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Optically induced persistent current in carbon nanotubes
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We demonstrate theoretically that an off-resonant circularly polarized electromagnetic field can induce a
persistent current in carbon nanotubes, which corresponds to electron rotation about the nanotube axis. As a
consequence, the nanotubes acquire magnetic moment along the axis, which depends on their crystal structure
and can be detected in state-of-the-art measurements. This effect and related phenomena are analyzed within the
developed Floquet theory describing the electronic properties of the nanotubes irradiated by the field.
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I. INTRODUCTION

The optical control of electronic properties of solids by
an off-resonant electromagnetic field based on the Floquet
theory of periodically driven quantum systems (the Floquet
engineering) has become an emerging research area in recent
years [1,2]. Since the field frequency is far from characteristic
resonant frequencies of the electron system (the off-resonant
field), it cannot be absorbed by electrons in the solid and only
“dresses” them (the dressing field), modifying their physi-
cal properties. Such a dressing of electron systems by the
off-resonant field results in many fundamental effects in var-
ious nanostructures, including semiconductor quantum wells
[3–6], quantum rings [7–11], topological insulators [12–16],
graphene and related two-dimensional materials [17–30], etc.
In the present research, we developed a theory describing the
interaction between electrons in such actively studied nanos-
tructures as carbon nanotubes (CNTs) [31] and a circularly
polarized electromagnetic wave (the off-resonant dressing
field) propagating along the CNT axis. As a main result,
it is found that the field induces the ring electric current
associated with the ground electron state. Since the current-
carrying state is the ground state, the current flows without
dissipation (persistent current). This paper is dedicated to the
theory of this effect and is organized as follows. In Sec. II,
the model of electron-field interaction in CNTs is developed
for the quantized circularly polarized field. In Sec. III, this
model is detailed to describe the electron states in irradiated
armchair CNTs. In Sec. IV, an analysis of the field-modified
electron states and a discussion of the light-induced persistent
current in the CNTs are given. The last section contains the
conclusion.

II. MODEL

We will consider a single-wall CNT irradiated by a plane
off-resonant electromagnetic wave with clockwise circular
polarization, electric field amplitude E0, and frequency ω0
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(the dressing field), which propagates along the CNT axis
corresponding to the Cartesian coordinate z [see Fig. 1(a)]. In
the most general form, the Hamiltonian of an electron in the
irradiated CNT reads Ĥe = [p̂ − eA/c]2/2me + U (r), where
p̂ is the electron momentum operator, e is the electron charge,
me is the mass of a free electron, U (r) is the crystal periodical
potential of the CNT, r is the electron radius vector, and

A(z, t ) = (Ax, Ay, Az )

= ((cE0/ω0) cos ω0(t − z/c),

× (cE0/ω0) sin ω0(t − z/c), 0) (1)

is the vector potential of the wave. Assuming that the
wavelength 2πc/ω0 greatly exceeds the CNT length L2,
it is convenient to apply the unitary transformation Û =
exp(ieAr/ch̄) in order to simplify the following analysis.
Then the transformed Hamiltonian Ĥe reads

Ĥ′
e = Û†ĤeÛ − ih̄Û†∂t Û = Ĥ0 − eEr, (2)

where the term Ĥ0 = p̂2/2me + U (r) is the electron Hamil-
tonian of the CNT in the absence of the field (E0 = 0),
E = −∂t A/c is the electric field of the wave, and the last
term describes the electron-field interaction within the dipole
approximation.

Let us consider a CNT irradiated by the quantized field (1),
applying the approach [4,7,18–20] developed previously to
describe various nanostructures interacting with a quantized
electromagnetic field. Within the conventional quantum-field
theory, the classical field E should be replaced in the Hamilto-
nian (2) by the field operator, Ê = i

√
2π h̄ω0/V (e+â − e−â†),

where â and â† are the operators of photon annihilation and
creation, respectively, written in the Schrödinger representa-
tion (the representation of occupation numbers), e± = (ex ±
iey)/

√
2 are the polarization vectors, ex,y are the unit vectors

directed along the x, y axes of the chosen Cartesian system
[see Fig. 1(a)], and V is the quantization volume. Then the
total Hamiltonian of the interacting electron-photon system in
the CNT reads

Ĥ = h̄ω0â†â + Ĥ0 − ie
√

2π h̄ω0/V r(e+â − e−â†), (3)
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(a) (b)

FIG. 1. Sketch of the system under consideration. (a) The cross
section of the CNT (the yellow ring strip) with radius R irradiated
by a circularly polarized electromagnetic wave with electric field
amplitude E0, which propagates along the CNT axis corresponding to
the z coordinate of the Cartesian coordinate system x, y, z associated
with the CNT. The red line marks the irradiation-induced persistent
current J . (b) The graphene sheet as a basis of the (4,4) armchair
CNT with radius R = L1/2π and length L2. The blue and red circles
mark the carbon atoms from the A and B graphene sublattices, re-
spectively. The axes ξ1,2 mark the coordinate system associated with
the graphene sheet. The CNT is fabricated by the rolling up of the
sheet along the ξ1 axis.

where the first term is the field energy operator, the sec-
ond term is the electron energy operator, and the third
term describes the electron-field interaction within the dipole
approximation.

In the absence of the irradiation, the electron energy spec-
trum of the CNT ε

( j)
μ (k) and the corresponding electron wave

functions ψ
( j)
μ (k) satisfy the conventional Schrödinger equa-

tion, Ĥ0ψ
( j)
μ (k) = ε

( j)
μ (k)ψ ( j)

μ (k), where μ is the quantum
number labeling different electron subbands in the CNT, j =
c(v) is the index marking electron states in the conduction
(valence) band of the CNT, and k is the electron wave vector
along the CNT axis [31]. To describe the electron-field inter-
action, let us introduce the joint electron-photon space,∣∣ψ ( j)

μ (k), N
〉 = ∣∣ψ ( j)

μ (k)
〉 ⊗ |N〉, (4)

which corresponds to an electron being in the state with the
wave function ψ

( j)
μ (k) and the dressing field being in the state

with photon occupation number N = 1, 2, 3, . . . . The basic
states of this space, |ψ ( j)

μ (k), N〉, are eigenstates of the Hamil-
tonian of the noninteracting electron-photon system, and
therefore, they are orthonormal, 〈ψ ( j)

μ (k), N |ψ ( j′ )
μ′ (k′), N ′〉 =

δN,N ′δ j, j′δμ,μ′δk,k′ . As a consequence, one can write the total
Hamiltonian (3) as a matrix, Hnm, where the indices n, m label
different basic states of the joined electron-photon space (4).
To find the energy of the interacting electron-photon system
ε, one has to solve the secular equation with the matrix
Hamiltonian,

det||Hnm − εI|| = 0, (5)

where I is the unity matrix. Assuming the field frequency ω0

is far enough from the resonant frequencies corresponding
to allowed optical transitions in the CNT (the off-resonant
dressing field, which cannot be absorbed by electrons), the
eigenenergies of the electron-photon Hamiltonian (3) can be
written as a sum, ε = N0 h̄ω0 + ε̃

( j)
μ (k), where N0 is the photon

occupation number of the dressing field. Correspondingly, the
first term of the sum is the dressing field energy, whereas the

second term, ε̃
( j)
μ (k), is the CNT electron energy spectrum

modified by the field.
It should be noted that the energy spectrum ε̃

( j)
μ (k) can

be used to describe scattering-induced electron transitions
between different eigenstates of the Hamiltonian (3) in the
conventional way if the photon energy h̄ω0 greatly exceeds the
scattering-inducing broadening of the electron eigenenergies
h̄/τ , where τ is the mean free time of electrons restricted
by the scattering. Otherwise, the scattering processes cannot
be considered a perturbation and must be taken into account
within the Hamiltonian (3). Thus, the field frequency must
satisfy the condition ω0τ � 1, which is of general character
for various periodically driven condensed-matter structures
(see, e.g., Ref. [27] and references therein). For CNTs fab-
ricated using modern nanotechnologies, this condition can be
satisfied for the high field frequencies starting approximately
from the upper microwave range limit.

In the following, we will assume the field is classically in-
tensive (N0 � 1), and therefore, we can introduce the classical
field amplitude

E0 =
√

4πN0 h̄ω0/V . (6)

Then the matrix elements of the Hamiltonian (3) in the basis
(4) read 〈

ψ
( j′ )
μ′ (k′), N ′∣∣Ĥ∣∣ψ ( j)

μ (k), N
〉

= [
Nh̄ω0 + ε( j)

μ (k)
]
δk′,kδμ′,μδN ′,N

− [
D( j′ j)

μ′μ (k)E0
]
δμ′,μ±1δN ′,N∓1, (7)

where

D( j′ j)
μ′μ (k) = 〈

ψ
( j′ )
μ′ (k)

∣∣iDe±
/√

2
∣∣ψ ( j)

μ (k)
〉
δk′,k (8)

are the matrix elements of intersubband dipole transitions and
D = er is the dipole moment of electron.

It should be stressed that the Hamiltonian (3) describes the
closed system of electrons + quantized field. Since the energy
of any closed system is a conserved quantity, the Hamiltonian
(3) and its eigenstates are stationary. As a result, the sta-
tionary Schrödinger problem with the Hamiltonian (3) differs
mathematically from the conventional time-dependent Flo-
quet problem for the classical periodical field (1). However,
both descriptions of the field—classical and quantized—are
physically equivalent in the considered limiting case of the
strong field, N0 � 1. Therefore, the electron energy spectrum
ε̃

( j)
μ (k), which can be found from the secular equation (5) for

a strong quantized field with amplitude (6), exactly coincides
with the Floquet (quasi)energies, which can be found as a
solution of the conventional time-dependent Floquet problem
for the same classical field (1). Moreover, the electron-photon
eigenstates of the problem written in the basis (4) have the
same physical meaning as the periodically time dependent
Floquet states originating from the classical field (1). As a
consequence, the stationary Schrödinger problem with the
Hamiltonian (3) can be treated as the Floquet problem for
the quantized field (1). Regarding benefits arising from the
stationary form of the Hamiltonian (3), the well-developed
stationary perturbation theory can be applied directly to find
its eigenstates and eigenenergies (see Sec. IV).
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III. ARMCHAIR CARBON NANOTUBES IN THE FIELD

For definiteness, let us apply the model developed above to
the single-wall (n, n) CNT, where (n, n) are the coordinates of
the chiral vector defining the CNT crystal structure [31]. The
(n, n) CNT with radius R = L1/2π = √

3na/2π and length
L2 can be fabricated by the rolling up of the graphene sheet
pictured in Fig. 1(b) along the ξ1 axis, where L1,2 are the
dimensions of the graphene sheet and a ≈ 2.46 Å is the lattice
constant of graphene. Since carbon atoms in the graphene
sheet are positioned along the roll-up axis ξ1 in the armchair-
like order, such CNTs are also known as armchair nanotubes.

Within the tight-binding approximation [31], electronic
states of graphene are described by the electron energy
spectrum

ε
( j)
G (k1, k2)

= ±t
√

1 + 4 cos(
√

3k1a/2) cos(k2a/2) + 4 cos2(k2a/2)

(9)

and the electron wave function

ψ
( j)
G (k1, k2) = 1√

2

[
±ψA(k) + ψB(k)

f ∗(k)

| f (k)|
]
, (10)

where f (k) = eik1a/
√

3 + 2e−ik1a/2
√

3 cos(k2a/2),

ψA,B(k) =
√

2

Na

∑
RA,B

eikRA,BφA,B(r − RA,B) (11)

are the Bloch functions for the A, B sublattices of graphene
marked by the blue and red circles in Fig. 1(b), φA,B(r) are
the atomic wave functions of the carbon atoms from these
two sublattices, RA,B are the radius vectors of the atoms, Na

is the total number of carbon atoms in the graphene sheet,
k = (k1, k2) is the electron wave vector written in the ξ1,2

axes marked in Fig. 1(b), t ≈ 3.033 eV is the energy of the
interatomic electron interaction in graphene, and the two band
indices j = c, v correspond to the + and − signs, respec-
tively. Neglecting curvature of the CNT, the rolling up of the
graphene sheet pictured in Fig. 1(b) into the armchair CNT
results only in the quantization of the electron wave vector
along the roll-up axis ξ1. As a consequence, the quantized
component of the wave vector is k1 = 2πμ/

√
3an, with μ =

0, 1, 2, . . . , 2n − 1, whereas the electron wave vector along
the CNT axis ξ2 remains the same, k2 = k. As a result, Eqs. (9)
and (10) yield the CNT energy spectrum [31]

ε( j)
μ (k) = ε

( j)
G

(
2πμ√

3an
, k

)

= ±t
√

1 + 4 cos (πμ/n) cos (ka/2) + 4 cos2 (ka/2)

(12)

and the corresponding wave function

ψ ( j)
μ (k) = ψ

( j)
G

(
2πμ√

3an
, k

)
. (13)

It should be noted that the CNT electron states (12) and (13)
with μ and μ ± 2n are physically equivalent since ε

( j)
μ±2n(k) =

ε
( j)
μ (k) and ψ

( j)
μ±2n(k) = ψ

( j)
μ (k). Substituting Eqs. (12) and

(13) into Eq. (8), the matrix elements of the intersubband
dipole transitions can be written within the tight-binding
approach [32] as

D(cv)
μ′μ (k)

= ∓ 3neh̄VAB

8π
[
ε

(c)
μ′ (k) − ε

(v)
μ (k)

]
×

[
A±(μ, k) f ∗(μ, k)

| f (μ, k)| + B±(μ, k) f (μ′, k)

| f (μ′, k)|
]
δμ′,μ±1,

(14)

D(cc)
μ′μ(k)

= ∓ 3neh̄VAB

8π
[
ε

(c)
μ′ (k) − ε

(c)
μ (k)

]
×

[
A±(μ, k) f ∗(μ, k)

| f (μ, k)| − B±(μ, k) f (μ′, k)

| f (μ′, k)|
]
δμ′,μ±1,

(15)

D(vv)
μ′μ (k)

= ± 3neh̄VAB

8π
[
ε

(v)
μ′ (k) − ε

(v)
μ (k)

]
×

[
A±(μ, k) f ∗(μ, k)

| f (μ, k)| − B±(μ, k) f (μ′, k)

| f (μ′, k)|
]
δμ′,μ±1,

(16)

where

f (μ, k) = e2π iμ/3n + 2e−π iμ/3n cos

(
ka

2

)
,

A±(μ, k) = e2π iμ/3n(1 − e±2π i/3n)

+ 2e−π iμ/3n cos

(
ka

2

)
(1 − e∓π i/3n),

B±(μ, k) = e−2π iμ/3n(1 − e±2π i/3n)

+ 2eπ iμ/3n cos

(
ka

2

)
(e±π i/n − e±2π i/3n),

and VAB = 〈φA(r)|v̂1|φB(r − b)〉 is the matrix element of the
velocity operator along the ξ1 axis of graphene v̂1 for the
electron wave functions of the two carbon atoms from the A, B
sublattices, which are shifted with respect to each other by
the vector b = (a/

√
3, 0) [see the two atoms marked A and

B in Fig. 1(b)]. To write this matrix element explicitly, one
can apply the equality following directly from the graphene
Hamiltonian [33,34], 〈ψA(kGD)|v̂1|ψB(kGD)〉 = ivF , where
kGD = (0,±4π/3a) is the wave vector of the Dirac points of
graphene and vF = √

3ta/2h̄ is the Fermi velocity of elec-
trons in graphene. Substituting the Bloch functions (11) into
this equality, it yields

VAB = 〈φA(r)|v̂1|φB(r − b)〉 = i2vF /3. (17)

Using Eqs. (10), (11), (13), and (17), one can calculate the av-
erage angular momentum corresponding to the electron states
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(a) (b)

FIG. 2. (a) The electron energy spectrum of the (4,4) armchair
CNT. The Fermi energy of the electron system is εF = 0, the thresh-
old of interband optical absorption is �, and the Dirac point wave
vector kD = 2π/3a corresponds to the band edge. (b) The electron
energy spectrum of the CNT near the band edge in the absence of the
dressing field (dashed lines) and in the presence of the dressing field
(solid lines), where εg is the field-induced band gap.

(13) with the various indices j and μ,

L( j)
μ = 〈

ψ ( j)
μ (k)

∣∣L̂∣∣ψ ( j)
μ (k)

〉
= meR

〈
ψ

( j)
G

(
2πμ√

3an
, k

)∣∣∣∣ev̂1

∣∣∣∣ψ ( j)
G

(
2πμ√

3an
, k

)〉
(18)

= ∓ 2meRvF sin(πμ/n) cos(ka/2)√
1 + 4 cos(πμ/n) cos(ka/2) + 4 cos2(ka/2)

,

(19)

where L̂ = meRv̂1 is the operator of the electron angular mo-
mentum along the CNT axis and the band indices j = c, v
correspond to the − and + signs, respectively. In turn, the
average ring electric current associated with the angular mo-
mentum (18) can be written as

J ( j)
μ (k)

= 〈
ψ ( j)

μ (k)
∣∣Ĵ∣∣ψ ( j)

μ (k)
〉

=
〈
ψ

( j)
G

( 2πμ√
3an

, k
)∣∣ev̂1

∣∣ψ ( j)
G

( 2πμ√
3an

, k
)〉

2πR

= ∓evF

πR

sin(πμ/n) cos(ka/2)√
1 + 4 cos(πμ/n) cos(ka/2) + 4 cos2(ka/2)

,

(20)

where Ĵ = ev̂1/2πR is the operator of the current. Corre-
spondingly, the magnetic moment along the CNT axis arising
from the current (20) reads M ( j)

μ = J ( j)
μ (k)πR2/c.

It follows from Eq. (12) that the CNT electron energy
spectrum consists of the two nondegenerate subbands with
μ = 0, n corresponding to the zero angular momentum (18)
and the set of doubly degenerate subbands with μ = n ± ν

and ν = 1, 2, . . . , n − 1, where the + and − signs correspond
to electron subbands with mutually opposite orientations of
the angular momentum (18). Thus, the double degeneracy of
the subbands should be treated as a particular case of the
Kramers degeneracy. The spectrum (12) is plotted for the (4,4)
armchair CNT in Fig. 2(a), where the thick violet lines mark
the doubly degenerate subbands, and the thin lines (green and
brown) mark the nondegenerate ones. The thin green lines
correspond to the valence and conduction band edge subbands

(μ = n) which touch each other at the Dirac point with wave
vector kD = ±2π/3a. Thus, the electron energy structure of
the armchair CNT is of the metal type with the linear electron
dispersion near the Dirac point. It follows from Eqs. (14)–
(17) that the dipole matrix elements are zero for the optical
transitions between the valence and conduction subbands with
μ = n. This means that the selection rules forbid the optical
transitions between the two edge subbands with the same
angular momentum (18), and therefore, the threshold of the
optical absorption by valence electrons marked in Fig. 1(a) is

� = ε
(c)
n+1(kD) − ε(v)

n (kD) = 2t sin(π/2n). (21)

Thus, the field (1) cannot be absorbed under the condition

h̄ω0 < �. (22)

In the following, we will assume condition (22) is satisfied,
which allows us to consider the field (1) an off-resonant dress-
ing field. In order to apply the dipole approximation to the
electron interaction with the field (1) and consider the electron
wave vector along the CNT axis k a continuous quantity, the
CNT length L2 will be assumed to satisfy the inequality

a � L2 � 2πc/ω0. (23)

Substituting the CNT energy spectrum (12) and the dipole
matrix elements (14)–(17) into the Hamiltonian (7) and solv-
ing the secular equation (5) under conditions (22) and (23),
one can find the sought electron energy spectrum of the CNT
ε̃

( j)
μ (k) modified by the circularly polarized electromagnetic

field (1).

IV. RESULTS AND DISCUSSION

The electron energy spectrum (12) describing the (n, n)
CNT with n = 4 in the absence of the field is plotted in
Fig. 2(a). It follows from the plots that the conduction band
edge of the CNT and its valence band edge correspond to the
two electron states which are degenerate with the same zero
energy at the Dirac point, k = kD. Certainly, the spectrum (12)
neglects the CNT curvature effects; that is, the CNT radius
R = √

3na/2π is assumed to exceed greatly the lattice con-
stant a, and correspondingly, n � 1. However, the structure of
the electron energy spectrum (12) near the band edge, which
is under consideration in the following, is the same for all
armchair CNTs. This allows us to use the spectrum pictured
in Fig. 2(a) as an appropriate illustration of the band edge for
any index n.

The band edge energies modified by the dressing field (1)
can be found from the secular equation (5) within the conven-
tional perturbation theory, considering the off-diagonal dipole
matrix elements of the Hamiltonian (7) as a perturbation. Then
the electron energy spectrum of the irradiated CNT near the
band edge has the gapped structure pictured in Fig. 2(b) with
the band gap εg = ε̃(c)

n (kD) − ε̃(v)
n (kD), where

ε̃( j)
n (kD) = ε( j)

n (kD)

+
∑

j′= c, v
μ′= n ± 1

E2
0

∣∣D( j′ j)
μ′n (kD)

∣∣2

ε
( j)
n (kD) − ε

( j′ )
μ′ (kD) + (μ′ − n)h̄ω0

(24)
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are the band edge energies written within the second order
of the perturbation theory (the quadratic approximation in the
field amplitude E0). Within the same perturbation theory, the
electron-photon eigenstates corresponding to the band edges
(24) can be written as∣∣ψ̃ ( j)

n (kD)
〉

= ∣∣ψ ( j)
n (kD), N0

〉
+

∑
j′= c, v

μ′= n ± 1

E0D( j′ j)
μ′n (kD)

∣∣ψ ( j′ )
μ′ (kD), N0 + n − μ′〉

ε
( j)
n (kD) − ε

( j′ )
μ′ (kD) + (μ′ − n)h̄ω0

.

(25)

Substituting the unperturbed energy spectrum (12) and the
dipole matrix elements (14)–(16) into the band edge energies
(24), the optically induced gap reads

εg =
(eRE0

2

)2[ 1

� − h̄ω0
+ 1

� + h̄ω0

]
sin

( π

2n

)
. (26)

Thus, the circularly polarized irradiation turns the metallic
CNT into an insulator with a band gap (26). It should be noted
that a similar metal-insulator transition induced by a circularly
polarized field takes place also in graphene [18]. However,
the field-induced band gap in graphene is linear in the electric
field amplitude E0, whereas the gap (26) in CNTs depends
on the amplitude quadratically. It should also be noted that
Eq. (26) for ω0 = 0 describes the band gap induced by a
stationary electric field E0 directed perpendicular to the CNT
axis.

Electron motion in a CNT can be considered a superposi-
tion of the translational motion of an electron along the CNT
axis with the wave vector k and its rotation about this axis with
the angular momentum (18). Using Eqs. (24), (25), and (9)–
(17), we arrive at the ring electrical current J corresponding
to this rotation and associated with the band edge states (24)
and (25),

J = 〈
ψ̃ ( j)

n (kD)
∣∣Ĵ∣∣ψ̃ ( j)

n (kD)
〉 = J ( j)

n (kD)

+
∑

j′= c, v
μ′= n ± 1

E2
0

∣∣D( j′ j)
μ′n (kD)

∣∣2
J ( j′ )
μ′ (kD)[

ε
( j)
n (kD) − ε

( j′ )
μ′ (kD) + (μ′ − n)h̄ω0

]2 .

(27)

In the absence of irradiation, the ring current (20) correspond-
ing to the band edge is zero, J ( j)

n (kD) = 0. Therefore, the
irradiation-induced contribution of the currents arising from
the states μ = n ± 1, which is described by the second line
of Eq. (27), is crucial for the discussed effect. It should be
noted that both the angular momenta (18) and the currents
(20) corresponding to the two states μ = n ± 1 are equal
and oppositely directed, L( j)

n+1(k) = −L( j)
n−1(k) and J ( j)

n+1(k) =
−J ( j)

n−1(k). However, the overall contribution of these states to
the edge state current (27) is nonzero since the interaction
of the circularly polarized field (1) with them is different,
D( j′ j)

n+1,n(kD) �= D( j′ j)
n−1,n(kD). As a consequence, the total current

(27) differs from zero and reads

J =
(eRE0

2

)2 evF

2πR
cos

( π

2n

)[
1

(� − h̄ω0)2
− 1

(� + h̄ω0)2

]
.

(28)

Since the current (28) does not depend on the band index j, it
is the same for both the conduction and valence band edges.
It should also be noted that the ring current (28) was assumed
to be produced by the field (1) with clockwise circular po-
larization. In the case of counterclockwise polarization, the
current (28) pictured schematically in Fig. 1(a) changes to the
opposite direction.

In an intrinsic (undoped) armchair CNT, electrons fill the
valence band, whereas the conduction band is empty. Cer-
tainly, the filled valence band cannot produce any current. Let
us place an extra electron in the conduction band edge state
ε̃(c)

n (kD), which is the ground state for conduction electrons.
Since the CNT valence band is filled by other electrons, the
Pauli principle forbids transitions of the electron to lower-
energy states there. As a consequence, the ring current (28)
produced by the electron is dissipationless (persistent) since
there is no way to dissipate it with decreasing electron energy.
It should be noted also that the dissipationless nature of the
current (28) follows directly from condition (22), which for-
bids the field absorption by electrons. Under this condition,
there is no energy transfer from the field to electrons. As a
consequence, the energy conservation law forbids the Joule
heating associated with any current induced by the field (1)
under condition (22). If the CNT is filled by ne conduction
electrons (arising, e.g., from the gate voltage or doping), the
total persistent current produced by them for zero temperature
and Fermi energy εF � � is just the current (28) multiplied
by ne. As a consequence, the irradiation results in the CNT
magnetization with the magnetic moment directed along the
CNT axis,

Mz = neJπR2

c
. (29)

It follows from the axial symmetry of the CNT that the mag-
netic moment along the CNT axis (29) is just the product of
the considered persistent current and the cross-section area of
the CNT. It should also be noted that the Coulomb interaction
can modify the persistent current. Therefore, the application
of Eq. (29) to the many-electron case should be considered a
first approximation.

It follows from Eqs. (26) and (28) that the field-induced
band gap εg and the persistent current J increase with increas-
ing the CNT radius R = √

3na/2π . Therefore, large-radius
CNTs should be used in experiments. Since modern nan-
otechnology allows us to fabricate single-wall CNTs with a
maximal radius of around 5 nm (see, e.g., Ref. [35]), the
dependence of the band gap (26) and the current (28) on
the irradiation is plotted in Fig. 3 for the (n, n) CNT with
n = 75. It follows from the plots that the infrared irradiation
of intensity ∼ kW/cm2 induces a gap εg ∼ μeV and a current
J of submicroampere scale. Although such a gap looks too
small to detect easily, the single-electron current plotted in
Fig. 3(b) is macroscopically strong due to the giant Fermi
velocity of graphene, vF ≈ 108 cm/s, taken into account by
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FIG. 3. The dependences of the optically induced band gap εg

and persistent current J on the field amplitude E0 and the photon
energy h̄ω0 for the (n, n) armchair CNT with n = 75 (the CNT radius
is R ≈ 5.1 nm).

Eq. (28). Therefore, the corresponding magnetization (29) is
also strong and can be detected in the conventional magnetic
measurements based, e.g., on superconducting quantum in-
terference devices or torque magnetometry [36]. It should be
noted that the electron-phonon interaction can destroy the dis-
cussed persistent current. Therefore, the measurements should
be performed at low temperatures when the electron-photon
interaction is suppressed.

It follows from the present analysis that the current (28) has
the same physical nature as a persistent current in quantum
rings induced by a circularly polarized field [7,8]. Indeed,
both currents originate from the different interactions between
a circularly polarized field and electron states with mutually
opposite orientations of the angular momentum along the field
axis. Such an asymmetry of electron-field interaction results
in the optical analog of the Aharonov-Bohm effect in various
ring-shaped mesoscopic systems [9,10], which manifests it-
self, particularly, in the discussed persistent currents. It should
be noted that the previous studies of ring-shaped structures
cited above were based on the simplest model of parabolic
dispersion of charge carriers. In contrast, the persistent current
(28) and related phenomena depend strongly on the com-
plicated band structure of CNTs, which is accurately taken
into account within the developed theory. It should also be
stressed that the persistent current (28) differs crucially from
the usual photovoltaic currents. Indeed, any photovoltaic ef-
fect appears due to the light absorption by electrons, whereas
the considered field (1) cannot be absorbed under condition
(22). For the same reason, the optically induced magnetiza-
tion Mz associated with the ring current (28) differs from the

conventional inverse Faraday effect, which also needs light
absorption to transfer the angular momentum from the field to
electrons.

In contrast to the conventional Aharonov-Bohm effect
[37,38] and the related persistent currents induced by a
magnetic flux in various ring-shaped structures [39–42], the
magnetic flux produced by the field (1) through the CNT cross
section is zero. Therefore, the microscopic mechanisms of the
persistent current (28) and the persistent current induced by a
magnetic field differ from each other. However, there is a close
analogy between these phenomena. Physically, the analogy is
based on the broken time-reversal symmetry of the system,
which takes place due to a circularly polarized electromag-
netic field as well as a stationary magnetic one. Indeed, a
circularly polarized field is noninvariant with respect to the
time reversal since it turns clockwise polarized photons into
counterclockwise polarized ones and vice versa. This is why a
circularly polarized field acts in CNTs similarly to a stationary
magnetic one in the broad range of various phenomena. In par-
ticular, the optically induced band gap in the Dirac point (26)
can be opened by a magnetic field directed along the CNT axis
as well [43,44]. Next, it follows from analysis of the secular
equation (5) that the circularly polarized field (1) also results
in the splitting of the doubly degenerate subbands [marked by
the thick violet lines in Fig. 2(a)], which is quadratic in the
field amplitude E0. Since the ring currents (20) corresponding
to these subbands are mutually opposite, the subbands are
degenerate with respect to the mutually opposite orientations
of electron angular momentum (19). Therefore, such optically
induced splitting of them should be treated as an optical ana-
log of the Zeeman effect.

Since the irradiation-induced effects discussed above fol-
low directly from the broken time-reversal symmetry of the
electron-field system, they take place in CNTs with crystal
structure as well. However, CNTs with the crystal structure
devoid of an inversion center (chiral CNTs) [31] should be
noted specially. It follows from the well-known Kramers the-
orem that the symmetric dependence of the electron energy
on the electron wave vector in solids, ε(k) = ε(−k), is the
direct consequence of one of two symmetries: the inver-
sion symmetry of the crystal structure and the time-reversal
symmetry (see, e.g., Ref. [45]). If both symmetries are bro-
ken, the asymmetrical energy spectrum of electrons, ε(k) �=
ε(−k), appears. Particularly, such an asymmetrical spectrum
takes place in various nanostructures without an inversion
center exposed to a stationary magnetic field, including asym-
metric semiconductor quantum wells in the presence of an
in-plane magnetic field [46], magnetic edge states in two-
dimensional electron systems [47], and chiral CNTs subjected
to a magnetic field directed along the CNT axis [48–50].
As a consequence of the asymmetric electron dispersion, the
unusual photovoltaic effects [51,52] and electron-phonon ef-
fects [46,47,49] induced by a magnetic field appear. Since
a circularly polarized electromagnetic field acts similarly to
a stationary magnetic one, the asymmetry of the electron
spectrum is expected in irradiated chiral CNTs as well. Mi-
croscopically, this follows from the fact that the conserved
physical quantity in CNTs with a chiral (helicoidal) crystal
structure is the combination of the electron angular momen-
tum along the CNT axis and the electron momentum k along
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the same axis [53,54]. Since the circularly polarized field (1)
splits the electron states with mutually opposite orientations
of the electron angular momentum, this splitting will lead
to the asymmetrical electron dispersion along the CNT axis,
ε(k) �= ε(−k). As a consequence, the above-mentioned ef-
fects induced by a magnetic field in nanostructures without
an inversion center are expected in the chiral CNTs irradiated
by a circularly polarized field as well. However, a detailed
analysis of these effects goes beyond the scope of the present
paper and will be done elsewhere.

V. CONCLUSION

A Floquet theory of carbon nanotubes driven by an off-
resonant circularly polarized electromagnetic wave propagat-
ing along the CNT axis was developed. It was demonstrated
that the wave acts similarly to a stationary magnetic field
directed along the same axis. In particular, the wave opens
the gap between the conduction and valence bands of arm-
chair CNTs (the optical analog of a metal-insulator transition
induced by a magnetic field) and splits the degenerate CNT

subbands corresponding to mutually opposite orientations of
the angular momentum along the CNT axis (the optical analog
of the Zeeman effect). As a main result, it was shown that
the wave induces the band edge state associated with the ring
electrical current. Since the band edge state is the ground state
for conduction electrons, the current flows without dissipation
and is persistent (the optical analog of the Aharonov-Bohm
effect in mesoscopic rings). It should be stressed that the
single-electron persistent current is macroscopically strong
due to the giant Fermi velocity in graphene-related materials.
Therefore, the corresponding magnetization of the CNT is
also strong and can be detected in conventional magnetic
measurements based, e.g., on superconducting quantum inter-
ference devices or torque magnetometry.
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