lower (higher) ω0 for L < 24 (L > 24) as well as
difficult Monte Carlo sampling in the coexistence region.
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FIG. 2. Finite-size analysis of the AFM-VBS transition at λ = 2
as a function of ω0. (a) AFM/VBS correlation ratios, (b) VBS Binder
ratio, and (c) free-energy derivative dF/dω0. Labels in (b) also apply
to (c). Open symbols and dashed lines represent data points where
the tunneling times between coexisting orders are longer than our
simulation times.

The nature of the VBS phase is not entirely determined
by its ordering vector. Besides the columnar VBS state
illustrated in Fig. 1, QVBS = (2π/3,−2π/3) can also cor-
respond to a plaquette VBS state where strong and weak
links are interchanged. The two states are distinguished
by the phase of the complex VBS order parameters [47].
We consider the modified field �̂ ′

VBS by replacing �̂rμ →
(J + α Q̂rμ)�̂rμ in Eq. (5) because its expectation value
� ′

VBS = (2L2β )−1 ∑
rμ〈n(�̂rμ)〉MC e2π iμ/3 eiQVBS·r can be eas-

ily estimated from the number of �̂rμ per Monte Carlo
configuration [8,67]. The histogram of � ′

VBS in Fig. 3(a)
illustrates that VBS order appears at the columnar angles
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FIG. 3. Histograms of the VBS order parameter � ′
VBS across the

AFM-VBS transition for (a) ω0/J = 0.45, (b) ω0/J = 0.466, and
(c) ω0/J = 0.47. Here, L = 18 and λ = 2.
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FIG. 4. Free-energy derivative as a function of λ for different ω0

and L. The inset shows the jump at the critical coupling extrapolated
to L → ∞. The color scheme is based on Ref. [72].

e2π iμ/3. The emergence of a central peak in Figs. 3(b) and
3(c) indicates coexisting AFM order. Moreover, the threefold
anisotropy of the VBS order parameter remains robust in the
coexistence region.

Figure 4 shows the free-energy derivative dF/dλ for dif-
ferent ω0. The critical couplings in Fig. 1 are determined from
the discontinuities in dF/dλ and increase with increasing ω0.
The strength of a first-order transition can be characterized by
the size of the jump in its free-energy derivative. To estimate
�Fλ(L), we extrapolate the two branches of dF/dλ towards
the center of the coexistence region. A final extrapolation
L → ∞ leads to the jumps summarized in the inset of Fig. 4.
We find that the transition is significantly weakened with
increasing ω0.

Discussion. The nature of the AFM to columnar VBS tran-
sition on the honeycomb lattice has been studied numerically
in the J-Q model [44–47]. A finite-size analysis obtained
critical exponents with logarithmic violations of scaling, con-
sistent with the interpretation of a continuous transition on
the square lattice [10]. However, instead of showing an emer-
gent U(1) symmetry at criticality [5], as observed on the
square lattice [8], �̂VBS(QVBS) retained a threefold anisotropy
which was interpreted in terms of near-marginal behavior
of the topological defects [44]. Conformal bootstrap as well
as an analysis of anomalies in corresponding field theories
suggested that threefold monopoles are slightly relevant at
criticality in SU(2) spin models on the honeycomb lattice
[73–75] but that lattice sizes of L � 72 [44] and L � 96
[46] were too small to find evidence of a weak first-order
transition in the J-Q model. The spin-Peierls model studied
in this Letter serves as an example where the AFM-VBS
transition is clearly first order already on small system sizes
and therefore follows the Landau-Ginzburg-Wilson paradigm.
The different length scales seem to originate from the retarded
nature of Ĥλ. The first-order transition is strongest at ω0 = 0,
where the nontrivial minimization of 〈Ĥ (Qi j )〉 in terms of the
real-valued static displacements permits only certain ordering
patterns [76]. Here, the interaction range in time, P(τ ) ∼
e−ω0τ , is largest, but the transition is significantly weakened
with increasing ω0. In J-Q models, singlet projectors �̂i j

interact at equal times but between different bonds of the
lattice to induce VBS order.
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Our numerical study is restricted to λ � 2 due to a sign
problem, but it is worth speculating on how the phase diagram
in Fig. 1 continues for ω0/J > 0.5. We expect that ω0 tunes
the AFM-VBS transition towards weakly first order, as the
discontinuity of dF/dλ in Fig. 4 tends to further decrease.
A reliable extrapolation of �Fλ(ω0) is out of reach, but it also
seems possible that �Fλ vanishes or that new physics arises
at higher ω0. In the limit ω0 → ∞, the spin-Peierls model
maps to a Heisenberg model with only AFM order, but for
small interaction ranges 1/ω0 in time, the retardation in Ĥλ

effectively generates longer-range spin interactions and also
higher-order corrections [28,29]. Such a mapping to the frus-
trated J1-J2 model successfully describes the physics of the
1D spin-Peierls model [30,31]. The complex phase diagrams
of frustrated spin chains can also be found in electron-phonon
models where ω0 drives the competition between different 2kF

orders separated by a 1D DQCP [77]. On the honeycomb lat-
tice, the J1-J2 model has been studied on small clusters using
exact diagonalization [78,79] and the density-matrix renor-
malization group [80–82]. As a function of increasing ratio
J2/J1, these studies found AFM, plaquette VBS, and stag-
gered VBS order. The AFM-VBS transition was interpreted
in terms of a DQCP [79–82], whereas an intermediate spin-
liquid phase was also discussed [83]. Whether the physics of
the J1-J2 model appears at high ω0 depends on two questions:
(i) How do the effective nearest- and next-nearest-neighbor
couplings J1,2(ω0, λ) depend on the parameters of the spin-
Peierls model? In particular, will they reach a nontrivial
regime in the phase diagram beyond AFM order? (ii) Do
other operators become relevant in the mapping? The latter
must be true for ω0/J < 0.5. Although VBS order appears
in both models at QVBS = (2π/3,−2π/3), our results show
columnar instead of plaquette order. Therefore, the adiabatic
regime ω0 
 J is not described by the J1-J2 model. While
this is not surprising because the mapping should hold only at
high ω0, the 1D problem is governed by the J1-J2 model even
at frequencies as low as ω0/J = 0.25 [27]. As there is only
one possible VBS pattern in 1D, the nature of the VBS phase
cannot change with ω0. Whether quantum lattice fluctuations
can change the ground-state physics in 2D remains open.

Our results on the honeycomb lattice demonstrate that
spin-phonon coupling can induce VBS order in a 2D
antiferromagnet. Although a previous QMC study did not find
a VBS phase on the square lattice [43], it is likely to exist in
the regime λ > 2 not accessible to simulations. While spin-
phonon interactions are a relevant mechanism in materials, the
critical couplings found in this Letter are rather strong, as is
also the case in many other spin models, e.g., the J-Q models
[8]. A coupling to phonons was found to be important in
combination with frustration [84], e.g., on hexagonal [85] or
pyrochlore lattices [86,87]. Moreover, the spin-Peierls model
is closely related to electron-phonon models: it corresponds

to a Su-Schrieffer-Heeger (SSH) model [88] with infinite
Hubbard repulsion. Recently, determinantal QMC studies
of the 2D SSH model with quantum phonons were carried
out [89,90], but available system sizes were restricted by
the difficult phonon sampling. On the square lattice, the
SSH model supports VBS order at QVBS = (π, π ) [90],
whereas the influence of the Hubbard repulsion is still under
debate [34,37]. On the honeycomb lattice, QMC results are
available only for Holstein phonons which lead to a charge
density wave phase [91–93]. Kekulé order was proposed to
appear from a coupling to SSH phonons [94–96]. Recently,
the SSH-Hubbard model was studied in the limit ω0 → ∞,
where a direct (DQCP) transition between columnar VBS and
AFM order was reported [49], as well as a fermion-induced
quantum critical point between a Dirac semimetal and VBS
order [53]. Our results in the large-U limit suggest that Kekulé
order and the corresponding transitions also exist at finite
ω0 but the AFM-VBS transition might turn first order for
low ω0.

Conclusions and outlook. We demonstrated that VBS order
can arise in a spin- 1

2 Heisenberg model coupled to phonons.
The first-order transition from AFM to columnar VBS order
disagrees with the putative DQCP scenario on the honeycomb
lattice but can be tuned towards weakly first order when quan-
tum lattice fluctuations become stronger. Our results establish
retardation effects as an important influence on the AFM-VBS
transition that was not considered in previous studies. Our
recently developed QMC method for retarded interactions
[62] enables future work in this direction. In particular, it
seems possible to engineer different orders via an appropriate
coupling to phonons and thereby extend the zoo of models that
show nontrivial phases in sign-problem-free QMC simula-
tions. While retardation is an established mechanism to induce
frustrated interactions in 1D models, the columnar VBS or-
der at ω0/J < 0.5 is in contrast to the plaquette VBS order
found in the J1-J2 model [78–82]. It remains an open ques-
tion whether the 2D spin-Peierls model displays the phases
of the J1-J2 model or any other nontrivial physics at higher
ω0. Moreover, it will be of interest to explore how thermally
generated phonon fluctuations modulate the exchange integral
Ji j (Q̂i j ) in the VBS phase and lead to a disordered phase.
Finally, the possibility of finding Kekulé order in Dirac or spin
systems motivates future studies of phonon coupling.
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