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Tunable critical field in Rashba superconductor thin films
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Strong intrinsic or interfacial spin-orbit coupling (SOC) can enable a thin-film superconductor to exceed
the paramagnetic limit. For Rashba-type SOC, we show that the superconducting thermodynamic properties of
a finite-size thin film are strongly sample-size dependent due to the creation of edge states; for example, in
the case of geometrically anisotropic thin films, the critical field is found to be tunable through the direction
of an externally applied in-plane magnetic field. These findings open perspectives for the development of
superconducting spin-orbitronic devices.
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Spin-singlet s-wave superconductivity is destroyed by a
magnetic field via orbital [1] or Pauli paramagnetic effects
[2,3]. In superconducting thin films, the orbital contribution
is negligible for in-plane magnetic fields [4] and spin-singlet
pairs are destroyed when the Zeeman splitting energy exceeds
the binding energy of a pair, defining the upper critical field hp

(i.e., the Clogston-Chandraskhar or Pauli paramagnetic limit
[2,3]).

Several methods have been explored to overcome hp. In
clean superconductors, spin-singlet pairs acquire a finite mo-
mentum under an applied magnetic field with a spatially
modulated pair wave function described by the Larkin-
Ovchinnikov-Fulde-Ferrell (LOFF) state, which increases hp

[5–9]. Enhancements of hp have been observed in the pres-
ence of spin-orbit scattering, which randomizes spins that
scatter off boundaries [10] or impurities [11–14]. Recently,
enhancement of hp has been demonstrated in Ising supercon-
ductors where spin-orbit coupling (SOC) induces an effective
Zeeman field that pins electron pair spins out of plane so they
are insensitive to in-plane applied magnetic fields [15–29].
Theoretical studies have highlighted the possibility to af-
fect superconducting properties via SOC in singlet [30] and
triplet superconductors [31]. Tuning of the superconducting
order parameter has been proposed in nonlocal devices via
nonequilibrium potentials [32] or in one-dimensional Rashba
superconductors using different geometries such as curved
wires and ring structures [33,34].

In this letter, we theoretically investigate the effect of
Rashba SOC-induced anisotropy (Fig. 1) on the magnetic
field-temperature (h, T ) phase diagram of a finite-sized thin-
film s-wave superconductor. We show that the Rashba SOC
leads to a significant enhancement and geometric depen-
dence of the paramagnetic limit. In particular, we demonstrate
that hp is controllable through the direction of an externally
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applied in-plane magnetic field in geometrically anisotropic
superconducting thin films at equilibrium.

The usual quadratic dispersion is split into two helicity
bands with energies E± = h̄k2/2m ± α|k|, where α is the
SOC strength and k the single-particle momentum [35]. The
spins are polarized tangential to their momentum as illustrated
in Fig. 1(b). For each direction in momentum space, there are
two zero-momentum opposite-spin pairs on the Fermi surface.
With an in-plane magnetic field �h = (hx, hy, 0), the disper-
sion becomes E± = h̄k2/2m ± √

(αky + hx )2 + (αkx − hy)2

[35]. The Fermi surfaces shift in the direction perpendic-
ular to the magnetic field, producing an intrinsic spatial
anisotropy [see Fig. 1(c)]. Consequently, the singlet pairs
acquire a net momentum and a LOFF-like state forms in the
clean limit [36–38]. The critical field experiences a sharp

FIG. 1. (a) Schematic illustration of a thin-film superconductor
with thickness d and out-of-plane spin-orbit coupling �α in an exter-
nally applied in-plane magnetic field �h. (b) Fermi surface of a Rashba
superconductor with spins locked to the momentum, forming two
helicity bands E+ and E−. (c) The magnetic field �h = (hx, 0, 0) shifts
the helicity bands vertically (the dots represent their new centers).
In a magnetic field, the Rashba superconductor has intrinsic spatial
anisotropy.
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incline at low temperatures, surpassing the paramagnetic limit
[37,39]. In the diffusive regime, the LOFF-like state disap-
pears and a spatially modulated helical state remains [39,40]
that is stable against disorder since it originates from the
SOC symmetry [41]. Disordered Rasbha superconductors
with strong SOC in an in-plane magnetic field thus have
an enhanced critical field [39,40] and critical temperature
[42].

We investigate superconducting thin films with in-plane
magnetic field �h (externally applied or via an induced ex-
change field). We model superconductivity in the diffusive
limit via the Usadel formalism, which is formulated in terms
of Green’s functions [43]. The Green’s functions ĝ( �R, ωn)
depend on the spatial center-of-mass coordinate �R and the
Matsubara frequencies ωn = (2n + 1)πT (T is the tempera-
ture and n ∈ Z); in 4 ⊗ 4 spin ⊗ particle-hole space, ĝ( �R, ωn)
is expressed as [43]

ĝ =
(

g f

f̃ g̃

)
, (1)

where g and f are the normal and anomalous Green’s
functions, respectively, and g̃ and f̃ are their particle-hole
conjugates [43]. In the diffusive limit, the Green’s functions
satisfy the Usadel transport equation [43],

[iωnτ̂z − �̂ − �h · �σ , ĝ] + D

π
∇(ĝ∇ĝ) = 0, (2)

with the normalization condition ĝ2 = −π21̂. In Eq. (2), �σ
and �τ are the Pauli matrices in spin and particle-hole space,
respectively, D is the diffusion coefficient, and �̂ = �siσ y

is the conventional superconducting order parameter. The
Rashba SOC gives rise to an effective momentum-dependent
exchange field, i.e., the spin-orbit field. To include this in the
Usadel equations, we introduce the covariant derivative ∇̄ �→
∇ − i[Â, .], where ∇ is the standard derivative and Â the spin-
orbit field vector [44–46]. In the following, we assume that
the spin-charge conversion terms are negligible [47]. Close to
the critical temperature Tc, the Usadel equations become [43]

(D∇̄2 − 2|ωn|) fs = −2π�s + 2i sgn(ωn)�h · �ft

(D∇̄2 − 2|ωn|) �ft = 2i sgn(ωn)�h fs, (3)

where the normal Green’s function is ĝ = −iπτ̂z and the
anomalous Green’s function is decomposed in the spin Pauli
matrices base as f = ( fs + �ft · �σ )iσ y, where fs is the singlet
correlation and �ft = ( f x

t , f t
t , f z

t )T the triplet correlation.
In the following, we study superconducting thin-films lying

in the xy-plane with thickness d smaller than the supercon-
ducting coherence length, i.e., d � ξ , with ξ = √

D/2πTc0.
We assume that the superconductivity is uniform in z, such
that the Green’s functions only depend on the x and y co-
ordinates, i.e., ĝ( �R, ωn) = ĝ(x, y, ωn). The spin-orbit field is
�α = α(�s×�p) · n̂, where α is the SOC strength (in units of
1/ξ ), the spin �s = |�h|(cos θ, sin θ, 0)T is determined by the
in-plane field �h [see Fig. 1(a)], the momentum in a thin film
is �p = (px, py, 0)T and the unit vector along the axis of
broken symmetry is n̂ = ẑ. Hence, the spin-orbit field be-
comes �α = α(hx py − hy px )ẑ and is directed out-of-plane. The
corresponding spin-orbit field coefficients in spin space are

FIG. 2. Properties of an infinite thin-film Rashba superconductor.
(a) Phase diagram for different values of Rashba spin-orbit coupling
strength α. Solid lines are second-order self-consistent transitions,
meaning that the order parameter vanishes at �(T = Tc ) = 0. The
dashed line is the first-order paramagnetic limit at α = 0. Both phase
transition lines meet at the tricritical point at T = T ∗ [49]. For
T < T ∗, the second-order phase transition defines the supercooling
magnetic field. (b) The increase in critical field at zero temperature
�hc0 = |hc0(α) − hc0(α = 0)|/Tc0 with α. (c) The increase in critical
temperature �Tc = |Tc(α) − Tc(α = 0)|/Tc0 with α, for fixed applied
field h/Tc0 = 0.5.

Ax = −ασ y, Ay = ασ x and Az = 0, which are used in the
covariant derivative ∇̄ (see Ref. ([48] S1) for details).

We first investigate the (h, T ) phase diagram for an infinite
in (x, y) thin-film Rashba superconductors. In infinite films,
the spatial derivative in Eq. (3) can be neglected. We derive the
self-consistency equation and solve it analytically ([48] S5)
to map the phase diagram in Fig. 2(a). With increasing SOC
strength α, the critical field increases and the transition takes
on a concave shape, similar to Ref. [39]. The spin-momentum
locking caused by SOC renormalizes the magnetic field,
meaning that with increasing α, the effective �h decreases ([48]
S5). At zero magnetic field, SOC does not affect Tc, showing
that SOC does not affect the superconductivity but screens
the applied magnetic field [50]. A similar screening effect is
observed in the presence of spin-orbit scattering in disordered
superconductors [12,14].

SOC increases the critical field, as shown at zero temper-
ature in Fig. 2(b). The magnitude of �Tc at finite magnetic
field, seen in Fig. 2(c), is similar to the temperature recovery
predicted in superconductor/ferromagnet bilayers [51]. We
note that the largest change in hc2 is two orders of magnitude
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higher than the change in Tc, implying that the effect of SOC
on magnetic field is more easily observable.

While the SOC screens the magnetic field in infinite thin
films, an additional effect appears at the edge of finite samples.
Edge states with distinct physical properties from the infi-
nite film superconductors may appear similar to topological
superconductors [52,53]. We consider a finite Lx×Ly super-
conductor, where Lx and Ly are in units of ξ . The spin current
cannot leave the sample, meaning that its component perpen-
dicular to the edges is zero [44,53]. Since the spin current is
proportional to the covariant derivative, the latter is also zero
at the edges, such that ([48] S3)

∂i fs|i=0,Li
= 0,

∂i f x
t

∣∣
i=0,Li

+ 2α̃ f z
t δix = 0,

∂i f y
t

∣∣
i=0,Li

+ 2α̃ f z
t δiy = 0,

∂i f z
t

∣∣
i=0,Li

− 2α̃ f i
t = 0, (4)

with i = x, y and δi j the Kronecker delta. Using these bound-
ary conditions, we calculate the phase diagram iteratively,
starting from the analytical infinite film solution as an ansatz
([48] S6).

The numerical phase diagram for a L×L superconductor is
shown in Fig. 3(a). Since L is in units of ξ , L = 20 converges
to the analytical infinite film solution. Decreasing L reduces
hc2 compared to the corresponding infinite film value.

The presence of triplet correlations �ft induces a spin mag-
netization in the superconducting film defined as [54]

�M(x, y) = (Mx, My, Mz ) = M0
T

Tc0

∑
n

fs �ft , (5)

where M0 is a constant defined in Ref. ([48] S7) and the
summation is over the Matsubara frequencies. The boundary
conditions Eq. (4) couple in-plane triplet correlations f x

t and
f y
t to out-of-plane triplet correlations f z

t . Under an applied
field �h = (hx, 0, 0), this results in an out-of-plane magneti-
zation Mz at the edges transverse to �h [53]. The resulting
magnetization profile is positive on one side of the sample,
zero in the middle, and negative on the other side [53], as
shown in Figs. 3(b) and 3(c). The magnetization acquires this
profile in the field direction (along x) while remaining nearly
constant in the perpendicular direction (along y). For small
L, a magnetization gradient spans the whole sample. Upon
increasing L, the magnetization becomes concentrated at the
edges. A similar effect is seen when increasing α. The profile
resembles that of the spin-orbit induced local magnetic field
in a superconductor/ferromagnet bilayer and could therefore
lead to the formation of vortices [51].

When the system becomes small (L ∼ ξ ) [55], the edges
dominate the sample properties and we recover the infinite
film phase diagram in the absence of SOC ([48] S4), as seen
in Fig. 3(a). This means that the edge effect cancels the en-
hancement of hc2 from the screening effect in infinite films.
We thus conclude that the SOC gives rise to two competing
effects: the infinite film screening effect (increasing hc2) and
the edge effect (suppressing hc2).

The critical field hc0 and magnetization Mz are shown as a
function of L for different values of α in Figs. 3(d) and 3(e).
For L ∼ ξ , the edge effect dominates and hc0 and Mz rapidly
increase with L. For large L, hc0 saturates and Mz gradually

FIG. 3. The effect of finite size. Top-right inset: Geometrically
constrained L×L thin-film superconductor with out-of-plane spin-
orbit coupling �α in an applied magnetic field �h = (hx, 0, 0). (a) Phase
diagram of a L×L superconductor with α = 2 (colored), along with
the analytical infinite film solutions for α = 2 (black) and α = 0
(grey). (b) The profile of the induced out-of-plane spin magnetization
Mz in the field direction (along x) in the middle of the sample
(y = L/2) for fixed α = 2 and different values of L. (c) The same
profile for fixed L = 10 and different values of α. (d) The critical
field at zero temperature hc0 and (e) the maximum of Mz as a function
of L, for different values of α.

drops off to a residual magnetization which is not present
in infinite films (in which Mz = 0). However, this residual
magnetization no longer affects the thermodynamic properties
which become similar to the infinite film [see Fig. 3(a)].

To investigate further the edge effect, we calculate the
phase diagram of a rectangular superconductor with Lx > Ly.
The shape anisotropy introduces an in-plane angle θ between
�h and the x axis [see Fig. 1(a)]. When �h points along the
larger dimension (θ = 0), the edge magnetization Mz is con-
centrated along the shorter dimension [see Fig. 4(b)]. It covers
only a small part of the sample resulting in a slight sup-
pression of hc2. Upon rotating θ , Mz becomes more widely
distributed over the sample, resulting in further suppression of
hc2. Finally, when �h is along the short dimension (θ = π/2),
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FIG. 4. The effect of shape anisotropy. (a) Phase diagram of a
rectangular superconductor with α = 2, Lx = 5Ly, along with infinite
film solutions for α = 2 (black) and α = 0 (grey). (b) Corresponding
spatial distribution of the out-of-plane magnetization Mz. (c) The
effect of anisotropy on the critical field hc0. (d) The one-dimensional
limit.

Mz affects most of the film and hc2 reaches a minimum,
approaching again the infinite film in the absence of SOC
[see Fig. 4(a)]. This shows that hc2 is controllable by sample
geometry in combination with the applied field direction.

The quantitative effect of the field direction on a super-
conductor with constant Lx and increasing Ly is shown in

Fig. 4(c). When the field is along Lx (θ = 0), hc0 is nearly
constant, except for a slight decrease for small Ly correspond-
ing to the overall size suppression. The θ = 0 and θ = ±π/2
graphs intersect for Lx = Ly. Upon increasing Ly > Lx, the
θ = ±π/2 direction becomes favorable. In this regime, the
difference between the angles is less severe, since the size
suppression is small.

In narrow superconducting strips with Lx � Ly, the sys-
tem becomes effectively one-dimensional. The limit where
Lx → ∞ and Ly remains finite is shown in Fig. 4(d). When the
field is along the infinite direction, hc0 equals the infinite film
limit, which confirms that any suppression of hc0 (compared
to the infinite film) is a result of finite size. This implies that,
experimentally, the effect of SOC can be turned on and off
in a narrow strip by rotating the in-plane field. In the same
limit, we compare the quasiclassical model presented here to
an existing Ginzburg-Landau model [51]. The angular depen-
dency of the phase diagram close to Tc can be recovered from
thermodynamic arguments ([48] S8), supporting the results
presented here. Since our calculation is in the diffusive limit
(i.e., mean-free path λ 
 ξ ), we expect our results to be valid
when L, Lx, Ly � ξ .

We have shown that the paramagnetic limit hp of a thin-
film superconductor is enhanced by Rashba SOC and that
tunable superconductivity is achieved using three parame-
ters: the SOC strength, the sample geometry, and the applied
field direction. In shape anisotropic samples, the critical
field is changed by rotating the magnetic field for the entire
temperature range up to Tc. The ability to control supercon-
ductivity using SOC opens possibilities for superconducting
spin-orbitronics devices.

A possible experimental setup is an s-wave superconduct-
ing thin-film/heavy-metal bilayer with a bilayer thickness
within ξ ), such as Nb/Pt. This can be extended to heterostruc-
tures with ferromagnets (e.g., Nb/Pt/Co) in which hc2 is
controlled by the ferromagnetic exchange field. Alternatively,
to control the SOC within a single sample, the superconductor
can be coupled to a two-dimensional chalcogenide in which
the SOC is tuned by gating [56,57].
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the Core-to-Core International Network Oxide Super-
spin (EP/P026311/1), the Superconducting Spintronics Pro-
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