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Topological phase transition driven by magnetic field and topological Hall effect
in an antiferromagnetic skyrmion lattice
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The topological Hall effect (THE), given by a composite of electric and topologically nontrivial spin texture is
commonly observed in magnetic skyrmion crystals. Here we present a study of the THE of electrons coupled to
antiferromagnetic skyrmion lattices (AF-SkX). We show that, in the strong Hund coupling limit, topologically
nontrivial phases emerge at specific fillings. Interestingly, at low filling an external field controlling the magnetic
texture drives the system from a conventional insulator phase to a phase exhibiting the THE. Such behavior
suggests the occurrence of a topological transition which is confirmed by a closing of the bulk gap that is
followed by its reopening, appearing simultaneously with a single pair of helical edge states. This transition
is further verified by the calculation of the Chern numbers and Berry curvature. We also compute a variety of
observables in order to quantify the THE, namely, Hall conductivity and the orbital magnetization of electrons
moving in the AF-SkX texture.
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Introduction. Magnetic skyrmions, a kind of topologically
protected soliton, are nanometer size spin textures that have
been shown to be of great practical interest due to both
their fundamental properties and their promising potential
in spintronics-based applications [1,2]. They have been evi-
denced experimentally in a wide variety of materials including
chiral magnets such as MnSi [3,4], FeGe [5], FexCo1−xSi
[6], and β-Mn-type Co-Zn-Mn [7] and insulator materials
such as Cu2OSeO3 [8,9]. In most cases, periodic arrays of
skyrmions are stabilized by the competition of strong ferro-
magnetic exchange interactions, the external magnetic field,
and the antisymmetric Dzyaloshinskii-Moriya (DM) interac-
tion [10–13]. However, in recent years, theoretical studies
have suggested that skyrmions might be also stabilized in
antiferromagnets where frustration helps to stabilize antiferro-
magnetic skyrmion crystals (AF-SkX) consisting of multiple
interpenetrated ferromagnetic skyrmion lattices [14–22]. Re-
cently, in the spinel MnSc2S4, the first realization of an
AF-SkX (fractional)-like structure has been discovered, where
the planes (triangular lattices) perpendicular to the field di-
rection host interpenetrated fractional ferromagnetic skyrmion
lattices [23].

When conduction electrons are coupled to the local mag-
netic background, they accumulate a Berry phase as they
travel through the skyrmions’ spin configuration which acts
as a local effective magnetic field leading to the topological
Hall effect (THE) [24–31]. Most of the previous studies on
THE have focused on systems consisting of ferromagnetic
SkX showing unconventional behavior that emerges as a con-
sequence of the nontrivial smooth magnetic texture [32–34].
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However, a not so desired feature of skyrmions hosted in
ferromagnets is that they exhibit an inevitable topology effect,
namely, the skyrmion Hall effect [35]. In this phenomena, the
magnetic skyrmions do not move collinear to the current flow
direction, but acquire a transverse motion due to the appear-
ance of a topological Magnus force acting upon the nonzero
topological charge. To avoid this disadvantage, theoretical
studies have suggested that the skyrmion Hall effect can be
suppressed by utilizing the counterpart of the ferromagnetic
skyrmions, the antiferromagnetic skyrmions, which are also
topologically protected but without showing the skyrmion
Hall effect [36]. In this context, electrons coupled to an-
tiferromagnetic skyrmion lattices have been less explored,
even knowing that the multiple sublattice structure can induce
interesting magnetic phenomena [37]. Therefore a question
that arises naturally is whether conduction electrons coupled
to this kind of skyrmion lattice could present exotic new
physics.

This Letter addresses this relevant question on the THE
of electrons in topologically nontrivial AF-SkX textures on
the triangular lattice. By means of extensive Monte Carlo
simulations and exact diagonalization for the magnetic and
fermionic sector, respectively, we find that, in the strong Hund
coupling limit, at low filling it is possible to control the THE
and its protected edge states by tuning the external magnetic
field. This phenomena is confirmed by a closing and further
reopening of the bulk gap and the transition from trivial to
nontrivial Chern number. As a complement, we have com-
puted the orbital magnetization, which is directly related to
the Berry-phase effect, showing surprisingly opposite signs at
both sides of the topological transition. This property enables
a “switch” on/off of the THE and orbital magnetization by an
external magnetic field.
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FIG. 1. (a) DM interactions D (black arrows). (b) Low-
temperature phase diagram of the magnetic Hamiltonian in Eq. (2)
including helical (H), AF-SkX, and vortex-like (V) phases. (c) Por-
tion of an AF-SkX magnetic background considered in this Letter
for D/J = 0.5 and B/J = 4.6. (d) Schematic phase diagram of the
electronic Hamiltonian in Eq. (3). At low filling, the magnetic field
induces a sequence of topological transitions: band insulator →
metal → THE; at high filling the system’s behavior can be connected
with the integer quantum Hall effect.

Model and methods. In this work we consider a tight-
binding model on a triangular lattice where the interaction of
electrons with an AF-SkX texture is described by the follow-
ing Hamiltonian:

H = −
∑

〈r,r′〉,σ
trr′ (ĉ†

rσ ĉr′,σ + H.c.) − Jh

∑
r,μν

Sr · sr, (1)

where ĉrσ (ĉ†
rσ ) is the creation (annihilation) operator at

the site r with spin (σ =↑,↓), trr′ is the hopping between
nearest-neighbor sites, and JH is the Hund’s coupling strength
between the electron spin sr = 1

2 ĉ†
r,μ �σμν ĉr,ν and the mag-

netic background Sr. In order to include a spin texture made
of an AF-SkX phase we perform Monte Carlo simulations
with overrelaxation updates [14,38] for system sizes of N =
L2 sites (L = 12–84) and periodic-boundary conditions on
the following pure magnetic Hamiltonian [14,39] (see the
Supplemental Material [40], Sec. I, for more details on the
simulations):

HS =
∑
〈r,r′〉

J Sr · Sr′ + Drr′ · (Sr × Sr′ ) − B
∑

r

Sz
r, (2)

where J and Drr′ = D(r′ − r)/‖r′ − r‖ are the antiferromag-
netic and DM nearest neighbor couplings, respectively [see
Fig. 1(a)], and B is the strength of the magnetic field along
the z axis. We consider D/J = 0.5 for the rest of the Letter
as a representative value [14,39] where it is known from the
model in Eq. (2) that an AF-SkX emerges consisting of the
superposition of three interpenetrated ferromagnetic skyrmion
lattices [14,39] [Fig. 1(c)] corresponding to a portion of the
lattice for B/J = 4.6 (see the Supplemental Material [40],
Sec. I).

In a recent work it was shown that the mixed dynamics of
both electrons and spins tend to stabilize the AF-SkX phase

in the adiabatic regime JH/t 
 1 [41], allowing us to fix the
magnetic texture in Eq. (1) throughout our calculations. With
this in mind, let us focus on this regime JH/t 
 1, where the
spin of the electrons are aligned parallel to the local moment
and the low-energy physics can be described by an effective
Hamiltonian of spinless fermions as in Ref. [42] (see Supple-
mental Material [40], Sec. II, for details):

Heff =
∑
r,r′

t eff
rr′ d̂†

r d̂r′ , (3)

where d̂†
r (d̂r) is the creation (annihilation) operator, cos θrr′ =

Sr · Sr′ , t eff
rr′ = trr′ cos(θrr′/2)ei arr′ is the effective hopping am-

plitude, and the phase tan(arr′ ) = − sin(φr − φr′ )/[cos(φr −
φr′ ) + cot(θr/2) cot(θr′/2)].

The electronic band structure and other quantities of in-
terest are obtained through numerical diagonalization of the
resulting Hamiltonian matrix in the reciprocal space. There-
fore, once the eigenvector |un(k)〉 and the eigenenergies εn(k)
are determined, we calculate the Hall conductivity σxy by
means of the standard Kubo formula, which at T = 0, reduces
to

σxy = e2

2πh

∑
n

∫
	(εn − εF )
(n)

xy d2k, (4)

where the Berry curvature for the band n is 

(n)
ab =

2
∑

m �=n Im[va]n m[vb]m n/(εm − εn)2, εF is the Fermi energy,
and [va]nm = 〈un|va|um〉 (a = x, y) is the matrix element of
the velocity operator v = i

h̄ [Heff , R], with the position oper-
ator being R = ∑

r r d†
r dr. When the Fermi energy εF lies

inside a band gap, the Hall conductivity is quantized as σxy =
e2/h

∑
n Cn, where the integers Cn are the so-called Chern

numbers. Relevant Chern numbers are calculated indepen-
dently of σxy through the Fukui-Hatsugai numerical method
[43]. Thus, due to the bulk-boundary correspondence princi-
ple [44], in an open-boundary system one would expect to find
a number |ν| of topologically protected chiral edges states
crossing the nth band gap, where ν = ∑

n Cn. In addition,
we also calculate the out-of-plane component of the orbital
magnetization [45–47]

Mz = Mc + Mt

= 1

(2π )2

∑
n

∫
BZ

	n mz
n d2k

+ e

4πh

∑
n

∫
BZ

	n
(

(n)

xy − 
(n)
yx

)
(εF − εn)d2k, (5)

where 	n = 	(εn − εF ) is the Heaviside step function, and
mc

n = − e
2h̄

∑
m �=n εabcIm[va]n m[vb]m n/(εm − εn) is the crystal

orbital magnetic moment with εabc being the Levi-Civita ten-
sor (summation over a and b is implicit). Mc corresponds
to the contribution from the intrinsic orbital moment (con-
ventional part), whereas Mt corresponds to corrections of a
topological nature.

Band structure and topological phase transition. In
Fig. 2(a) we show a typical band structure obtained in the
presence of an AF-SkX background. Here we identify two
main distinct energy regions: (i) a low-energy sector consist-
ing of strongly overlapping bands except for a field-dependent
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FIG. 2. (a) Representative band structure of the model in Eq. (3)
for B/J = 2.4 (energy in units of t). Red and blue sets of curves
indicate the two regions with different properties. The gray-shaded
areas mark the two relevant gaps of the system. (b) Closing and
further reopening of the bulk gap �1. (c) Evolution of the gaps �1

and �2 vs the magnetic field B.

global bulk gap �1 between the first and second bands (red
curves), and (ii) a high-energy sector resembling a typical
THE spectrum in the presence of a ferromagnetic skyrmion
background [32] (blue curves). Both sectors are separated by
a persistent energy gap, �2 [see Fig. 1(c)].

In this section, we focus our attention on the low-energy
sector, leaving the discussion of the high-energy sector to the
next section. For sequentially bigger fields it is found that
the overlapping region barely changes. Figure 2(b) shows a
closing and further reopening of the first bulk gap �1 for
increasing fields. These two sectors where �1 is nonzero (at
low field and a high field) are well separated by a broad
gapless region as shown in Fig. 2(c). Upon further inspection
we finds a noticeable change in both the Hall conductivity
and the orbital magnetization when the Fermi energy sits
inside the band gap. In Fig. 3 we show these quantities for
low field (left panels) and high field (right panels) displaying
a transition from σxy = 0 at low field to a quantized value

FIG. 3. εF dependence (in units of t) of the topological Hall
conductivity σxy [panels (a) and (c)], exhibiting a transition from zero
to quantized value in the bulk gap window as a function of Fermi
energy. Panels (b) and (d) show the orbital magnetization M (and
Mc, Mt ) in units of [e/4π h]. The shaded areas correspond to the
energy gap �1.

FIG. 4. Electronic occupation at the � point for the lowest band
for B/J = 2.4 (a) and B/J = 4.6 (b). In the trivial case (C1 = 0) the
electron density is strongly localized inside the AF skyrmion; when
C1 = −1 it becomes delocalized (the top-left insets show the spin
configurations). (c) One-dimensional band structure (�w = εn − ε1

in units of t) for a nanoribbon geometry with periodic-boundary
(upper) and open-boundary (bottom) conditions. In the last case,
the edge state (red curve) is clearly observed between the two ad-
jacent bands, which demonstrates a nonzero Chern number. (d) The
edges states are localized at the boundary (top and bottom) of the
nanoribbon.

σxy = − e2

h at high field [Figs. 3(a) and 3(c)]. This is confirmed
by the calculation of the Chern number where the lowest band
is topologically trivial with C1 = 0 at low field and nontrivial
with C1 = −1 at high field. This topological change is also
evidenced in the orbital magnetization [Eq. (6)]. In Figs. 3(b)
and 3(d) we show the orbital magnetization (M) and its two
components, Mc and Mt , as a function of εF . On one hand,
we observe that, in the energy gap, at low field there is only a
negative contribution from the conventional part Mc. Because
C1 = 0 we have Mt ≡ 0. On the other hand, at high field,
Mc keeps constant inside the gap, due to the fact that the
integral of mz

n does not depend on εF . In contrast, the Berry-
phase term Mc linearly increases with εF , as is expected from
Eq. (6).

In order to inspect in more detail the effects of the
transition, we calculate the electronic occupation nr =
〈u1(k)|d̂†

r d̂r|u1(k)〉 within the unit cell at the � point for the
lowest band for B/J = 2.4 and 4.6. In the low-field region it
is strongly confined around the antiferromagnetic skyrmion
center in a ringlike configuration [48] [Fig. 4(a)]. As we
cross the transition the electronic occupation spreads out,
getting away from the skyrmions’ centers, forming a con-
nected configuration throughout the system [Fig. 4(b)]. This
localized/delocalized type transition is compatible with the
change in Hall conductivity.
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FIG. 5. (a) Electronic band structure at the high-filling band (in
units of t), (b) Hall conductivity, and (c) orbital magnetization as a
function of the Fermi energy (vertical axis). Regions with bulk gap
are indicated by a gray rectangular box. In panels (d)–(f), we show
a zoomed-in region in order to highlight the connection between
quantities.

Last, we study the presence of in-gap chiral edge states. To
this end, we have numerically diagonalized the Hamiltonian
Eq. (3) in a one-dimensional strip configuration with a width
of 20 unit cells. The calculated band structure with periodic-
and open-boundary conditions is shown in Fig. 4(c). In the
high-field region, a gap-crossing edge state, absent in the low-
field region, is observed. The electronic occupation for this
state localizes in the edge of the sample, as shown in Fig. 4(d).
A similar behavior can be found in the persistent energy gap
�2 with stable in-gap chiral edge states (see the Supplemental
Material [40], Sec. II, Fig. 2). This result agrees with the bulk-
boundary correspondence principle.

Therefore, a system of this kind with a filled first band
could be tuned from an insulator to a metal to a Chern in-
sulator phase by changing the external magnetic field. Edge
conducting states can be turned on and off in the same manner.

High-filling sector. At high filling, the band structure, Hall
conductivity, and orbital magnetization show a striking simi-
larity to thosw observed in ferromagnetic skyrmion crystals
[32,49] as functions of the Fermi energy (see Fig. 5). The
presence of the THE is a consequence of the three-sublattice
structure of the AF-SkX magnetic background. On an AF-
SkX on a bipartite lattice, one would expect the emergent
field to fluctuate around zero, leading to a vanishing Hall
conductivity [37]. However, in the case of the AF-SkX on

the triangular lattice, the emergent field fluctuates around a
nonzero value and its strength is comparable to that of the
emergent field coming from a ferromagnetic skyrmion lattice
background. In this sense, a correspondence between the in-
teger quantum Hall effect and the THE on the AF-SkX can
be traced, as is the case with ferromagnetic skyrmion lattices
[32].

Conclusions. In this Letter we have studied the topological
Hall effect and orbital magnetism of electrons coupled to an
antiferromagnetic skyrmion lattice. The band structure con-
sists of two energy regions, separated by a persistent energy
gap. The low-energy sector consists of strongly overlapping
bands except for a switchable bulk gap between the first and
second bands. The high-energy sector shows a striking simi-
larity to that of the integer quantum Hall effect.

At low filling, we found that a magnetic field drives the
system from a conventional insulating state to a topologi-
cal insulator state hosting chiral edge states in generic strip
geometries. This topological change is clearly manifested in
the Chern numbers, the electron density, the Hall conductiv-
ity, and the orbital magnetization. In the region with Chern
number C1 = 0, the electron density is strongly localized at
the AF-skyrmion cores forming a ringlike distribution. In
the region with C1 = −1, it becomes delocalized. We found
that the localization/delocalization of the ring states can be
controlled by the magnetic field which determines the texture
details. The Hall conductivity presents a switchable behavior
from a null to a quantized value of σxy = −e2/h when the
Fermi energy is inside the bulk gap. We have found that the
two parts, Mc and Mt , of the orbital magnetization display
fully different behaviors in the C1 = 0 and C1 = −1 regions
because of their different roles in these two regions.

At high fillings, even having a three-sublattice structure of
the AF-SkX we recover a behavior similar to that observed
in a ferromagnetic skyrmion lattice where it is possible to
connect the THE with the integer quantum Hall effect.

Our results highlight the richness of the electronic phases
arising from systems hosting AF-SkX states and their poten-
tial as platforms for spintronic devices. The present study
on the THE in antiferomagnetic skyrmion lattices calls for
experimental verification. The low-filling topological phase
transition and controlled chiral edge states can be studied
in materials which exhibit an AF-SkX phase, e.g., the re-
cent fractional skyrmion lattice observed in the compound
MnSc2S4 [23]. In this material, the magnetic ions Mn2+ form
a diamond lattice. At low temperature and finite magnetic
field, each triangular lattice layer along the [111] direction
realizes a fractional AF-SkX that is composed of three fer-
romagnetic skyrmion sublattices.
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