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Zero-energy corner states in a non-Hermitian quadrupole insulator
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We point out that in non-Hermitian systems, Jordan decomposition should replace eigendecomposition so that
all “good approximate eigenstates” of the system are identified. These states can be resonantly excited. As a
concrete example, we study the location and field distribution of zero-energy corner states in a non-Hermitian
quadrupole insulator (QI) and split the parameter space into three distinct regimes according to properties of the
corner states: near-Hermitian QI, intermediate phase, and trivial insulator. In the newly discovered intermediate
phase, the Hamiltonian becomes defective, and the counterintuitive and delicate response of the system to
external drives can be perfectly explained by the Jordan decomposition.
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Introduction. Higher-order topological insulators (HOTIs)
are characterized by exotic topological signatures with di-
mensionality that is lower by at least two than that of the
protecting bulk. One such signature is fractionally quantized
corner charges in two-dimensional (2D) crystals with Cn

symmetry [1]. In the presence of an additional chiral (sub-
lattice) symmetry, e/2 corner charges become associated with
mid-gap (“zero-energy”) corner-localized states [1]. Similar
fractionalized vortex states can also exist inside a 2D lat-
tice with appropriate order parameter twists [2]. While the
fractional nature of the topological charge is of particular
significance for fermionic systems, the localized nature and
robust spectral pinning of such corner/vortex states is of great
practical importance for bosonic (e.g., acoustic, photonic, and
radio-frequency) lattices [3–6]. Among many types of HOTIs
supporting zero-energy corner states, the quadrupole insula-
tor (QI) is a particularly interesting one because its lowest
nonvanishing bulk polarization moment is quadrupolar [7,8],
i.e., its dipole polarization moment strictly vanishes. QI is
the first type of HOTI to be theoretically predicted [7] and
experimentally implemented [3,4].

Non-Hermitian physics also attracted considerable interest
in recent years because of its relevance to nonequilibrium
(e.g., undergoing photoionization) systems [9,10]. Some of
its notable phenomena include “exceptional points” (EPs)
[11–13] and real-valued spectra despite non-Hermiticity. At
the EP, both the complex-valued eigenvalues of two bands
as well as their corresponding eigenvectors coalesce [14,15].
In other words, the matrix corresponding to the Hamiltonian
at the EP becomes defective [16,17]. The completely real
spectrum of some non-Hermitian systems can be related to
parity-time (PT) symmetry [18–20] or pseudo-Hermiticity
[21], though in general it is hard to assert a real spectrum
without directly calculating the eigenvalues.

Extending the rich and rapidly growing field of topological
physics to non-Hermitian systems has been of great interest
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[22–24] because of their relevance to nonequilibrium topolog-
ical systems [25,26]. However, most literature just simply uses
eigendecomposition, but it is known in numerical computation
that eigendecomposition is only suited for Hermitian matrices
[16]. This leads to not correctly identifying all “good approxi-
mate eigenstates” of the system that can be resonantly excited.
In this Letter we point out it is crucial to use Jordan decom-
position (or in numerical studies, Schur decomposition [16])
in non-Hermtian systems. While this claim is quite general,
a non-Hermitian version of a QI model proposed in Ref. [7]
serves as a nice lattice model for demonstration. We focus
on the behaviors of its zero-energy corner states, and show
that Jordan decomposition can beautifully explain the delicate
response of the system to external drives.

Tight-binding model. The non-Hermitian QI model studied
in this Letter is schematically shown in Fig. 1(a), where the
intra/intercell hopping amplitudes t ± γ and λ are all taken
to be real. It is a natural non-Hermitian generalization of the
QI model described in Ref. [7], with the intracell hopping
strength becoming asymmetric, characterized by a finite γ ,
while maintaining the sublattice symmetry �H�−1 = −H .
Here the symmetry operator � = P1 − P2 − P3 + P4, where
Pj = ∑

x,y |x, y, j〉〈x, y, j| are the sublattice projection op-
erators, and |x, y, j〉 are the tight-binding states, where x
and y are integer-valued coordinates of the unit cells as de-
fined in Fig. 1(a), and j = 1, . . . , 4 denote four sublattice
sites of each unit cell. This model can also be viewed as
a two-dimensional (2D) generalization of the non-Hermitian
Su-Schrieffer-Heeger (SSH) model [23,27,28].

Non-Bloch bulk continuum. As was pointed in the context
of the non-Hermitian SSH system [23], the open-boundary
spectrum can significantly differ from that of the periodic-
boundary system described by the Bloch Hamiltonian H (�k).
That is because the usual Bloch phase-shift factor eik for
bulk eigenstates (i.e., eigenstates in the continuum spec-
trum) of an open-boundary system needs to be modified
to β ≡ β0eik , where β0 can be nonunity (i.e., the wave
vector acquires an imaginary part: k → k − i ln β0). This ex-
tra bulk localization factor β0 must be taken into account
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FIG. 1. (a) Tight-binding model of a non-Hermitian QI on a
square lattice. Gray dashed line: Boundary of unit cell with four
(sublattice) sites (numbered 1 to 4). Red and blue lines with ar-
rows: Asymmetric intracell hopping amplitudes ±t ± γ . Green lines:
Symmetric intercell hopping amplitudes ±λ. Dashed lines: Negative
hopping terms. All four sublattices have the same on-site potentials
(set to ε j ≡ 0). (b) The phase diagram of a large non-Hermitian QI
with open-boundary condition. Green region (|λ| > |t | + |γ |): Near-
Hermitian regime with four zero-energy corner states, each localized
at a separate corner. Cyan region (

√|t2 − γ 2| < |λ| < |t | + |γ |): In-
termediate regime with two zero-energy corner states at the top-left
corner. White region (|λ| <

√|t2 − γ 2|): No corner states. Band gap
vanishes along solid black lines. The spectrum is complex valued
between the two dashed orange lines, real valued elsewhere.

when calculating the spectrum of the open-boundary sys-
tem. The same argument applies to our 2D non-Hermitian
QI system, where �k ≡ (kx, ky) → (kx − i ln β0, ky − i ln β0),
and β0 = √|(t − γ )/(t + γ )| [24]. With this substitution the
corrected Bloch Hamiltonian shows agreement [29] with nu-
merical simulations of an open-boundary system, that a finite
bulk band gap exists for all values of the hopping amplitudes
except at t2 = γ 2 ± λ2. The zero-gap condition is represented
in Fig. 1(b) by the solid black lines.

Another important consequence of this extra factor β0 is
that the bulk spectrum is real valued for |t | > |γ |. While there
are also edge and corner states, our numerical results show
that the entire spectrum is real for arrays of any size whenever
|t | > |γ |. This fact can be related to the pseudo-Hermiticity of
the Hamiltonian [24].

Zero-energy corner states. Having established the bulk
properties of non-Hermitian QIs, we now proceed with in-
vestigating the existence conditions and spatial properties of
zero-energy corner states supported by a large (N × N array,
N � 1) non-Hermitian QI with open-boundary conditions. In
what follows, we focus on the systems with entirely real-
valued spectrum: t > γ > 0 and λ > 0. When the intercell
hopping strength dominates over the intracell one, i.e., λ >

t + γ , it can be shown that the four corner states identified in
Hermitian QIs [7,30] still persist in the thermodynamic limit
N � 1 (where the coupling between different corners of the
domain is negligible), albeit with modified field distributions
[29]:

|ψ1〉 =
∑
x,y

(
− t − γ

λ

)x+y

|x, y, 1〉, (1a)

|ψ2〉 =
∑
x,y

(
− t + γ

λ

)−x(
− t − γ

λ

)y

|x, y, 2〉, (1b)

|ψ3〉 =
∑
x,y

(
− t − γ

λ

)x(
− t + γ

λ

)−y

|x, y, 3〉, (1c)

|ψ4〉 =
∑
x,y

(
− t + γ

λ

)−x−y

|x, y, 4〉. (1d)

Just as in the case of a Hermitian QI, each corner state is
localized at one corner of the array, and has support on only
one sublattice. The asymmetric intracell coupling is the reason
for the different states to have different spatial localization
lengths, and for those lengths to be different in the x and y
directions. Therefore, we refer to this parameter regime as
“near-Hermitian.” Figure 2 presents the field distributions of
the four corner states [see Fig. S1(a) for the full spectrum].

An earlier work has incorrectly concluded that all four
corner eigenstates are localized in the upper-left corner [24] as
shown in Fig. 2(a). The reason for this numerical artifact is the
finite (albeit exponentially small in the system size) coupling
between different corner states. This coupling is asymmetric
because of the non-Hermiticity of the Hamiltonian, resulting
in one of the corner states dominating the others in the coupled
eigenstates. However, these coupling coefficients should not
be compared with each other. Rather, it is only physically
justifiable to compare them with a characteristic energy width
�E of the system, e.g., the loss rate of a realistic system, or
the inverse of the observation timescale, or the energy splitting
of the two corner states due to system imperfections. If all
the coupling coefficients are much smaller than �E , which
will be true for a large enough N , then Eq. (1) are the good
approximate eigenstates of the system. In numerical studies
this issue can be overcome by using Schur decomposition,
as in Fig. 2. Similar misconceptions have appeared in, for
example, Ref. [31], which again comes from the improper use
of eigendecomposition in non-Hermitian systems.

As we enter the intermediate regime
√

t2 − γ 2 < λ < t +
γ range, see Fig. 1(b), only the first of the above four cor-
ner states survives, see Fig. 3(a). Additionally, a new corner
state—also localized at the top-left corner, but having support
on two (2 and 3) sublattices—emerges. It has the following
field distribution [29]:

|φ〉 =
∑
x,y

(
rx

1 − rx
2

)
ry

1(|x, y, 2〉 − |y, x, 3〉), (2)

where r1 = −(t − γ )/λ, r2 = −λ/(t + γ ), see Fig. 3(b).
Similar corner states have been predicted in a Hermitian
model, but there the bulk is gapless [30]. We refer to the
surviving ψ1 as “monosublattice,” and the less localized (since
|r2| > |r1|) φ as “multisublattice.” This contrast of localiza-
tion length is evident in Fig. 3 [see Fig. S1(b) for the full
spectrum]. Both states are corner states since they have a
different localization factor than that of bulk states β0. The
change of the location of corner states has been observed in
the non-Hermitian SSH model as well [23].

Although the numerical eigenvalue calculation shows zero
eigenenergy of multiplicity four, these two corner states are
the only two linearly independent eigenstates, which will be
shown later. This implies that the Hamiltonian is defective at
zero energy—a common feature of non-Hermitian systems
[17]. Remarkably, the Hamiltonian is not defective at zero
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FIG. 2. Field distribution of the four zero-energy (mid-gap) corner states of a large square domain of a non-Hermitian QI in the
“near-Hermitian” regime t = 0.6, γ = 0.4, λ = 1.5, obtained using Schur decomposition. Domain size: 20 × 20 unit cells.

energy in the near-Hermitian regime. Thus, the transition be-
tween these two regimes is not induced via a bulk band gap
closure.

When the intercell hopping amplitude is further reduced
to λ <

√
t2 − γ 2, zero-energy corner states disappear (trivial

regime). The three regimes of a square finite-sized non-
Hermitian QI with open-boundary conditions are summarized
by a phase diagram shown in Fig. 1(b). Only trivial and
near-Hermitian regimes have been previously identified [24].
Below we demonstrate that the neglected intermediate regime
exhibits highly counterintuitive behaviors such as nonlocal
excitation and unidirectional amplification of corner states.

Excitation of corner states. Having classified the number
and properties of zero-energy corner states in 2D non-
Hermitian QI, we now discuss how to observe them. In
bosonic systems a (periodic) drive corresponds to adding
a source term ξ to the equation of motion of the system:
idψ/dt = Hψ + ξ . Because the spectrum of the system is
purely real when |t | > |γ |, adding an overall small loss
to the system ensures that all transients eventually decay.
Therefore, only the driven equation (E − H )ψ = ξ needs to
be solved, where E is the driving frequency. If H is not
defective (En’s are eigenvalues), one can still obtain an expres-
sion similar to the one in the Hermitian case: (E − H )−1 =∑

n |ηR
n 〉〈ηL

n |/(E − En), provided that the left and right eigen-
vectors of H are normalized according to the bi-orthogonality
condition: 〈ηL

m|ηR
n 〉 = δmn [32]. When H is defective this ex-

pression must be modified.
In the near-Hermitian regime, not surprisingly, the most

efficient excitation of a corner state occurs when the source

FIG. 3. Corner states of a non-Hermitian QI in the intermediate
regime t = 0.6, γ = 0.4, λ = 0.7. (a) Field distribution of the mono-
sublattice state: similar to Fig. 2(a). (b) The emerging multisublattice
state: also localized at the top-left corner, but supported on the
sublattices 2 and 3. Domain size: 20 × 20 unit cells.

is placed at the same corner and same sublattice [29]. This
behavior is expected based on our intuition derived from the
property of the eigenstates 〈x|ηR

n 〉 = 〈ηL
n |x〉∗ of the fully Her-

mitian systems [3–6]. The situation changes dramatically in
the intermediate regime. The responses of the system intro-
duced in Fig. 3 (see the caption for the lattice parameters)
to external sources localized at different sublattice sites are
shown in Figs. 4(a)–4(c). For this numerical study we have
chosen E = 0.01i, a small uniform on-site loss. Surprisingly,
our simulations reveal that the response is “nonlocal”: plac-
ing the source at the bottom-right corner gives the strongest
excitation of the top-left corner states. This contradicts our
intuition developed by studying Hermitian systems, where one
finds it most efficient to place the source in close proximity of
the targeted state’s maximum. This contradiction is resolved
by noting that the left and right eigenstates of a non-Hermitian
system can be very different. Moreover, we find that the re-
sponse is very sensitive to which sublattice the source is on:
the monosublattice state is predominantly excited by placing
the source on the sublattices 1, 2, or 3. On the other hand, the
multisublattice state is predominantly excited when the source
is on sublattice 4. Finally, the response in the intermediate
regime is much larger compared to that of near-Hermitian
regime (at least 4 orders of magnitude: compare Figs. S2
and 4).

Partial Jordan decomposition of Hamilton. As mentioned
above, for a non-Hermitian system, the Jordan decomposition
is required to explain its spectral properties. We focus on the
Jordan blocks for E = 0 that are relevant to zero-energy cor-
ner states (thus we call it “partial”). In general this task can be
performed by the numerical Schur decomposition, while our
model is analytically solvable. In this section we use the par-
tial Jordan decomposition to explain why the system has such
a delicate and nonlocal response in the intermediate regime.
We also prove that there are only two linearly independent
corner states in this regime. Numerical results for Fig. 3 show
that E = 0 is an eigenvalue of H with algebraic multiplicity 4.
From the experience of obtaining Eq. (2), it is not too difficult
to see that the following four vectors can serve as the four
columns of the Jordan basis matrix P corresponding to the
E = 0 Jordan blocks:∣∣ηR

1

〉 =
∑
x,y

rx+y
1 |x, y, 1〉,

∣∣ηR
2

〉 =
∑
x,y

(
rx

1 − rx
2

)
ry

1(|x, y, 2〉 + |y, x, 3〉),
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FIG. 4. The response of a non-Hermitian QI in the intermediate regime to external sources placed at different sublattice sites in the
lower-right corner of the domain. The source sublattice sites are 1 (left), 2 (middle), and 4 (right). Color: Magnitude of the complex field ψ .
Monosublattice (left and middle) and multisublattice (right) corner states are predominantly excited (cf. Fig. 3). Source frequency: E = 0.01i,
a small uniform on-site loss. Other lattice parameters (domain size and hopping amplitudes) of the tight-binding model: same as in Fig. 3.

∣∣ηR
3

〉 =
∑
x,y

(
rx

1 − rx
2

)
ry

1(|x, y, 2〉 − |y, x, 3〉),

∣∣ηR
4

〉 =
∑
x,y

(
rx

1 − rx
2

)(
ry

1 − ry
2

)|x, y, 4〉, (3)

and the Jordan blocks for E = 0 are

J0 =

⎛
⎜⎝

0 2κ 0 0
0 0 0 0
0 0 0 κ

0 0 0 0

⎞
⎟⎠, (4)

where κ = t + γ − λ2/(t − γ ). We observe from J0 that the
geometric multiplicity of the E = 0 eigenvalue is 2, indicating
that the E = 0 subspace is defective. Note that |ηR

1 〉 is the
monosublattice state given by Eq. (1a), and |ηR

3 〉 is the mul-
tisublattice state given by Eq. (2).

Next, the corresponding four rows of P−1 must be deter-
mined. This can be done by repeating the above analysis for
HT . It turns out they are localized at the bottom-right corner:

〈
ηL

1

∣∣ = A1

∑
x,y

(
rx̄

1 − rx̄
2

)(
rȳ

1 − rȳ
2

)〈x, y, 1|,

〈
ηL

2

∣∣ = A2

∑
x,y

rx̄
1

(
rȳ

1 − rȳ
2

)
(〈x, y, 2| + 〈y, x, 3|),

〈
ηL

3

∣∣ = A3

∑
x,y

rx̄
1

(
rȳ

1 − rȳ
2

)
(〈x, y, 2| − 〈y, x, 3|),

〈
ηL

4

∣∣ = A4

∑
x,y

rx̄+ȳ
1 〈x, y, 4|, (5)

where x̄ = N + 1 − x, ȳ = N + 1 − y. It can be directly ver-
ified that 〈ηL

m|ηR
n 〉 = 0 for m 
= n as required. Normalization

constants An ∼ r−2N
2 so that 〈ηL

n |ηR
n 〉 = 1. The normalization

constants are huge simply because left and right states are both
well localized and spatially far away.

Now we are ready to calculate the driven response of
the Hamiltonian, or equivalently, the Green’s function of the

system near zero energy. The benefit of finding the Jordan
normal decomposition is that in order to solve the driven equa-
tion (E − H )ψ = ξ , we instead need to solve a much simpler
equation (E − J )ψ ′ = ξ ′, where ψ ′ = P−1ψ , ξ ′ = P−1ξ , and
(E − J )−1 is easy to compute. To understand the behavior
of H near E = 0, we only need to work in the above men-
tioned four-dimensional subspace because only the vectors in
this subspace can diverge as 1/E or faster. Therefore, below
we appropriate the notations ξ ′ and ψ ′ to just represent the
four-dimensional vectors. As mentioned, (E − J0)−1 is easy
to compute:

(E − J0)−1 =

⎛
⎜⎜⎝

1/E 2κ/E2 0 0
0 1/E 0 0
0 0 1/E κ/E2

0 0 0 1/E

⎞
⎟⎟⎠. (6)

Because of the form of ηL
n , placing a source on sublattice

1 gives ξ ′ ∝ (1, 0, 0, 0)T . By calculating ψ ′ = (E − J0)−1ξ ′
we see that the monosublattice state is excited. Likewise,
placing a source on sublattice 4 induces ξ ′ ∝ (0, 0, 0, 1)T ,
so the multisublattice state is excited. Note that placing a
source on either sublattice 2 or 3 induces ξ ′ ∝ (0, 1,±1, 0)T ,
but the monosublattice state still dominates due to its faster
divergence rate 1/E2. This is clearly observed in Fig. 4, where
the response to the sources placed on sublattices 2 and 4
(middle and left figures) is stronger than that to the source
placed on sublattice 1 (left figure). Remarkably, placing the
source as far away as possible from the corner states leads to
stronger excitation of the latter because the localization of the
ηL

n at the bottom-right corner maximizes the overlap. The huge
amplitude of the response ψ (see Fig. 4) is mainly due to the
exponentially large normalization constant An. Such nonlocal
response in the intermediate regime presents a remarkable
opportunity for unidirectional amplification of corner states.
Specifically, placing a source at the bottom-right corner will
lead to huge response at the top-left corner, but a source at
the top-left corner will only lead to weak response throughout
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the system in comparison [29]. Compared to the response of
an isolated site to the same source, whose amplitude would
simply be |1/E |, the amplitude of the response of an array is
amplified by roughly |An| [Fig. 4(a)] or |Anκ/E | [Figs. 4(b)
and 4(c)]. Such behavior is absent in the near-Hermitian
regime since there the left and right eigenstates of a corner
state are localized at the same corner [29]. Such unidirectional
amplification can also be realized for the non-Hermitian SSH
model [33] because the latter possesses a similarly defined
intermediate regime. An important advantage of the non-
Hermitian QI is that we can selectively excite two distinct
corner states, whereas only one boundary state is supported
by a 1D chain in the intermediate regime of the non-Hermitian
SSH model.

Conclusions. The importance of Jordan decomposition in-
stead of eigendecomposition in non-Hermitian systems is
manifested in a non-Hermitian quadrupole insulator with

asymmetric intracell coupling strengths, where it is crucial in
identifying all “good approximate eigenstates” at zero energy
and explain the delicate and exotic response of the system to
external drives. We identified a previously unknown “inter-
mediate regime” in the parameter space, where two types of
corner states coexist, the Hamiltonian matrix becomes defec-
tive at zero energy, and unidirectional amplification of corner
states is possible. While our system is analytically solvable,
the numerical Schur decomposition is applicable to general
non-Hermitian systems.
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