PHYSICAL REVIEW B 103, 245429 (2021)

Quasiparticle states for integer- and fractional-charged electron wave packets
X. K. Yue and Y. Yin®"
Department of Physics, Sichuan University, Chengdu, Sichuan 610065, China

® (Received 30 June 2020; revised 9 June 2021; accepted 9 June 2021; published 22 June 2021)

It is well known that Lorentzian voltage pulses with integer quantum flux can inject integer-charged wave
packets without electron-hole pairs. The wave packets are composed of solitonlike quasiparticles on top of the
Fermi sea, which have been named “levitons.” However, it is not clear what kind of charged quasiparticles can be
injected by Lorentzian pulses with fractional quantum flux. To answer this question, we study the wave packets
injected by a train of Lorentzian pulses with repetition period 7. We introduce a set of one-body wave functions,
within which the quantum state of the charged quasiparticles can be described for pulses with arbitrary quantum
flux. We find that in the general case, the injection of the charged quasiparticles is characterized by two different
timescales: one is decided by the repetition period 7 of the pulse train, while the other one is T rescaled by
a factor related to the flux of the pulses. For pulses with integer quantum flux, the two timescales match each
other. In this case, the charged quasiparticles are levitons, which are injected with a single period 7. For pulses
with fractional quantum flux, the two timescales mismatch. The charged quasiparticles can then be injected
in a multiperiodic way. This makes each quasiparticle carry only a fractional electric charge into the quantum
conductor within a single period T. These quasiparticles can have pronounced impact on the charge injection. In
particular, they can lead to the cycle-missing event, in which the voltage pulse fails to inject an electron within
a single period T. The cycle-missing event can be seen intuitively from the waiting time distribution between
electrons above the Fermi sea, which exhibits a series of peaks at multiples of the period 7. By using the wave
functions of the charged quasiparticles, we elucidate in detail how a leviton evolves as the flux of the pulse

changes. In the meantime, we also clarify how additional e/ pairs can be excited.
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I. INTRODUCTION

In the past decade, much effort has been devoted to the on-
demand single-electron source, within which electron wave
packets carrying single or few electric charges can be injected
coherently into a quantum conductor [1-20]. In a simple
way, such injection can be realized by applying a nanosecond
pulse on the Ohmic contact of the conductor, as illustrated in
Fig. 1. The injected charges Q of the wave packet are decided
by the flux ¢ of the pulse, while the detailed quantum state of
the wave packet can be controlled via fine tuning the profile of
the pulse. This offers a simple but feasible approach to archive
the time-resolved quantum control of propagating electron
wave packet in solid-state circuits [21-34].

Generally speaking, the wave packet is composed of
charged quasiparticles in the Fermi sea (|F)) of the conductor,
which are usually accompanied by a neutral cloud of electron-
hole (eh) pairs [35,36]. Remarkably, it is possible to inject
a “clean” wave packet without eh pairs, which can be done
by tuning the pulse to be a Lorentzian with integer quantum
flux [3,37]. In doing so, one obtains solitonlike quasiparticles
propagating on top of the Fermi sea, which have been named
“levitons” [2,8]. Each leviton carries a unit electric charge
and has a well-defined wave function. By using a train of

Lorentzian pulses, a sequence of levitons can be injected into
a quantum conductor. The corresponding wave functions can
be obtained via quantum state tomography [8,34,38—40]. This
makes levitons promising candidates for flying qubits in solid-
state circuits [41-45].

By using a Lorentzian pulse with fractional quantum flux,
one can inject a wave packet carrying fractional charges,
which has a quite different structure. On one hand, it contains
a large amount of eh pairs. These ek pairs can lead to a strong
fluctuations of the injected charges, which is closely related to
the dynamical orthogonality catastrophe [46,47]. On the other
hand, it can sustain single-particle excitations, which behave
like quasiparticles carrying effectively fractional charges. The
structure of the wave packet has been demonstrated for
the Lorentzian pulse with a half-quantum flux. In this case,
the quantum state of the wave packet can be decomposed
into two mixed states: one represents the neutral cloud of eh
pairs, while the other one can be regarded as a zero-energy
quasiparticle carrying an effectively e/2 charge [48]. This
makes the wave packet show distinctly different features from
the wave packet built from levitons [27,49,50].

Intuitively, one expects that the fractional-charged single-
particle excitations can be injected in a similar way as levitons,
providing an alternative approach to realize flying qubits.
However, the nature of these single-particle excitations has
not been fully understood. In particular, it is not clear how a
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FIG. 1. (a) Schematic of the on-demand electron injection via the
voltage pulse V(). By applying V (¢) on the contact of the quantum
conductor, electron (hole) or ek pairs from the reservoir (region I) can
be injected into the quantum conductor (region III). The voltage drop
is assumed to occur across a short interval at the interface (region II).
(b) Schematics of the applied voltage pulses, which form a pulse
train with repetition period 7. Each pulse can be characterized by
half-width at half-maximum W and Faraday flux ¢.

one needs to describe the quantum states for both integer- and
fractional-charged wave packets in a unified manner, which
has not been given yet.

In this paper, we attack this problem by examining the
case when a Lorentzian pulse train with repetition period T
is applied on the Ohmic contact, as illustrated in Fig. 1(b).
In this case, the charge Q injected within a single period T
can be solely decided by the flux ¢ of the Lorentzian pulse as
QO = ep. We show that the injected charges are carried by a
train of of wave packets, whose quantum state can be given as

Wean) =[] 190, o))

1=0,%+1,%2,...

with |¥;) representing the quantum state of the /th wave
packet. Each wave packet is composed of charged quasipar-
ticles and neutral eh pairs, which can be described by a set
of one-body wave functions y;(¢), with & = c for the quasi-
particles and « = e/h for the electron and hole component of
the eh pairs. This allows one to introduce the corresponding
creation operators

+o00
Cl, = [ dt g )a' (t),

o0

+o00
B;) = /_ dt Y, (0)a' (), 2)

o0

¥ +00
B = [ arvbwae
with a(t) [a'(¢)] being the electron annihilation (creation)
operator in the time domain. In doing so, the quantum
state of the /th wave packet can be described by the Slater
determinant as

W) = [Hc;!,] [TIVT=pc+ivee(B2) (BL) TF), G)

T/T

FIG. 2. The waiting time distribution W (7) between electrons
above the Fermi sea (main panel) and the corresponding wave func-
tion v, (t) (inset), corresponding to the pulse width W/T = 0.1. The
green dashed curve in the inset (a) represent the wave functions of
levitons, corresponding to Q/e = 1. The red solid curves in the inset
(b) represent the wave functions of the charged quasiparticles, corre-
sponding to Q/e = % Note that there are two types of quasiparticles
here, which are represented by the thick and thin curves.

with p; representing the excitation probabilities of the eh
pairs. Both the excitation probabilities p; and the one-body
wave functions v (t) can be extracted from the time-
dependent scattering matrix, providing a general way to study
the quantum state of both the integer- and fractional-charged
wave packets.

As the charges Q are injected with the period 7', one may
expect that the charged quasiparticles are also injected with
the same period. Indeed, this picture holds when Q/e takes
integer values. This is illustrated in the inset (a) of Fig. 2,
corresponding to Q/e = 1. In this case, all the one-body
wave functions of the charged quasiparticles exhibit the same
profiles, which are separated from each other by the time
interval 7. They essentially correspond to a periodic train of
levitons. The structure of the leviton train can be understood
intuitively from the corresponding waiting time distribution
W () (WTD) [51], which is characterized by a strong peak
around T = T (see the green dashed curve in the main panel
of Fig. 2). This indicates that the voltage pulse tends to inject
exactly one electron per period into the quantum conductor.

In contrast, the above picture is inapplicable when Q/e
takes fractional values. In this case, the injection of the
charged quasiparticles is essentially characterized by two dif-
ferent timescales: one is decided by the repetition period T,
while the other one is T rescaled by a factor related to Q/e.
Due to the mismatch between these two timescales, the charge
quasiparticles are injected in a multiperiodic way. This makes
the corresponding wave functions exhibit different profiles,
which are injected with an extended period longer than 7.
This is illustrated in the inset (b) of Fig. 2, corresponding to
Qle = % One can see that the wave functions can exhibit two
types of profiles, which are plotted with thick and thin curves.
They are separated from each other by the time interval 37 /2.
On average, each quasiparticle can carry only 2e/3 charge
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into the quantum conductor within a single period T. This
makes them behave effectively like quasiparticles carrying
fractional charges. These quasiparticles can have pronounced
impact on the charge injection. In particular, they lead to the
cycle-missing event, in which the voltage pulse can fail to
inject an electron within a single period 7. Such event can
be seen from the corresponding WTD W (7), which exhibits a
series of peaks at multiples of the period T (see the red solid
curve in Fig. 2).

The wave function v, (t) can provide a unified description
of the charged quasiparticles, which is applicable for both the
integer- and fractional-charged wave packets. This allows us
to elucidate in detail how a leviton evolves as the flux ¢ of the
pulse changes. In the meantime, our approach can also provide
the information of the ek pairs. This allows us to clarify how
additional eh pairs can be excited during the evolution of the
levitons.

The paper is organized as follows: In Sec. II, we present
the model of the system and introduce a general expression for
the quantum state of the wave packets. We discuss the typical
behaviors of the wave functions of quasiparticles in Secs. III
and IV. The corresponding waiting time distribution is also
discussed in these two sections. The evolution of levitons and
eh pairs is discussed in Secs. V and VI, respectively. We
summarize our findings in Sec. VII.

II. BLOCH-MESSIAH REDUCTION IN THE FRAMEWORK
OF SCATTERING MATRIX FORMALISM

The electron source can be modeled as a single-mode
quantum conductor, as illustrated in Fig. 1(a). We choose the
driving voltage V (¢) of the form

Z 2(p—W )

e
=V(t) = . 5
1=0,+1,42,... W2+ (t —IT)

h

which corresponds to a periodic train of Lorentzian pulses
with width W [see Fig. 1(b)]. The voltage drop V(¢) be-
tween the contact and the conductor is assumed to occur
across a short interval, so that the corresponding dwell time
Tp satisfies kgT, < /T < /W < h/tp < Ep, with Ef rep-
resenting the Fermi energy and 7, representing the electron
temperature. In this paper, we choose Er = 0 and concentrate
on the zero-temperature limit.

J

The scattering matrix of the system can be solely deter-
mined by the driving voltage V (¢) as

St 1) = 8(t — 1) exp [—i%/ dr V(r)]. (5)
0

Given the scattering matrix, the electrons in the contact and
the conductor can be related via the equation

b(r) = / dr's@, tHat"), (6)

where a(t) and l§(t) represent the electron annihilation op-
erators in the Ohmic contact and the quantum conductor,
respectively.

In this setup, the injected current can be simply given
as I(t) = (¢*/h)V (t). The charge Q injected within a single
period is determined solely by the flux ¢ as

+T/2
Q=/ dtl(t) = ep. @)
-T/2
For simplicity, here we assume Q/e > 0 so that the wave
packets carry negative charges.

In the absence of interactions, the quantum state of the in-
jected wave packets can be obtained from the Bloch-Messiah
reduction, which extracts the many-body quantum state from
the decomposition of the excess one-body correlation function
G, (t,1") [38,52,53]. In the zero-temperature limit, G, (¢, t")
can be given as

iGu(t,1") = (FI[b' (¢ )b(t) — &' (ta(t)]|F), ®)

with |F) representing the Fermi sea. To find the many-body
state corresponding to G, (¢, t'), the Bloch-Messiah reduction
essentially seeks out the quantum state |W), which satisfies

(W|a’ (t")a(t)|¥) = (F|b"(¢")b(1)|F). )

This can be done by a proper decomposition of G, (z,1")
[54,55]. Here we only present the outline and leave the details
to Appendix A.

A. Decomposition in Floquet space

For the system under periodic driving, it is straightfor-
ward to perform such decomposition in Floquet space [56,57],
which can be generally written as

Gt 1) = ¢ do =it oo W (. IO ¢ do —iot=1)[ € (0. t " t
iGer(t, 1)) =) e ug (o, O (0. )]+ Qe [ (w, 1), ui(w,1)]
k k

pr(w)
N =i/ @) = pe(@)]

with the asterisk denoting the complex conjugation. In the
above expression, the quantity px(w) is real, which satisfies
pr(w) € [0, 1]. The functions u}(w,t) are complex, which
are periodic in the time domain uj(w, 1) = u} (w,t + T) with
o =c, e, and h. These functions can form an orthonormal

i Pe(@)1 = pr(@)[ut(w, )]
, (10)
—Pk(®) ul(w, 1)
[
basis within a single period, i.e.,
T2 / i
/ dt[ug/ (w, t)] uf (W, 1) = 8g,0 8k k- (11
)
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TABLE 1. Parameter space for k = [n, m] for the charged quasi-
particles (@« = ¢) and eh pairs (o = e, h), corresponding to n, m < 3.
The parameters for the charged quasiparticles are marked in gray
shadow.

[0, 0] N L EX
[0, 1] (1 1] N

[0, 2] [1,2] 2.2]

[0.3] [1,3] 2.3] 3.3]

All these functions can be characterized by two indices w
and k. Here k is a discrete index, which can be described
by (dimensionless) integer numbers. In contrast, the index
o has the unit of frequency, which satisfies w € [0, 2) with
Q = 27 /T being the repetition rate of the pulses.

The function uf(w,?) is closely related to the one-body
wave function of the charged quasiparticle (¢ = c) and the
neutral eh pair (¢ = e, h), while p;(w) represents the excita-
tion probability of the eh pair. Both uf(w, 1) and pi(w) can
be obtained from the polar decomposition of the scattering
matrix. In general cases, they can exhibit a complicated de-
pendence on w. For the scattering matrix given in Eq. (5),
we find that the @ dependence can be much simpler: First,
the probabilities py(w) are independent on @ and can hence
be written as p; for short. Second, uf (w, t) can be written
in the form of separation of variables as

Ul (w, 1) = UF(OFE (), (12)

where FkQ(a)) is a real function defined in the region w €
[0, ©2), while U/(¢) is a complex periodic function defined
in the whole time domain ¢ € (—o0, +00), which satisfies
Ud)=Ug+T).

The function U/ (¢) usually has to be obtained numerically,
which is sensitive to the details of the scattering matrix. In
contrast, the function FkQ (w) can be given analytically. To do
this, it is convenient to describe the discrete index k by two
non-negative integers n and m [i.e., n,m =0, 1,2,...] [see
Egs. (Al14), (A15), and (A16) in Appendix A for details]. In
doing so, we find that FkQ (w) can be written as

H[(Q/e —n+ 1)Q2 —w] forQ/ec[n—1,n],
Hlw — (Q/e — n)R2] for Q/e € (n,n + 1],
0 otherwise

Fl(w) =

(13)

with H(w) representing the Heaviside step function.! Note
that FkQ(w) is independent on the details of the scattering
matrix and is solely decided by the charge Q of the wave
packet.

It is worth noting that the available parameter space of the
index k = [n, m] is different for the charged quasiparticles
(¢ = ¢) and the eh pairs (o = e, h): one has m < n for the
charged quasiparticles, while m > n for the eh pairs. This can
be demonstrated more intuitively in Table I.

"Here we choose H(0) = 1.

B. Decomposition in wave-packet representation

Given the decomposition of G,,(t,t') in Eq. (10), one can
construct a set of one-body wave functions corresponding to
the injected quasiparticles. The many-body state of the wave
packets can then be described by using the Slater determinant
built from them. However, one can construct different sets
of one-body wave functions, which are related to each other
via unitary transformations. Hence, the detailed expression of
the Slater determinant is not uniquely defined. As the driving
voltage V (¢) corresponds to a train of pulses [see Eq. (4)], it is
favorable to express the one-body wave functions in a similar
form. This can be done by defining a set of wave functions
Y (t) from uf (w, t) as

1 [Ydo
Vi =—= / ¢ T,

= U@ f i FQ(w) e, ad)

with [ =0, £1, 2, . ... Note that we have introduced a nor-
malization factor g so that v;(¢) can form an orthonormal
basis set in the whole time domain ¢ € (—o00, +00), which

satisfies
+o0
/ dt
—0oQ

By substituting Eqgs. (12), (13), and (14) into (15), it is
straightforward to show that g; can be given analytically as

[ve O] Y @) = Sawderdir (15)

Q/e—n+1 forQ/ee[n—1,n],
Gk = gy = yn+1—0/e forQ/e € (n,n+1],(16)
0 otherwise.

The wave functions ¥;(¢) can be regarded as Martin-
Landauer—type wave packets [58], which offers an intuitive
way to interpret the time-resolved behavior of the charged
quasiparticles (o« = ¢) and eh pairs (¢ = e, h). The decompo-
sition of G, (¢, t') can then be given as

iGex(t, 1) = Y_YaOWE]) + Y [va®,  who)]
k,l k,l

x [pk N } [%(f)}*
—i/pill — pil —DPk v
(17)

For wave packets carrying integer and fractional charges,
both the charged quasiparticles and e/ pairs can show different
natures, leading to wave functions with different features. To
better demonstrate these differences, we shall first concentrate
on two concrete examples: wave packets carrying on average
a unit (Q = e) and two-thirds (Q/e = %) electric charges per
period.

III. WAVE PACKET WITH UNIT CHARGE

Let us start our discussion from the wave packets carrying
on average a unit electric charge (Q = e) per period. In this
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FIG. 3. The WTD between electrons above the Fermi sea, corre-
sponding to the width W/T = 0.1. The red solid curve represents the
exact WTD, while the black dashed curve represents the semiclassi-
cal approximation from Eq. (28). The corresponding train of levitons
are illustrated by the wave functions Wfi,o]/(f)VT in the inset. The
red solid curves correspond to [ = —2, 0, and 2, while the green
dashed curves correspond to / = —1 and 1.

case, the decomposition of G,,(t,1") takes a simple form

iGer(t. ) =Y U oy O[ Y1 op ()] (18)
l

This indicates that each wave packet contains only one
charged quasiparticle associated with the index k = [1, 0]. By
introducing the creation operator
+o0
Cliop = / dt iy oy ()" (1), (19)
—00

the corresponding many-body state of the whole wave packet
train can be expressed as

[Wirain) = (20)
1=0,£1,%£2,...

ClhoplF)-

Equation (20) essentially corresponds to a periodic train
of levitons. Accordingly, the wave functions ¥, o, (7) can be
regarded as Martin-Landauer—type wave packets built from
levitons. This can be seen more clearly by carrying out the
integration in Eq. (14)*:

Q@ —1IT)
2

Yiop () = U[‘i’O](t)e_iQ(’_’T)/zsinc|: } 21)

with sinc(¢) = sin(;rt)/(;rt) and the periodic function
Jcosh(zW/T) sinh(mW/T)/T
sin[w (¢/T — iW/T)]
represents the leviton train [40,53,59]. Each wave function
V(1.0 (1) exhibits a strong peak around 7 = [T, corresponding

to a leviton injected in the /th period. Wave functions with
different / can form a periodic sequence, providing an intuitive

(22)

Ufio@®) =

ZNote that, in this case, we have g;;.o; = 1.0.

way to understand the structure of the wave-packet train. This
is illustrated in the inset of Fig. 3.

The wave functions Vi op(7) can provide an orthonormal
basis set in the time domain, within which various physical
quantities can be expressed in a neat way. In particular, the
current carried by the train of levitons can be written as (see
Appendix B for details)

2.

1=0,£1,£2,...

One notices that in Eq. (23), the current /(¢) is expressed as
an incoherent summation of all the wave functions ¥, o, (1),
even if these functions can overlap with each other (see the
inset of Fig. 3). However, this does not mean that levitons
contribute incoherently to the charge transport process. In
fact, the overlap between the wave functions can enhance the
fluctuations of the waiting time between successive electron
injection. This effect can be seen more intuitively from the
waiting time distribution (WTD) between electrons above the
Fermi sea [60-62].

The WTD can be calculated from the corresponding idle
time probability Il(#,7.) [S1]. It can be expressed as the
determinant (see Appendix C for details)

T(t, 1) = det[1 — O],

where 1 denotes the unit operator and the operator Oy, counts
the number of electrons injected in the time interval [¢,, 7],
whose energy is larger than the Fermi energy Er. By intro-
ducing the Dirac notation (f|1,0;]) = Vip.op (1), the matrix

element of the operator Oy, can be given as

(23)

It) = e’lﬂ[cl,ou(t)|2'

(24)

te
(1,0: 11051, 0:1") = f de[yy o O] i o (- (25)
1

For a system under periodic driving, it is usually conve-
nient to average the idle time probability over a single period:

T/2
I(7) =/ drt, Tl(ts, ty + 7). (26)

T/2
In doing so, one obtains the time-averaged idle time proba-
bility I1(r), which only depends on the length of the time
interval. The corresponding WTD can be given as

W(z) = (2)dI1(x), 27

with (t) being the mean waiting time.

The above equations offer a direct relation between the
wave functions and WTD, where the overlap between levitons
manifests itself as the off-diagonal elements in Eq. (25). When
the overlap vanishes, the idle time probability I1(z,, #.) can be
reduced to

(5, 2.) =

I [1—/‘)dr|¢f‘1m,(¢)|2}. (28)

1=0,%1,%£2,... §

A quite similar result has been obtained for the ideal single-
electron source built from the mesoscopic capacitor [63]. The
corresponding WTD W, (7) calculated from IT.(z,, #.) can ex-
hibit a strong peak around the point T = T and drops rapidly
to zero when t > 27, as illustrated by the black dashed curve
in Fig. 3. This indicates that one injects exactly one electron
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FIG. 4. The WTDs between electrons above the Fermi sea, cor-
responding to Q = e and the width W/T = 0.05 (green), 0.1 (red),
and 0.2 (blue). The solid curves represent the exact WTD, while
the dashed curves represent the semiclassical approximation from
Eq. (28). Curves corresponding to different W/T are shifted verti-
cally for better visibility.

per period, corresponding to the case of ideal single-electron
injection. In realistic conditions, Eq. (28) can be regarded as
a semiclassical approximation. The presence of the overlap
between levitons can lead to a deviation between the exact
WTD W (r) and the semiclassical approximation W, (t). This
can be seen by comparing the red solid curve [W ()] to the
black dashed one [W,(7)] in Fig. 3, which are calculated for
W/T = 0.1. One can see that the peak in the WTD is slightly
broadened due to the overlap, indicating an enhancement of
the fluctuations of the waiting time.

In fact, the enhancement is not significant for W/T = 0.1.
Moreover, it can be suppressed by decreasing W/T. This
is illustrated in Fig. 4, where we compare the WTDs for
the width W/T = 0.05, 0.1, and 0.2. This indicates that the
ideal single-electron injection can be approached in the limit
W/T — 0. Accordingly, the wave functions v (, (¢) are well
separated and can be treated as individual levitons in this limit.

The above results show that levitons can be well described
by the one-body wave function ¥, (¢). In the following sec-
tion, we shall further demonstrate that the wave function
Y, (t) can also be used to describe the charged quasiparticles
in the fractional-charged wave packet.

IV. WAVE PACKET WITH TWO-THIRDS CHARGES

Now we turn to the wave packets carrying on average
two-thirds electric charges (Q/e = %) per period. In this case,
each wave packet still contains only one charged quasiparticle
associated with the index k = [1, 0]. Due to the dynamical
orthogonality catastrophe, one expects that the wave packet
can also contain a large amount of neutral ek pairs, when the
pulse width W/T is small enough. However, as it is difficult
to generate well-behaved voltage pulses with too small width
W/T < 0.1 [1,2], there exist only a rather limited number
of eh pairs under typical experimental conditions. In fact,

even for the width W/T = 0.1, we find that the excitation
probabilities p; of the ek pairs are all smaller than 0.15.

A. Charged quasiparticles

As a first step toward exploring the quantum state of the
wave packets, let us omit the contribution of the eh pairs,
which is valid for large width W/T. In doing so, the corre-
lation function G (f,1") can be decomposed into the same
form as the one of levitons [see Eq. (18)]. However, the
wave function xp[ﬂyo] ,(t) takes a different form, which can be
written as

e lan.o Q=T /qn.0)/2

/411,01

an,0 R —IT /qp,01)
2

‘/f[cl,o]z(t) = U[CL()] (t)

X sinc[

], (29)

with the factor gy o) = % By comparing the wave function of
levitons in Eq. (21), we show that there are two differences
between the two cases: (1) the periodic function Uy o,(7) has
to be obtained numerically in this case; (2) while the function
U{i.0)(t) has the period T, the sinc function in this case rep-
resents the wave packet localized around ¢ = [(37/2). This
indicates that the wave functions v (,,(7) are characterized
by two different timescales: 7 and 37 /2. It is these two
timescales, which makes the corresponding charged quasipar-
ticles exhibit qualitatively different features from the ones of
levitons.

The timescale 37 /2 is directly related to the charges car-
ried by the quasiparticles. In fact, as the wave functions
Viiop(®) with different / are still orthogonal to each other [see
Eq. (15)], one can still express the current as the incoherent
summation of them, which has the same form as the one of
levitons [see Eq. (23)]. However, as these wave functions are
separated from each other by the time interval 37" /2, which
is mismatch to the repetition period T of the pulse train (see
the inset of Fig. 5), on average each quasiparticle can carry
only 2e/3 charge within a single period 7. In other words,
the fractional charge carried by the quasiparticle is due to the
mismatch between the two timescales.

Moreover, the mismatch can also have pronounced impact
on the wave functions of the quasiparticle, which can exhibit
different profiles. This is also illustrated in the inset of Fig. 5.
For I = -2, 0, and 2 (red solid curves), the wave functions
V.o (1) can exhibit a strong peak, which is accompanied by
two small shoulder peaks. In contrast, for/ = —1 and 1 (green
dashed curves), the wave functions ¥ (), (#) exhibit double-
peak structures. This is a direct consequence of the double
periodicity of the wave functions. In fact, from Eq. (29), one
can see that when the timescale corresponding to Uy ,(7) (T')
and the sinc function (7 /gy ;) do not match, for gj;.0) = A/B
(with A and B being coprime integers), the wave functions
can exhibit A different profiles, which are separated from each
other with the extended period BT /A.

Due to the mismatch between the two periods, the wave
functions are strongly overlapping with each other. This can
be seen intuitively from the inset of Fig. 5. The overlap can
induce a large fluctuation of the waiting time, which can be
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FIG. 5. The WTD between electrons above the Fermi sea,
corresponding to the width W/T = 0.1. The corresponding train
of charged quasiparticles is illustrated by the wave functions
[¥( op(@IPT in the inset. The red solid curves correspond to [ =

—2, 0, and 2, while the green dashed curves correspond to [ = —1
and 1.

seen from the corresponding WTD.? This is illustrated by
the red solid curves in the main panel of Fig. 5. One can
see that the WTD exhibits a series of peaks at multiples of
the repetition period 7. This indicates the presence of the
cycle-missing event, in which the voltage pulse can fail to
inject an electron within a single period T [63,64].

As the overlap between the wave functions are rather large,
the semiclassical approximation W,(t) of the WTD [Eq. (28)]
is inapplicable. One can see that W.(t) largely overestimates
the WTD around the point T = 0, which is illustrated by the
black dashed curve in Fig. 5. In fact, W.(7) gives an unphysi-
cal value around this point: The WTD should be zero at T = 0
due to the Pauli principle. Unlike the case of levitons, the over-
lap between the wave functions cannot be eliminated by just
decreasing the width W/T. As a consequence, the multiple-
peak structure of the WTD is preserved as W/T decreases.
This is illustrated in Fig. 6, corresponding to W/T = 0.2, 0.1,
and 0.05.

The above results explain the nature of the charged quasi-
particles in the wave packet carrying fractional charges per
period: they are just quasiparticles injected with an extended
period T /gy, which is longer than the period T of the driving
pulses. The wave functions of these quasiparticles are always
strongly overlapping with each other, manifesting themselves
at multiple peaks in the corresponding WTD. The feature
of these quasiparticles can be characterized by the factor g,
indicating that each quasiparticle can carry eq; charges per pe-

riod T, making them behave effectively as fractional-charged
quasiparticles.

3Generally speaking, the electron component of the ek pairs can
also contribute to the WTD. However, the contribution remains neg-

ligible due to the small excitation probability for the width W/T >
0.05.

3.0

25 VV/T =02

T/T

FIG. 6. The WTD between electrons above the Fermi sea, corre-
sponding to Q/e = % and the width W/T = 0.05 (green), 0.1 (red),
and 0.2 (blue). Curves corresponding to different W/T are shifted
vertically for better visibility.

B. Electron-hole pairs

Now let us briefly discuss the eh pairs in the wave packet.
For W/T = 0.1, we find that each wave packet contains only
one eh pair, which is associated with the index k = [0, 0].
The corresponding excitation probability pyg o; is only 0.138.
The other eh pairs are negligible due to their small excitation
probabilities.* The eh pairs can be described in a similar way
as the charged quasiparticles. In fact, the wave functions of the
electron and hole components can be expressed in the same
form as shown in Eq. (29):

190,02 =IT /q10,0)/2

4/ 410,01

Q@ —=IT
8 Sinc|:Q[0,()] ( . /61[0,0])] 30)
T

with the factor gjo.0) = % The corresponding wave functions

wf{ %]l(t) are plotted by the green and blue curves in Fig. 7,
where the wave functions ¥ o, (7) of the charged quasiparti-
cles are also plotted by the red curves for comparison. One can
see that in this case, the wave functions for the electron (hole)
component exhibit only one type of profile. They are separated
from each other by the time interval 37, making them behave
as quasiparticles carrying e/3 charges. Note that electron and
hole components carry the same amount of charges but with
opposite sign, which cannot contribute to the total charge Q
of the wave packet.

By combining the information of both the charged quasi-
particles and eh pairs, the quantum state of the whole train of

e/h __rre/h
Yio.0n @) = U ()

4They are all smaller than 0.002.
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FIG. 7. Wave functions of the charged quasiparticle (k = [1, 0]) and the ek pair (k = [0, 0]). The red curves represent the wave functions
of the charged quasiparticle. The green and blue curves represent the wave functions for the electron and hole components of the ek pair,
respectively. All the wave functions are calculated with W/T = 0.1. The solid (dashed) curves from left to right correspond to [ = —2, 0, and

2 (I = —1 and 1), respectively.

wave packet can be written as

Woan) = ]

1=0,£1,£2,...

C[TI,O]I[V 1= pro.o

~ e .
+ iy/Po.o(Bo.on) Biooy) 1F), 31
with
+00
C[TI,O]I = f dt Yify 0y (A" (1),
¥ 400
(Bio.on) :/ di Yy o (DG (@0),
—00
4 + +00 N
(Bo.oy) 2/ dt Yo o (1)act). (32)
—00

This provides a full information of the injected electric
wave packet. It allows us to elucidate how the quantum
state of wave packets can evolve as the flux of the pulses
changes. In the following section, we shall concentrate on
the evolution of the charged quasiparticles. We shall show
how levitons can emerge as the flux approaches an integer
value.

V. EVOLUTION OF CHARGED QUASIPARTICLE

The evolution of the charged quasiparticles can be fully
described by the one-body wave function ,(¢). This is il-
lustrated in Fig. 8, corresponding to the index k = [, 0].

In the figure, we choose W/T = 0.1 and Q/e € (0.0, 2.0).
Curves with different colors and line types correspond to wave
functions ¥, o, (t) with different /. As the factor gj1,0) can
play an important role, we also show the corresponding ¢p; g
alongside the wave functions.

From the figure, one first notices that one has g1,0; = Q/e
when Q/e € (0.0, 1.0). For gj1,0) = %, all the wave functions
of the quasiparticles exhibit the same profile. These quasi-
particles are injected with the extended period 47, indicating
that they can carry e/4 charge within each period 7. As g0
increases from % to %, the extended period is reduced to 27,
indicating that the quasiparticles evolve into the e/2-charged
quasiparticles. As g1 oy further increases from % to %, there
can exist three types of quasiparticle, which are injected with
the extended period 37 /4, leading to 3e/4 charges per period.
As qq1,0) reaches 1.0, all the quasiparticles can evolve into
levitons, which are injected with the period T'.

For Q/e € (1.0, 2.0), one has g0y =2 — Q/e. As Qe
increases in this region, gy o) drops linearly to zero. Accord-
ingly, the levitons can evolve back into fractionally charged
quasiparticles, which are injected with the extended period
T/qp1.0)- Note that one has T /gy 0) = 400 for g0 = O.
This implies that the corresponding quasiparticles cannot be
injected in this limit since the time interval between succes-
sive quasiparticle injection tends to infinity. From Eq. (16),
one can see that the factor ¢, ,; can take nonzero value
when Q/e € [n — 1,n+ 1]. This indicates that the corre-
sponding quasiparticle can only be injected inside this region.
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The available quasiparticles for a given Q/e can then be illus-
trated intuitively by using the factor g, ), which is shown in
Fig. 9.

3.0
2.5
2.0
1.5

1.0 ~
/', \\\

VRIS
//’ qp1 s

~ K
, So ot
2420 SR I
’ ) S
’ N
’ RS N
i R X0 AN

1520 25 30
Qe

FIG. 9. Factor gy as functions of Q/e. The red solid curve repre-
sents gp;.0). The green dashed curves represent g, o; and gy, 1;. Note
that one has g, 0; = q2,17, so the two curves are overlapped. Simi-
larly, the blue-dotted curves represent g3 o, g3.17, and qp32;, which
satisfies g3.0) = q3.1] = g3,2- The black solid curve represents the
charge of the wave packet Q/e, which satisfies Q = e >, gy.

0.5 9.0

O'%.O 0.5 1.6

The evolution of the quasiparticles can also be seen from
the corresponding WTD, as illustrated in Fig. 10. One can
see that for Q/e = %, the waiting time has a rather wide
distribution. This is because the corresponding wave functions
of the quasiparticles are strongly overlapping, as shown in
Fig. 8. As Q/e approaches 1.0, the WTD W (t) tends to exhibit
a strong peak around t =7, indicating the emergence of

Qle=1/4 1
1/2 5/4
—— 3/4

3/2
— 7/

1.0

0.5

0.0

o
—
5]
w
IS
ot

t)T

FIG. 10. The WTDs between electrons above the Fermi sea,
corresponding to Q/e € (0.0, 2.0) and the width W/T = 0.1. Curves
corresponding to different Q/e are shifted vertically for better
visibility.
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levitons. Hence the evolution of the wave functions for Q/e <
1.0 can also be tracked by using the corresponding WTD.
As Q/e goes above 1.0, additional charged quasiparticles can
be injected. From Fig. 9, one can see that two additional
quasiparticles k = [2, 0] and [2,1] can emerge. The evolution
of these two quasiparticles is demonstrated in Fig. 11. By
comparing to Fig. 8, one can see that they evolve in a similar
way as the quasiparticle k = [1, 0]. As these two quasiparti-
cles can also contribute to the WTD, it is difficult to read the
evolution of a single charged quasiparticles from the WTD
when Q/e > 1.0.

VI. EVOLUTION OF ELECTRON-HOLE PAIRS AND
SHOT NOISE

As levitons evolve into charged quasiparticles carrying ef-
fectively fractional charges, additional e pairs can be excited.
Due to the small excitation probabilities, the e pairs can have
little contribution to the WTD between electrons above the

Fermi sea.’ In contrast, it can have pronounced impact on
the shot noise, which has been extensively studied in previ-
ous works [2,32,33,41]. When the wave packet is partitioned
at a localized scatter with transmission probability D, both
the charged quasiparticles and ek pairs can contribute to the
shot noise Sy. It can be decomposed into two parts (see
Appendix B for details): Sy = S. + S, where

Se = So Z Gk
k
Sex =250 ) i (33)
k

with §p = Z%D(l — D)hS2 being the typical scale of the shot
noise.

The first part corresponds to the contribution of the charged
quasiparticles. It is solely decided by the charge Q of the
wave packet since one has ), gy = Q/e from Eq. (16). The
second part is the excess shot noise, which has been used
extensively to characterize the feature of ek pairs [2,65]. By
using the information of the excitation probability p; and the
factor g, one can decompose the excess shot noise S,, into
the contribution of individual eh pairs. This is illustrated in
Fig. 12. From the figure, one can identify the contribution of
three eh pairs, corresponding to k = [0, 0], [1,1], and [2,2].
These eh pairs dominate the excess shot noise S,, in different
regions. Such decomposition makes it possible to extract the
information of individual ek pairs from the excess shot noise.
By combining the WTD with the shot noise, one can hence
obtain the full information of the evolution of the quantum
state of the wave packet.

VII. SUMMARY AND OUTLOOK

In summary, we have presented a general approach to ex-
tract the quantum state of wave packets injected by Lorentzian
pulse train with arbitrary flux. We show that the charged
quasiparticles can be described by a set of one-body wave
functions v, (t). These wave functions can be regarded as
Martin-Landauer—type wave packets, which offer an intuitive
way to interpret their time-resolved behaviors. In integer-
charged wave packets, the charged quasiparticles are levitons,
which are injected with the same period as the pulse train.
No eh pairs can be injected in this case. In fractional-charged
wave packets, the injection of the charged quasiparticles is
characterized by two different timescales, which are decided
by the repetition period T of the pulse train and T rescaled by
a factor related to the flux ¢ of the pulse. Due to the mismatch
between the two different timescales, the wave functions of
the quasiparticles can exhibit different profiles. They can form
a periodic train, whose period is longer than the repetition
period T of the pulse train. This makes them behave effec-
tively as quasiparticles carrying fractional charges. By using
the wave function of the charged quasiparticles, we demon-
strate how levitons can evolves as the flux ¢ of pulse changes.

SGenerally speaking, the electron component of the ek pair can
also contribute to the WTD between electrons above the Fermi sea.
However, the contribution remains negligible for W/T = 0.05.
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FIG. 12. (a) The excitation probabilities p; for the eh pairs. The
inset shows the zoom-in of the figure. The py of other eh pairs are too
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A B

quantum
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FIG. 13. A single-channel quantum conductor connected to two
reservoirs A and B.

We also show that such evolution can be seen from the WTD
between electrons above the Fermi sea. Our approach can
also be used to describe the evolution of ek pairs, which can
be tracked by using the shot noise. Note that although our
approach is demonstrated for the Lorentzian pulses, it is rather
general and can be applied to pulses with arbitrary profiles.
We expect our work will be helpful to explore the full potential
of the voltage electron source.
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APPENDIX A: BLOCH-MESSIAH REDUCTION WITHIN
THE FRAMEWORK OF SCATTERING MATRIX THEORY

The basic idea is straightforward: In a noninteracting elec-
tron system, the many-body state can be expressed as a Slater
determinant in the zero-temperature limit, which can be fully
determined by the one-body correlation function [53,66]. By
calculating the correlation function based on the scattering
matrix theory of quantum transport, one can reconstruct the
Slater determinant from the scattering matrix.

Such reconstruction can be demonstrated more clearly in
a single-channel quantum conductor at zero temperature, as
illustrated in Fig. 13. The incoming electrons are injected from
the reservoir A into the conductor, while the outgoing elec-
trons from the conductor are fed into the reservoir B. Without
interactions, the quantum transport of electrons in such system
can be generally described by a one-body scattering matrix
S. By introducing annihilation operators a(E) and I;(E ) for
the incoming and outgoing electrons in the energy domain,
one has

b(E) =) S(E.E"a(E"), (Al)
=
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with S(E, E’) representing the matrix element of the scatter-
ing matrix S in the energy domain.

It is convenient to introduce the polar decomposition of the
scattering matrix, which has the form

S(E.E) =Y [Vi(E), ¥}(E)]

J

JT=p; iy wa(ﬁ:’)}*

x|V, : s (A2)
[ iyp; 1= piJlejE)

where 1//;(E), gpj(E’) are nonzero for £ > 0, while 1//?(E),

(pj’ (E") are nonzero for E < 0. These functions form orthonor-

mal basis in the energy domain:

dE
f _<(¥]/|E><E|C{]> = (Sj’j/Sa’a/, (A3)

2rh
with §; ; being the Kronecker delta. Note that we have intro-
duced the Dirac notation (E|ay) = ¥ (E), witha = ¢, h.
Now let us turn to discuss the many-body state of the
electrons in such system. For the incoming electrons, the
many-body state |W,) is just a Fermi sea |F), whose Fermi
level Er is decided by the reservoir A. Assuming Er = 0, it
can be expressed as

[Wa) = [F) = [ &' ()| Vac),

e<0

(A4)

with [Vac) being the vacuum state.

Alternatively, one can also describe the many-body state
|W,) by using the corresponding one-body correlation func-
tion, which has the form in the energy domain

iG;(E,E') = (Fla'(E")a(E)|F) (AS5)
or, equivalently,
iG;(E,E') = (Fla(E)a' (E")|F), (A6)

which related to G;(E,E’) as G5(E,E')+ G;(E,E') =
iS5(E —E').

By substituting Eq. (A4) into Egs. (A5) and (A6), the cor-
relation function Gf can be expressed by using the one-body
states |€) of electrons as

iGy(E.E") =) (Ele)(€|E"),
e<0

(A7)
iG;(E,E') =) _(Ele)(e|E"),
>0
with (E|e€) = 8(E — €)AE. Here AE is the mesh size in the
energy domain. The limit AE — 0 should be taken in the end
of the calculation.

The many-body state |¥g) of the outgoing electrons is
usually not given explicitly in the scattering matrix the-
ory. Instead, it is described by the one-body correlation
function as

Gy (E,E') = (F|b"(E")b(E)|F)
= Y (FIIS(E', EDI"S(E, E\)a" (E})a(Ey)|F).

E\E]

(A8)

To find the explicit form of the many-body state |Wg), we
write G? (E, E’) in a form analogous to Eqs. (A7). This can
be done by using the polar decomposition of the scattering
matrix given in Eq. (A2), which gives

GF(E.E) =S (ElyS)yFIE), (A9)
J
with
ly) = iy/pjlej) + /1 — pjlh),
7)) = iyPiih) + V1= pjle)). (A10)

This indicates that the many-body state |Wg) can be ex-
pressed in a BCS-like form, corresponding to a neutral cloud
of eh pairs. The quantum state of the eh pair can be described
by the excitation probability p; and the one-body state |ey)
(|1t )) of the electron (hole) components. They can be obtained
by solving the polar decomposition of the scattering matrix. In
our previous works [54,55], we have studied the quantum state
of eh pairs by using such decomposition.

It is possible for the polar decomposition to give solutions
corresponding to either |e;) = 0 or |k;) = 0, when p; = 1.0.
This indicates that there also exist unpaired electrons or holes,
which are just quasiparticles carrying negative or positive
charges. Moreover, additional normalization factors can also
emerge, representing the injection probability of the corre-
sponding quasiparticles. This is the case we have encountered
in this paper, when the corresponding one-body correlation
function can be given as

G5 (E.EN=Y qiElyD)v7IE).  (AlD)
J

By taking these ingredients into consideration, one can ex-
press the many-body state as given in Eqs. (1)—(3). The
correlation function in the time domain can be obtained from
the transform

dE dE'

oy e EUHETINGZ (B ET). (A12)
g

G2(1,1) =

Note that in the main text, we have expressed the one-body
correlation function Gj(¢,t') = G(¢t, t') in the time domain
[see Eq. (17)].

For the system we considered here, the scattering matrix
has a simple structure in the time domain [see Eq. (5)]. By
introducing the wave-packet functions

e/h(t)_f dE
Ya 0= | mn g

dE
o= [
2h i

with g; being the normalization factor, the polar decomposi-
tion [Eq. (A2)] can be obtained by solving the equations

o [P0 ® Vi (©) v ()
() = /1 = i /Dr
‘ [ ]‘ : ”"[w,ﬁ,m}*’ p"[w,f,a)}’

(plil[ @)

¢ ECIT a0/ elh ()

(A13)
e—iE(z—lT/qk)/hl//Z/h(E%

(Al4)
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where we have chosen the compound index j = [k, []. Here
¢(t) is the forward scattering phase, which can be written as
o) =% ['V(r)dr.

Although V (¢) is periodic, the forward scattering phase
¢(t) is nonperiodic. In fact, it is possible to extract the periodic
part from ¢(¢) by introducing the relation

wr
¢ =Nr+ R
with Ny being integer and wr being real number, which
satisfies wr € [0, 2]. By using Ny and wr, one can
express ¢(t) as

(1) = ¢u(t) + [wr + (Nr — n)Qt,

where ¢, (t) represents the periodic part of the forward scat-
tering phase, with n being integer.

Hence, the integer n offers a natural index for the solutions.
For a given n, Eqs. (A13) and (A14) can be reduced to a
singular value problem, whose solutions can be labeled by
another integer m. That is why we choose the index k = [n, m]
in the main text. Note that for a given flux ¢ = Q/e, we
find that only the solutions related to n = Ny and Ny — 1 are
relevant. The corresponding w,f/ h (1) can be expressed by the
ansatz

dw
e/h e/h
OH=U""( /
kl k ) 27 Jar

where FkQ(a)) is the real function given in Eq. (13). The func-

tion U/ M) is periodic in the time domain, which usually has

to be obtained numerically from the singular value problem.

(A15)

(A16)

Fe(w)e =T/ (A17)

APPENDIX B: CURRENT AND SHOT NOISE

Various observable quantities can be calculated directly
from the expression of the many-body state |Wg) given in
Appendix A. The current carried by the train of wave packets
can be given as

I(t) = e(‘I’train |&T (t)&(t)|‘l’train>

=2 > o+, )

k 1=0,%£1,%£2,... k 1=0,£1,£2,...

), (Bl)

where I{(t) represents the contribution from the charged
quasiparticles, which has the form

I5() = eqi| w5 O] (B2)

In contrast, I,flh (t) represents the contribution from the eh pair,
which can be written as

1) = eqepr [ [wi O = [wl @]
+ 2eqy Pk(l_Pk)Im{‘ﬁlil](t)[l/flfz(t)]T}- (B3)

Note that for the electron source we considered here, one
always has I(t) = (e2/h)V ().

When the train of wave packets is partitioned at a localized
scatter with transmission probability D, both the quasipar-
ticles and eh pairs can contribute to the shot noise. The
time-dependent shot noise can be expressed as

i 1
Su(t, 1) =e*D(l — D) — ————
nlt, 1) = €"D( )2nt—t/+in

{vi v

x ;Qk Z

=0, 5T 4.,
+ [VPewi ) — ivT = peyry )]

x [V @) — iy T— pyly @]

+ [VPvl () — iy 1= peyy ()]

< [Vpwlh () = iyT=pyg ]} B4

The shot noise in the dc limit can be obtained as

+00 +00
Sen(t, 1) = / / Sm(l‘,t/)dl‘dl/
-0 J—00

- ¥

1=0,£1,£2,...

[Sc(D) + Sex (D], (B5)

where S.(/) and S, (/) representing the shot noise attributed to
the charged quasiparticles and ek pairs in the /th wave packet.
We find that both of them are independent on the index /,
which can be written as

Se =50 a
k

Sex =250 ) _ qupi (B6)
k

with Sy = 2€h—2D(1 — D)AS2 being the typical scale of the shot
noise.

APPENDIX C: WAITING TIME DISTRIBUTION

To obtain the information of the many-body state in short
timescales, we study the waiting time distribution between
electrons above the Fermi sea. This can be obtained from
the idle time probability [51,62,63,67]. Given a time interval
[, 2], the corresponding idle time probability I1(#, .) can be
given as

M, 1) = (W] : e 2 W), (C1)

where : ... : represents the normal ordering. The operator Ny,
counts the number of electrons above the Fermi sea injected
in the given time interval, which can be given as

te
R = f dr a2, (1), ©2)

with a,(t) = [, e F/Ma(E)dE [ (2 h).

It is convenient to calculate idle time probability by using
the decomposition introduced in Appendix A. By introducing
the operator corresponding to the one-body correlation func-
tion G5 = Zj q;ly; ) y; 1, we find

T(t, 1) = det[1 — A, G, (C3)

where we have introduced a one-body operator
Ay = ft’ dt|t,)(t,| corresponding to N, with [7,) =
f0+°° eF''MEVAE /(2 k). Equation (24) can be obtained
by defining Q,, = A, G5 in Eq. (C3).
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