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Localization and delocalization in one-dimensional systems with translation-invariant hopping
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We present a theory of Anderson localization on a one-dimensional lattice with translation-invariant hopping.
We find by analytical calculation the localization length for arbitrary finite-range hopping in the single prop-
agating channel regime. Then by examining the convergence of the localization length, in the limit of infinite
hopping range, we revisit the problem of localization criteria in this model and investigate the conditions under
which it can be violated. Our results reveal possibilities of having delocalized states by tuning the long-range
hopping.
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According to well-known theories of Anderson localiza-
tion [1–3], single-particle wave functions are exponentially
localized in low-dimensional (d = 1, 2) disordered systems.
Several mechanisms have been identified which provide coun-
terexamples to this belief [4]. One route to delocalization
is long-range hopping, which especially in systems with
one-dimensional (1D) geometry is feasible for systematic an-
alytical treatment. It has been a useful model to investigate
various properties of the Anderson transition, and new aspects
of it are still being discovered [5].

The effect of long-range hopping on localization was first
considered by Anderson [1] and subsequently, in the prob-
lem of phonon localization, by Levitov [6]. The following
picture has emerged: for a hopping amplitude decaying as
1/rα with distance r, all states are extended if α < d , whereas
for α > d the states are localized. This was well confirmed
by the power-law random banded matrix model [7], which
describes a 1D system with random long-range hopping. This
model undergoes an Anderson transition with multifractal
eigenstates at α = 1. It turns out, however, that the above
picture is not universal and does not hold for the models with
correlated hopping [5,8–10]. The latter includes the models
with correlated random hopping and nonrandom hopping with
the on-site disorder. It is found that correlated hopping tends
to localize the states even when α < d . Regarding the ex-
tended states in these models, there have been few reports
although the corresponding energies form a set of null mea-
sure [11–14].

In this Letter, we report an analytical study of the localiza-
tion properties of a class of correlated models characterized
with translation-invariant hopping and diagonal disorder. Our
approach is to start from the arbitrary finite-range hopping,
for which we are able to obtain the localization length, and
then take the limit of the infinite hopping range. This leads
us to reconsider the criterion of localization in systems with
long-range hopping and discuss the conditions under which
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it can be violated. Our results reveal possibilities of having
delocalized states in these systems based on the asymptotic
behavior of hopping.

Model. The model under consideration is 1D tight-binding
chain, represented by the eigenproblem

r∑
n=1

tn(�i+n + �i−n) + εUi�i = E�i, (1)

with hopping range r and weak random potential εUi, where
〈Ui〉 = 0 and 〈UiUj〉 = σ 2δi j . Angular brackets denote the
ensemble average. In the absence of random potential, the
solutions of (1) are plane waves with energy

E (k) = 2
r∑

n=1

tn cos nk, (2)

where unit lattice spacing is assumed and the wave vector k
belongs to the Brillouin zone k ∈ [−π, π ].

Perturbation theory. The solution of (1), in the presence of
the weak random potential, can be treated perturbatively [15]
by rewriting it in terms of variables Ri = �i+1

�i
,

r∑
n=1

tn

(
n−1∏
m=0

Ri+m +
n∏

m=1

1

Ri−m

)
= E − εUi. (3)

For an unperturbed plane wave, Ri is constant, and for a
perturbed solution it is assumed to be weakly fluctuating
around that constant value, which can be expressed as Ri =
A exp(Biε + Ciε

2 + · · · ). This assumption is valid if the un-
perturbed solution is a single plane wave. Otherwise scattering
to other states will produce superposition of waves with dif-
ferent wavelengths and thus position-dependent Ri [16,17].
Therefore we will be considering the single-channel part of
the energy band. Since the dispersion relation (2) is an even
function of k, for a given allowed energy, there are at least
two solutions ±k, i.e., one channel of propagation. In order
to eliminate one of the two wave vectors ±k an infinitesimal
imaginary part can be added to the energy and finally be made
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to approach zero. From Eq. (3), up to second order in ε, we
have

r∑
n=1

tn(An + A−n) = E , (4a)

r∑
n=1

tn

(
An

n−1∑
m=0

Bi+m − A−n
n∑

m=1

Bi−m

)
= −Ui, (4b)

r∑
n=1

tn

⎧⎨
⎩An

⎡
⎣n−1∑

m=0

Ci+m + 1

2

(
n−1∑
m=0

Bi+m

)2
⎤
⎦

+A−n

⎡
⎣ −

n∑
m=1

Ci−m + 1

2

(
n∑

m=1

Bi−m

)2
⎤
⎦

⎫⎬
⎭ = 0. (4c)

Equation (4b) can be written in closed form,

r∑
m=1

(τmBi+m−1 − τ ∗
mBi−m) = −Ui, (5)

where τm = ∑r
n=m tnAn and τ ∗

m = ∑r
n=m tnA−n. As E ap-

proaches the eigenenergies of the pure system, A becomes
pure phase and thus A∗ = A−1, and therefore τ ∗

m will be com-
plex conjugate of τm. The Lyapunov exponent (LE) and its
weak disorder expansion is given by

γ (E ) = lim
N→∞

1

N

N∑
i=1

log Ri = 〈log R〉 (6)

= log A + ε〈B〉 + ε2〈C〉 + · · · . (7)

In order to calculate the averages, we take the average of
Eqs. (4b) and (4c), from which we obtain

〈B〉 = 0, (8)

〈C〉 = −1

2

∑r
n=1 
ntn(An + A−n)∑r
n=1 ntn(An − A−n)

, (9)

where 
n = ρ(0) + 2
∑n

l=1(n − l )ρ(l ) and ρ(τ ) is the au-
tocovariance function 〈Bn+τ Bn〉. The covariances should be
obtained using Eq. (4b). By multiplying Bi+ j in Eq. (5) for j =
−r,−r + 1, . . . , r − 1 and using the symmetry ρ(l ) = ρ(−l )
and 〈Bi+ jUj〉 = 0 for j < r − 1 (because of statistical inde-
pendence), we obtain the following set of 2r linear equations:

r∑
n=1

[τnρ(|n − 1 − j|) − τ ∗
n ρ(|n + j|)] = −σ 2

τr
δ j,r−1,

j = −r,−r + 1, . . . , r − 1. (10)

This is a linear inhomogeneous system to obtain 2r unknowns
ρ(0), ρ(1), . . . , ρ(2r − 1). The solution of this system for
arbitrary r does not seem to be simple. Without explicitly
solving the equations, we were able to construct the numerator
in Eq. (9) by linear combination of them. The final result is the
closed expression for the average

〈C〉 = −σ 2

2
[∑r

n=1(τn − τ ∗
n )

]2 , (11)

and the localization length (inverse LE) follows from it,

ξ = − 2

σ 2ε2

[
r∑

n=1

ntn(An − A−n)

]2

, (12)

= 2v2

σ 2ε2
; v = −2

r∑
n=1

ntn sin nk, (13)

where we have used A = eik . We can see from Eq. (2) that
v = ∂E/∂k is the group velocity. At the band edges where
the group velocity vanishes the Lyapunov exponent diverges,
which implies the failure of the analytic expansion in disorder
strength [15]. The result (13) implies that in the single propa-
gating channel regime the states will be localized if

r∑
n=1

ntn sin nk < ∞. (14)

As we can see, this condition always holds for the finite
range r.

We now consider infinite-range hopping and see if (14)
holds in the limit r → ∞ or not. A necessary condition for
convergence of the series is ntn → 0 as n → ∞. The first con-
clusion which can be drawn from this is that in order to have a
localized state the hopping integrals should necessarily decay
faster than n−1. This result is indeed the Levitov’s criterion
of localization for d = 1. However, the above condition is not
a sufficient condition of convergence. Below we will see the
cases for which the above condition holds, but the series does
not converge. Before that, we state a more strict condition of
convergence. It is known from the theory of trigonometric
series [18] that cosine and sine series, in (2) and (13), with
monotonically decreasing coefficients, are convergent except,
perhaps, at k = 0. Therefore, if the hopping decays faster
than n−1 but monotonically, then the series converges and the
states will be localized. We now apply the general result (13)
to specific examples that have been studied before by other
means.

Exponential hopping. First, we consider tn = t0sn with
|s| < 1; we have

E (k) = 2t0s(cos k − s)

1 − 2s cos k + s2
, (15)

v(k) = 2t0s(s2 − 1) sin k

(1 − 2s cos k + s2)2
. (16)

From (15) we can see that, for a given energy, there is only
one pair of wave vectors ±k, i.e., there is only one propagating
channel, and from (16) we can see that for all k the localization
length is finite and thus the corresponding states are localized.
This model is studied in Ref. [19] by numerical calculation
of the inverse participation ratio (IPR). In agreement with
their conclusions, our results show weakly localized states at
higher energies (see Fig. 1). As the range of hopping becomes
shorter (s → 0) the results tend to that of nearest-neighbor
hopping Anderson model. A random band matrix model with
exponential hopping, which is closely related to (1), exhibits
similar localization properties [20].

Power-law hopping. A more interesting case is tn = t0n−α ,
which has been studied in several works [10–13,19] and
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FIG. 1. Localization length for exponential hopping model
tn = t0sn with s = 1/2.

shown to exhibit anomalous localization properties. In this
model as well the dispersion relation allows a single channel
of propagation, so our results are applicable:

E (k) = t0[Liα (eik ) + Liα (e−ik )]; α > 0, (17)

v(k) = it0[Liα−1(eik ) − Liα−1(e−ik )]; α > 1, (18)

where Liα (z) = ∑∞
n=1 znn−α . We distinguish three different

cases:
(1) 0 < α � 1. The series E (k) converges for all k except

k = 0 (band edge) where it diverges to infinity, E (k → 0) →
+∞, so the energy spectrum of pure chain is not bounded
from above. However, since ntn is not decreasing, the series
v(k) does not converge, and in fact it is oscillating as r →
∞ so the localization length does not have a well-defined
limit. This signals the failure of the assumption of exponential
localization.

(2) 1 < α < 2. The series E (k) converges everywhere, in-
cluding k = 0, therefore the energy spectrum of the pure chain
is bounded, i.e., the bandwidth is finite. The series v(k) also
converges for all k, thus all states have a finite localization
length for this range of α. Although the localization length is
finite, it increases unboundedly close to the upper band edge
indicating delocalized states (see Fig. 2). Delocalization of
uppermost states has been predicted in Refs. [11,12,19], and
their transition to localized states at strong disorder is studied
in Ref. [13]. However, we do not see a qualitative change
of behavior at α = 3/2, as is predicted in Ref. [12] and the
power-law localization of states in this power-law hopping
model (see Ref. [5]).

(3) α � 2. Both the series E (k) and v(k) are convergent
and bounded for all k (see Fig. 2). This confirms the numerical
results of Ref. [19], where it is found that there is a minimum
IPR for this range of α.

Delocalized states. We now look for the sequences of hop-
ping integrals for which the localization length diverges, i.e.,
the condition (14) is not satisfied. The divergence of such a
series is an old problem in the theory of trigonometric series

E/t0

σ2
ε2

ξ/
8t
02
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FIG. 2. Localization length versus energy for power-law hopping
tn = t0n−α . Vertical dashed lines show the upper band edge in each
case.

[18,21] and is also related to the theory of functions with
divergent Fourier series.

We have already seen that for power-law hopping with
1 < α < 2 the localization length increases unboundedly near
the upper band edge. By modulating the hopping with a sine
wave tn = t0n−α sin nk0 this singular point can be shifted into
the energy band. This allows us to have an extended state
at a given energy E (k0), and, in particular, the band edge
can be avoided because the perturbation theory fails at this
point. Such an oscillating hopping can be induced by RKKY
interaction. The divergence of the localization length mani-
fests itself in the dispersion curve as an infinite slope, i.e.,
infinite group velocity (see Fig. 3). This kind of singularity
also occurs in the dispersion curve of Hartree-Fock excita-
tions in an interacting electron system. By superposition of
multiple terms, tn = t0n−α

∑
i sin nki, we will have a set of

E
(k)
/t 0

-1

0

1

k

σ2
ε2

ξ/
8t
02
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4

π2π/30 π/3

FIG. 3. Dispersion relation (top) and Localization length (bot-
tom) for modulated power-law hopping tn = t0n−α sin nk0 with
1 < α < 2 and k0 = π/2.
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extended states at given wave vectors. Particularly, this can be
a dense set of energies at any given interval through the energy
band.

In general, for tn = an sin nk0 where an is monotonically
decreasing but

∑∞
n=1 an = ±∞, there will be an extended

state at k0. We note that the single-channel condition on the
dispersion relation also needs to be satisfied. As an example,
an�2 = t0(n ln n)−1 can be considered. The nearest-neighbor
hopping should be large enough such that the dispersion rela-
tion satisfies the single-channel condition. Note that hopping
decays faster than n−1, but due to nonmonotonicity, condition
(14) is not satisfied at k = k0.

Finally, we would like to point out the possibility that
extended states form a continuous band rather than a set of
isolated energies. It is known that with certain (decreasing)
coefficients the trigonometric series in (14) diverges almost
everywhere. A suitable example for our discussion is tn =
an sin nqn with certain conditions imposed on the sequences an

and qn [21,22]. An explicit choice is an�2 = t0(n ln n)−1 and
qn�2 = ln ln n. Again the nearest-neighbor hopping should be
such that the single-channel condition is satisfied. We also
note that for this choice E (k) converges. The other interesting
case would be the divergence of the series in a subinterval,
which results in a band of extended states separated by a

mobility edge from the localized states; we leave this to future
work.

Conclusions. An analytical expression for the localiza-
tion length in a one-dimensional tight-binding model with
diagonal disorder and arbitrary-range hopping in the single-
channel regime is obtained. Finite-range hopping always
leads to localized states, but delocalized states emerge in the
infinite-range limit. It turns out that for infinite-range hopping,
tn � n−1 is a necessary but not sufficient condition for local-
ization. We provide examples which satisfy this condition but
violate the condition (14) and lead to delocalized states. The
additional requirement of monotonic decay makes it a suf-
ficient condition. Exponential and power-law hoppings were
investigated in detail, and a qualitative comparison with pre-
vious studies was done. Our results reproduce several aspects
of existing results although we arrive at different conclusions
in some cases. Namely, for power-law hopping with α � 1 the
localization length does not converge at r → ∞, therefore the
assumption of exponential localization seems to be invalid.
Also, contrary to the predicted transition at α = 3/2, our
results do not indicate a qualitative change at this point.
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