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Three-dimensional quantum Hall effect in Weyl semimetals
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We analytically study the three-dimensional (3D) quantum Hall effect (QHE) in a thin film of a Weyl
semimetal from the perspective of bulk states. We derive the Chern numbers for B �= 0 from the Chern numbers
for B = 0 through a topological analysis and obtain a phase diagram of Chern numbers in Weyl semimetals. We
demonstrate how the relative alignment of the Weyl nodes and the thickness of the film influence the quantum
Hall plateaus and predict a peculiar phase diagram for the QHE in a thin film of a Weyl semimetal. Our work
reveals the nature of the 3D QHE in Weyl semimetals from the bulk states.
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I. INTRODUCTION

The Weyl semimetal, a new topological material with a
nontrivial electronic structure, has attracted intense interests
in condensed matter physics in the last decade [1–9]. In a
Weyl semimetal, energy bands touch at discrete Weyl nodes
which always occur in pairs with opposite chirality [10]. Near
the Weyl nodes the band dispersion is approximated as being
exactly linear, satisfying the Weyl equation, a two-component
Dirac equation. A landmark feature of Weyl semimetals is
the Fermi-arc surface state that connects the Weyl nodes with
different chiralities in momentum space. The states of Fermi
arcs are confined only in a region between the Weyl nodes
because of the topological origin [11]. These unique features
of Weyl semimetals produce many intriguing quantum trans-
port properties, such as chiral anomaly [3,10,12,13], negative
longitudinal magnetoresistance [14–16], and the planar Hall
effect [17–20].

The quantum Hall effect (QHE), discovered in 1980 [21],
is usually observed in two-dimensional (2D) systems [22–24]
with a 1D edge states protected by topology [25]. It is well
known that the observation of a 3D QHE is difficult because
of the extra dimension along the magnetic field. However, re-
cently, a 3D QHE was predicted to occur in Weyl semimetals
[26–28]. Reference [26] proposes that Fermi arcs at oppo-
site surfaces can form a complete Fermi loop and support
the QHE via a “wormhole” tunneling assisted by the Weyl
nodes. Meanwhile, this exotic quantum Hall phenomenon was
observed experimentally in topological semimetals Cd3As2,
with thicknesses ranging from 10 to 80 nm under a magnetic
field [29–35]. Recently, a numerical calculation shows that the
sample size will affect the quantized plateaus of the 3D QHE
in Weyl semimetals [36]. The present edge-state picture of 3D
QHE cannot explain the effects of the sample size and the
relative alignment of the Weyl nodes [26,37].
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In this paper, we present an analytical study of the 3D
QHE in the thin films of Weyl semimetals. We establish a
bulk picture of 3D QHE from Landau levels which is more
robust than the picture of surface states [26,37]. As a magnetic
field is applied perpendicular to the film, we solve the Landau
levels and derive the Chern numbers for B �= 0 from the Chern
numbers for B = 0 through a topological analysis and give the
phase diagram of the Chern number in Weyl semimetals. We
demonstrate that the quantized Hall conductivity is attributed
to the zeroth chiral Landau levels traversing through the finite
gap of n = −1 and n = 1 Landau levels. We exhibit how the
relative alignment of the Weyl nodes and the thickness of the
film influence the quantum Hall plateaus. A phase diagram
for the QHE is predicted in a thin film of Weyl semimetals.
We also derive a general formula of the Hall conductivity.

We organize this paper as follows. In Sec. II, we introduce a
Weyl semimetal with two Weyl nodes and calculate the Chern
numbers. We solve the Landau levels of the Hamiltonian in
Sec. III, and in Sec. IV we demonstrate the phase diagram of
Chern number in the presence of the magnetic field. We cal-
culate the quantized Hall conductivity of the Weyl semimetals
and predict a phase diagram for the QHE in Sec. V. The final
section contains a summary.

II. MODEL

Let us consider a Weyl semimetal with two Weyl nodes.
A minimal low-energy model of the electrons around a Weyl
node is given by

H = χvF
(
k − kχ

w

) · σ, (1)

where χ = + or − represents the chirality of the Weyl
node, vF is the Fermi velocity, and σ ≡ (σx, σy, σz ) are the
Pauli matrices. We keep using the “absolute” momentum
k ≡ (kx, ky, kz ) to describe the electron states for convenience
of discussion. For definitiveness, we assume that the χ = ±
Weyl nodes are located at k±

w ≡ (k±
wx, k±

wy, k±
wz ) in the momen-

tum space. The displacement of the χ = + Weyl node from
the χ = − Weyl node is denoted by 2kw ≡ 2(kwx, kwy, kwz ) =
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FIG. 1. Schematic illustration of (a) the two Weyl nodes in
(kx, ky, kz ) space and (b) a thin film of a Weyl semimetal in (x, y, z)
space with a magnetic field along the z direction and an electrical
field along the x direction.

k+
w − k−

w , which orients in an arbitrary direction in general,
as illustrated in Fig. 1. The eigenenergies of this model are
Eχ

k = ±vF |k − kχ
w| with ± for the conduction and valence

bands.
To characterize the topological property of the Weyl

semimetal, we regard kz as a parameter, and calculate the
Chern number C(kz ) of all the occupied electron states in
the kx-ky plane. If kz does not coincide with the Weyl nodes,
there always exists an energy gap between the conduction
and valence bands. We assume that the Fermi energy is in
the energy gap, and calculate the Chern number C(kz ) for a
given kz. The Weyl nodes are the drain and source of the Berry
curvature, and contribute to the Chern number, separately.
The contribution from the Weyl node χ is easily obtained as
Cχ (kz ) = −χ/2 for kz < kχ

wz and Cχ (kz ) = χ/2 for kz > kχ
wz.

The total Chern number C(kz ) = C+(kz ) + C−(kz ) for a given
kz is then

C(kz ) =
{−sgn(kwz ), kz between two Weyl nodes,

0, otherwise. (2)

The Chern number C(kz ) vs kz is shown in Figs. 2(a) and
2(c), for kwz < 0 and kwz > 0, respectively. We notice that the
Chern number C(kz ) has opposite signs in the two cases. If the
Weyl nodes are located at a plane perpendicular to the z axis,
such that kwz = 0, the Chern number vanishes for all kz, except
at the Weyl nodes, where the Chern number is not defined. Our
result is consistent with the previous theory of Chern numbers
for Weyl semimetals [38].

III. LANDAU LEVELS

We now investigate how the electron states in the Weyl
semimetal evolve in the presence of a magnetic field. Let us
consider that a magnetic field B = (0, 0, B) is applied along
the z axis. By using the Peierls substitution, the momentum

FIG. 2. Energy spectrum as a function of kz for (a), (c) B = 0
and (b), (d) B > 0. In (a) and (b), kwz < 0 is assumed, and in (d) and
(c), kwz > 0 is assumed. The Chern numbers C(kz ) are labeled in the
figure, and ± denote the chiralities of the Weyl nodes.

is replace by k → (k − qA), where A is the vector potential
and the electron charge is taken to be q = −e. In the Landau
gauge, the vector potential is chosen to be A = (0, Bx, 0).
Around the Weyl node χ , we introduce the ladder opera-
tors a = lB[(kx − kχ

wx ) − i(x − x0)/l2
B]/

√
2 and a† = lB[(kx −

kχ
wx ) + i(x − x0)/l2

B]/
√

2, where x0 = −sgn(B)l2
B(ky − kχ

wy) is
the guide center, and lB = √

h̄/|eB| is the magnetic length.
The eigenenergies of the Landau levels (LLs) can be solved
as

Eχ

n,kz
=

{−χvF (kz − kχ
wz )sgn(B), n = 0,

sgn(n)|vF |
√

2|n|/l2
B + (kz − kχ

wz )2, n �= 0.
(3)

The corresponding eigenvectors are

�
χ,n=0
ky,kz

=
[

0

φ
(0)
ky,kz

]
, B > 0,

�
χ,n=0
ky,kz

=
[
φ

(0)
ky,kz

0

]
, B < 0,

(4)

for n = 0, and for n �= 0,

�
χ,n
ky,kz

= 1√
2

[√
1 + ζ cos θ φ

(|n|−1)
ky,kz

ζ
√

1 − ζ cos θ φ
(|n|)
ky,kz

]
, B > 0,

�
χ,n
ky,kz

= 1√
2

[
ζ
√

1 + ζ cos θ φ
(|n|)
ky,kz√

1 − ζ cos θ φ
(|n|−1)
ky,kz

]
, B < 0,

(5)

where θ = arccos[(kz − kχ
wz )/

√
2|n|/l2

B + (kz − kχ
wz )2], and

ζ = sgn(nχ ). Here, φ
(|n|)
ky,kz

(r) are the wave functions of elec-
trons with ordinary parabolic dispersion in a magnetic field,
given by

φ
(|n|)
ky,kz

(r) = Cneikyy+ikzze
− (x−x0 )2

2l2B H|n|
(x − x0

lB

)
, (6)

where Cn = 1/

√
|n|!2|n|√πLyLzlB, LyLz is the cross section

of the sample in the y-z plane, and H|n| is the Hermite poly-
nomial. The Landau degeneracy is NL = 1/2π l2

B = eB/h in a
unit cross section in the x-y plane, as the electron eigenener-
gies do not depend on ky.
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IV. PHASE DIAGRAM OF CHERN NUMBER

In the presence of the magnetic field, kz is still a good
quantum number, and the energy spectrum of the electrons
will evolve into many LL energy bands. We plot the LLs as
functions of kz in Figs. 2(b) and 2(d), for kwz < 0 and kwz > 0,
respectively. The two chiral n = 0 LL bands go through the
two Weyl nodes, respectively. The topological properties of
the model can still be described by the Chern number C(kz )
of all the occupied electron states. An interesting way to
obtain the Chern number C(kz ) for B �= 0 is based on topo-
logical analyses. We consider (EF , kz ) as a pair of variable
parameters, which designates an observation point. Let us first
focus on Figs. 2(a) and 2(b). At B = 0, we set EF = 0 and
kz to be between the two Weyl nodes. When the magnetic
field B is switched on continuously, while the electron en-
ergy spectrum evolves into different LL bands, no LL band
crosses the observation point (EF , kz ). In other words, the
observation point remains in an energy gap during the process.
Therefore, the value of the Chern number at B = 0, C(kz ) = 1,
at (EF , kz ) cannot change with increasing the magnetic field
B. Furthermore, in Fig. 2(b) because the whole region en-
closed by the n = 0 and n = 1 LL bands is connecting to the
observation point (EF , kz ), one can move (EF , kz ) through-
out the region without crossing any LLs. The whole region
must share the same Chern number C(kz ) = 1 as indicated in
Fig. 2(b).

A similar analysis can be applied to other regions. We
now set EF = 0 and kz to the left of the left Weyl node at
B = 0. When B is increased continuously to a finite value,
because no LL band swiftly moves across the observation
point (EF , kz ) during the process, C(kz ) at (EF , kz ) will not
change. As a result, we can determine that the Chern num-
ber in the region enclosed by the n = 0 and n = −1 LL
bands in the left valley is C(kz ) = 0. For the same reason,
C(kz ) = 0 in the region enclosed by n = 0 and n = −1 LL
bands in the right valley. Apparently, in Fig. 2(b), if we
move (EF , kz ) from a C(kz ) = 0 region to the C(kz ) = 1 re-
gion, (EF , kz ) must cross upwards from below an n = 0 LL.
This indicates that each n = 0 LL carries a Chern number
	C(kz ) = 1, as indicated in the figure. The Chern numbers
in different regions in Fig. 2(d) are determined in the same
manner.

A special case is that the two Weyl nodes are located at
the x-y plane, as shown in Figs. 3(a) and 3(b). The Chern
number distribution for finite B can also be derived from
the Chern number at B = 0. We may set our observation
point EF = 0 and kz to the left of the Weyl points, and then
continuously increase B from zero to a finite value. During
this process, because no LL passes through the observation
point, the Chern number at the observation point, C(kz ) = 0,
remains unchanged. Therefore, the Chern number in the re-
gion between the n = 0 LL bands to the left of the Weyl
points must be the same, i.e., C(kz ) = 0. The same argument
is applicable to the region between the n = 0 LL bands to
the right of the Weyl points. Furthermore, by considering that
each n = 0 LL carries a Chern number 	C(kz ) = 1, we can
decide immediately the Chern numbers in the regions between
n = 0 LL bands and n = ±1 LL bands are C(kz ) = ±1, as
indicated in Fig. 3(b).

FIG. 3. Energy spectrum as a function of kz for (a) B = 0 and
(b) B > 0, when the Weyl nodes are separated in the x-y plane,
namely, kwz = 0. The Chern numbers C(kz ) are labeled in the figure.

The above topological discussion can be directly verified
by calculation of the Chern number carried by each LL. The
easiest way to calculate the Chern number is based on the
perturbation theory [16]. The presence of a weak electronic
field Ex along the x direction introduces a small perturbation
of potential energy to the system,

	V = −eExx. (7)

The eigenenergies of the LL states are corrected to Eχ

n,kz
−

eExx0 because 〈x〉 = x0. The energy correction gives rise to a
group velocity along the y direction,

vy ≡ 1

h̄

∂
(
Eχ

n,kz
− eExx0

)
∂ky

= eExl2
B sgn(B)

h̄
. (8)

It is interesting to notice that vy is simply a constant for every
LL state. Then the Chern number of each LL with degeneracy
1/2π l2

B is given by

	C(kz ) = 1

2π l2
B

vyh

eEx
= sgn(B), (9)

which is valid for any LL. For B > 0 and for the n = 0
LLs, the result 	C(kz ) = 1 is exactly consistent with the
above topological discussion. Moreover, using this result we
can further determine the Chern number in different regions,
as indicated in Figs. 2(b) and 2(d). For B < 0, one can
apply the same topological arguments to obtain the corre-
sponding phase diagram, and verify that each LL carries
a Chern number 	C(kz ) = −1, which is consistent with
Eq. (9).

V. QUANTIZED HALL CONDUCTIVITY

We consider in general that the system thickness Lz is
finite. If we employ a periodic boundary condition in the z
direction, the wave vector kz is discrete, given by kz = 2iπ/Lz

with i as an integer. When the electron Fermi energy is in an
energy gap, the total Hall conductivity will be quantized in
units of e2/h,

σxy = υ
e2

h
, (10)

where ν = ∑
kz

C(kz ) is the total Chern number of all the
occupied electron states below the Fermi energy.
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At B = 0, the total Chern number does not vanish if the z
component of the relative displacement is nonzero, i.e., kwz �=
0, as indicated by Eq. (2). We consider the simple case, where
EF = 0. The Chern number at B = 0 can be obtained as

ν = −2 Int

(
kwzLz

2π

)
− sgn(kwz ), (11)

where Int(· · · ) is to take the integer part of a real number.
A nonzero quantized Hall conductivity in the absence of an
applied magnetic field is well known as the quantum anoma-
lous Hall (QAH) effect. The nonzero Chern number at B = 0
is responsible for the emergence of chiral Fermi-arc surface
states connecting the projections on the surfaces in the x and y
directions. The QAH effect can also be understood in terms
of the surface states. However, we would like to point out
that the quantization of the Hall conductivity at B = 0 is
unstable in the presence of disorder, because the bulk of a
Weyl semimetal is metallic at B = 0. An electron transition
between the surface states and bulk states caused by disorder
scattering is unavoidable, which will destroy the quantization
of Hall conductivity.

For finite B, we focus on the energy region between
the n = −1 and n = 1 LLs, whose width is about 2Eg =
2
√

2h̄ωc with ωc = vF /lB as the cyclotron frequency. In the
energy region, the QHE is controlled only by the n = 0 LLs.
Outside the energy region, multiple LL bands are overlap-
ping, the energy gaps between neighboring LLs are usually
small, and hence the QHE is relatively unstable. For elec-
tron Fermi energy in the energy region between the n = −1
and n = 1 LLs, the total Hall conductivity in units of e2/h
can be calculated by summing C(kz ) over all allowable kz,
yielding

ν = −2 Int

(
kwzLz

2π
+ sgn(B)EF Lz

2π h̄vF

)
− sgn(kwz ). (12)

In the B → 0 limit, we notice that Eg → 0. We may set EF =
0, because Eq. (12) is valid only for EF between −Eg and Eg.
Then we can find that Eq. (12) is consistent with Eq. (11).

In Fig. 4(a), we show the phase diagram of the Hall conduc-
tivity on the Fermi energy versus system thickness Lz plane
for the case where the two Weyl nodes are aligned along the z
direction. We see that the Hall conductivity is nonsymmetric
about EF = 0, and displays only odd-integer Hall plateaus.
It is quantized at relative large integer numbers, essentially
because of the extra contribution from the QAH. In Fig. 4(b),
we plot the Hall conductivity as a function of EF /Eg for three
different values of system thickness. With increasing EF , the
Hall plateau increases incrementally by 2 each time, owing to
the valley degeneracy. With increasing the system thickness
Lz, more higher plateaus emerge within the energy region
from −Eg to Eg, but the plateau width decreases. This can be
understood as follows. The spacing between two nearby dis-
crete kz is 2π/Lz. Therefore, the energy spacing between two
neighboring n = 0 LLs is given by 	E = vz

F h̄(2π/Lz ), being
in inverse proportion to the thickness Lz, which determines the
width of the quantized Hall plateaus. In addition, the narrower
are the plateaus, the more plateaus will be seen in the energy
region from −Eg to Eg. The lowest and highest Hall plateaus
can be determined by substituting −Eg and Eg into Eq. (12).

FIG. 4. (a), (c) Phase diagram for QHE on the EF /Eg vs Lzkw

plane, and (b), (d) quantized Hall conductivity in units of e2/h as a
function of EF /Eg for some different values of sample thicknesses
Lz. In (a) and (b), the Weyl nodes are separated along the z direction.
In (c) and (d), the Weyl nodes are separated in the x-y plane. The
parameters are kw = π/10 nm−1, and B = (0, 0, 5T ).

In Fig. 4(c), we show the phase diagram of the Hall conduc-
tivity on the Fermi energy versus system thickness Lz plane
for the case where the two Weyl nodes are located in the
x-y plane. We see that the Hall conductivity is antisymmetric
about EF = 0. The Hall conductivity is an odd function of
EF , as shown in Fig. 4(d). From Figs. 4(a)–4(d), we see that
the Hall conductivity exhibits only odd-integer Hall plateaus.
Taking into account the valley degeneracy g = 2, we may
write

ν = g

(
n + 1

2

)
, (13)

with n as an integer, which is reminiscent of the half-integer
quantized QHE in graphene. Such an interesting quantization
rule is attributable to the π Berry phase shift at the Weyl
points, similar to that at the Dirac points in graphene.

The finite system thickness Lz is necessary. When the
thickness Lz is small, the QHE plateaus with finite width
will emerge. The plateau width of Hall conductivity will
be too narrow to be observed when the thickness Lz is
large.

VI. SUMMARY

In summary, we analytically investigate the 3D QHE in a
thin film of a Weyl semimetal. As a magnetic field is applied
perpendicular to the film, we solve the Landau levels and we
derive the Chern numbers for B �= 0 from the Chern numbers
for B = 0 through a topological analysis. A peculiar phase
diagram for the QHE is predicted in the Weyl semimetals. We
demonstrate how the relative alignment of the Weyl nodes and
the thickness of the film influence the quantum Hall plateaus.
We also derive a general formula of the Hall conductivity.
As proposed in Ref. [2], a two-Weyl-node Weyl semimetal
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can be realized in a multilayer heterostructure consisting of
alternating layers of a 3D topological insulator and an ordi-
nary insulator, and such a multilayer has been experimentally
realized [39]. Our methods and results are anticipated to be
verified in such a Weyl semimetal.
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