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Negative correlation between the linear and the nonlinear conductance in magnetic tunnel junctions
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The current-voltage (IV ) characteristics beyond the linear response regime of magnetic tunnel junction (MTJ)
is systematically investigated. We find a clear negative correlation between the two coefficients to characterize
the linear (I ∝V ) and the lowest-order nonlinear (I ∝V 3) currents, which holds regardless of the temperature and
the thickness of the tunnel barrier. This observation cannot simply be explained by the standard tunneling model
such as the Brinkman model, suggesting a mechanism intrinsic to MTJ. We propose a phenomenological model
based on the Jullire model that attributes the observed negative correlation to the spin-flip tunneling assisted by
a magnon. These results suggest a fundamental law between the linear and the nonlinear response of MTJ.
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I. INTRODUCTION

Magnetic tunnel junction (MTJ), consisting of
ferromagnet-insulator-ferromagnet heterostructure plays
a central role in spintronics. Its resistance changes with the
magnetization configuration from parallel (P) to anti-parallel
(AP) known as the tunneling magnetoresistance (TMR) effect
[1–3]. In particular, the MTJ with MgO barrier exhibits a
giant TMR of a few hundred % [4–6]. Such giant TMR
is due to the spin dependence of both the density of states
(DOS) in the electrode metal described by the Jullire model
[1,7] and the decay rates depending on the Bloch states in
the barrier [8,9]. However, it is commonly observed that the
TMR is significantly suppressed by applying the bias voltage,
as initially reported by Jullire [1]. From the physical point of
view, this effect stems from the bias voltage dependence of
the conductance (nonlinear conductance) [10,11], which is
the main topic of this paper.

One of the known mechanisms to account for the non-
linear conductance in tunnel junctions is the modulation of
the tunneling barrier height by the electric field. This can be
addressed through models such as the Simmons model [12]
or the Brinkman model [13], both of which are based on the
WKB approximation of the tunneling. The Brinkman model is
an extension of the Simmons model to include the asymmetry
of the barrier height due to the difference of the electrode
materials. It also gives a simple formula of the bias-dependent
conductance at low bias regime. This approach was applied to
the nonlinear conductance in the P configuration of MTJ and
the barrier height was estimated [5,14].

*shuichi@meso.phys.sci.osaka-u.ac.jp

Other mechanisms responsible for the nonlinearity pecu-
liar to MTJ are the electron’s inelastic tunneling processes
due to the interaction with quasiparticles (e.g., magnons and
phonons) [14–20] or impurities [20–22]. Among them, tun-
neling with emitting/absorbing a magnon (magnon-assisted
tunneling) has been extensively studied. For example, Zhang
et al. proposed an analytical model of the magnon-assisted
tunneling and obtained an agreement with the experiment in
MTJ [15]. In addition, Moodera et al. found a peak/dip struc-
ture in the nonlinear conductance which was also attributed to
the magnon [14].

Those prior works have clarified the overall characteris-
tics of the nonlinear conductance in MTJ. Especially, a lot
is known about the nonlinear conductance at wide voltage
range (up to a few hundreds of millivolts or tens of kBT
where kB is Boltzmann constant and T is temperature) and its
behavior in either P or AP configuration. On the other hand,
the nonlinearity at lower bias regime (comparable to kBT ) is
relatively less understood. For example, little has been known
about the relation between the nonlinear conductance and
the linear conductance and/or the magnetization configuration
dependence (e.g., not only the P and AP states but also the
intermediate ones). Such understandings would enable us to
understand the MTJ in more depth.

In this paper, the nonlinear electron transport in MTJ
is systematically studied at low bias regime, controlling
the magnetization configuration, the temperature, and the
tunneling probability. We find that the two coefficients to
characterize the linear (I ∝V ) and the lowest-order nonlinear
(I ∝V 3) currents are negatively correlated, which cannot be
explained by the above barrier modulation effect described by
the Brinkman model. Instead, we propose a phenomenologi-
cal model based on the Jullire model, additionally taking the
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FIG. 1. (a) Schematic of the MTJ nanopillar. The magnetic field
is applied along the long axis of the ellipse. (b) Magnetoresistance of
the MTJ (V = 5 mV, dMgO = 1.33 nm) at temperature T = 40, 100,
200, and 260 K. Only the sweep from positive to negative magnetic
field is shown for simplicity. The schematic diagrams illustrate the
magnetization configuration at each magnetic field.

magnon-assisted tunneling into account. Our finding would
extend the understanding of the nonlinear conductance in
MTJ, which leads to the observed nontrivial negative corre-
lations.

II. EXPERIMENTAL SETUP

Figure 1(a) shows the schematic of our sample. The
multilayered stack consisting of Ta (5 nm)/Ru (10 nm)/Ta
(5 nm)/Co20Fe60B20 (5 nm)/MgO (dMgO = 1.06, 1.13, 1.27,
or 1.33 nm)/Co20Fe60B20 (4 nm)/Ta (5 nm)/Ru (5 nm) is
deposited on a thermally oxidized Si substrate by magnetron
sputtering. The number in the parentheses is the thickness.

The film stack is annealed at 400 ◦C for 30 min. Hereafter,
the ferromagnetic metal, Co20Fe60B20, is denoted as CoFeB.
The CoFeB/MgO/CoFeB layers form an MTJ with in-plane
magnetic anisotropy as shown in Fig. 1(a). The sample is
patterned into an elliptical pillar of 150–450 nm and the Ta
(10 nm)/Au (100 nm) electrode is sputtered. The thickness
of the tunnel barrier dMgO is set right above the minimal
one to obtain the crystallinity at the MgO/CoFeB interface
[4,5]. This enables us to observe nonlinear transport at bias
voltage as low as possible. The IV characteristics are obtained
by applying voltage V , measuring current I under in-plane
magnetic field H along the long axis of the pillar.

Figure 1(b) shows the magnetic field dependence of the
MTJ resistance. Here, the data of dMgO = 1.33 nm and T =
40, 100, 200, and 260 K are shown as a typical example.
The bias voltage is V = 5 mV, where the current is perfectly
proportional to the voltage, and one can deduce the linear
resistance (R = V/I). As the magnetic field is swept from
positive to negative, the resistance takes a peak at ∼0 mT, and
it monotonically decreases as the field is increased. It finally
saturates at around ±20 mT. According to the well-established
phenomenological model (Jullire model) that connects the
magnetoresistance to the spin-dependent density of states
(DOS) [1], the resistance minimum Rmin (maximum Rmax)
corresponds to the magnetization configuration of P (AP) as
illustrated in Fig. 1(b). The magnetoresistance ratio (Rmax −
Rmin)/Rmin is approximately 300%, which is a reasonable
value for MgO-based MTJ [4,5]. Unlike the steep switching

FIG. 2. Characterization of the nonlinear transport obtained for
the MTJ with dMgO = 1.33 nm at 260 K. (a) Bias dependence of the
differential conductance dI/dV at 0, 5, 10, and 20 mT. The black
dashed curves are the result of the parabolic fitting. (b) Magnetic field
dependence of the linear (G1) and the nonlinear (G3) conductance
obtained from the fitting. (c) Correlation between G1 and G3. The
areas of P and AP configurations are marked as black dotted circles.

behavior often realized by designing the MTJ structure, we
intentionally design the present MTJs without inserting an an-
tiferromagnetic layer which fixes the magnetization direction
[4,5] so that their resistance gradually change as a function
of the magnetic field. This guarantees that the magnetization
configuration is continuously controlled from P to AP in our
samples. Thus we can systematically investigate the relation
between the nonlinear conductance and the magnetization
configuration.

III. EXPERIMENTAL RESULTS

A. Current-voltage characteristics

The IV characteristics for the samples with four different
dMgO’s are measured (dMgO = 1.06, 1.13, 1.27, and 1.33 nm),
sweeping V = ±100 mV, H = ±30 mT, and T = 40, 100,
200, and 260 K. By numerically differentiating the IV char-
acteristics, we obtain the differential conductance as shown in
Fig. 2(a). We show the data at 260 K and dMgO = 1.33 nm
as an example. As is clear from Fig. 2(a), the conductance is
symmetric with respect to the sign reversal of a bias voltage
up to |V | = 100 mV.

The nonlinear component is well fitted by the parabolic
function I � G1V + G2V 2 + G3V 3. The results of the fitting
show that the magnitude of the G2V 2 term is only below
1% of G1 or G3V 3 in any condition of magnetic field,
temperature, and barrier thickness, letting us approximately
write I � G1V + G3V 3. The absence of the asymmetric term
G2 is reasonable considering that the MTJ film structure
(CoFeB/MgO/CoFeB) is symmetric (the same material is
used for both left/right electrodes), making no difference in
transport characteristics for positive/negative bias. Thus, the
differential conductance at low bias regime can be well ap-
proximated by the equation below [black dashed curves in
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Fig. 2(a)].

dI

dV
= G1 + 3G3V

2. (1)

Henceforth, we refer to G3 as nonlinear conductance and
investigate how G1 and G3 are correlated.

Figure 2(b) shows the magnetic field dependence of G1

and G3. The linear conductance G1 takes its minimum at
∼0 mT and increases as the field is applied. Note that the
data shown in Fig. 1(b) corresponds to G1 via G1 = 1/R. On
the contrary, the magnetic field dependence of the nonlinear
conductance G3 takes its maximum at ∼0 mT and decreases
as the field is increased. Unexpectedly, the behavior of G3 is
an upside-down reversal of that of G1, suggesting the negative
correlation between them.

Figure 2(c) shows G3 as a function of G1 when the mag-
netic field is varied from −30 mT to 30 mT. The left- (right-)
most region where G1 takes its minimum (maximum) cor-
responds to the AP (P) magnetization configuration (see the
circled area). Interestingly, a clear negative linear correlation
between G1 and G3 is obtained for all the experimental data.
The correlation is well approximated by linear function of
G3 = −kG1 + m, where k (1/V 2) and m (1/�/V 2) are con-
stant coefficients.

B. Correlation plot for G1 and G3

Figure 3 shows G3 vs G1 correlation plots for four dif-
ferent thickness (dMgO = 1.06, 1.11, 1.21, and 1.33 nm) and
temperatures (T = 40, 100, 200, and 260 K). G1 and G3 are
obtained by fitting dI

dV between |eV/kBT | � 4, while the result
is not sensitive to the fitting range. As shown in Fig. 3, clear
negative linear correlations between G3 and G1 are obtained
which, again, can be well approximated by G3 = −kG1 + m
for all the thickness and the temperature.

We perform a linear fitting of the correlation plot and
summarize the results in Fig. 4. It turns out that the slope
k ∼ 2 (1/V 2) for all the data, regardless of T and dMgO [see
Fig. 4(a)]. On the other hand, the intercept m clearly depends
on both T and dMgO and becomes larger as T or dMgO is
decreased [see Fig. 4(b)]. Here, as the slope k has a dimension
of V −2 which is independent of the geometric scale such as
the junction area, it may be a universal parameter to char-
acterize the nonlinear behavior of MTJ at low bias regime.
These results prove that the observed correlation holds in wide
range of thermal fluctuation (kBT ) and tunneling probability
determined by dMgO. At the same time, it implies the relevance
between the magnetization configuration and the nonlinear
transport. This simple relation between the linear and the
nonlinear conductance is the central experimental finding in
this paper.

IV. DISCUSSIONS

A. Barrier height modulation

Now, we discuss the physical origin of the observed non-
linearity and the negative correlation. First of all, we examine
one of the common sources of nonlinearity in tunnel junction,
namely the barrier modulation effect [12,13].

FIG. 3. Summary of the correlation plot for (a) dMgO = 1.33,
1.27, 1.06, and 1.13 nm measured at T = 40, 100, 200, and 260 K.
The black dashed line shows the line with slope −2 (1/V2). The area
inside the black dotted line is displayed in (b). (b) The correlation
plot zoomed into dMgO = 1.27 and 1.33 nm.

It is known that the tunneling barrier height can be modu-
lated due to the application of the bias voltage, which makes
the conductance nonlinear. One of the most accepted models
is the Brinkman model [13], an extension of the Simmons
model [12] at low bias regime to include the barrier asymme-
try. Based on the WKB approximation, the Brinkman model
presents the voltage-dependent conductance G(V ) of a tunnel
junction at low bias regime as the polynomial below.

G(V )

G(0)
= 1 −

(
A0�φ

16φ
3
2

)
eV +

(
9

128

A2
0

φ

)
(eV)2. (2)

In this equation, φ is the effective height (in units of elec-
tron Volt) and d is the thickness of the barrier (in unit Å).
�φ is the difference of the barrier height at the interface of
the left/right electrode, which is zero when the same material

is used for both electrodes. G(0) = 3.16 × 1010 φ

d e−1.025dφ
1
2

�−1 m−2 is the conductance at zero bias voltage normalized

by the junction area S, and A0 = 4(2me )
1
2 d

3h̄ (me is the electron
mass and h̄ is the reduced Planck constant).

According to Eqs. (1) and (2), at first sight, the Brinkman
model seems to give the same voltage dependence of the
conductance as observed in the experiment. Thus, we attribute
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FIG. 4. Thickness dependence of (a) the slope k and (b) the
intercept m extracted from the correlation plot at four different tem-
peratures (T = 40, 100, 200, and 260 K). The black dotted line in
(a) shows the line with slope −2 (1/V2).

the linear (GB
1 ∝ V ) and the nonlinear (GB

3 ∝ V 3) conductance
by the Brinkman model as below.

GB
1 = 3.16 × 1010 φS

d
e−1.025dφ

1
2 (3)

GB
3 = G1 × 9

128

A2
0S

φ
. (4)

Here, the effective barrier height φ may vary with the magne-
tization configuration in our MTJ. This is due to the fact that
the tunneling in MgO-based MTJ is dominated by different
Bloch states (�1 state in P configuration and �5 state in AP
configuration) and their decay rate is significantly different
[8,9]. Now, we assume that such behaviors of the Bloch states
affect the tunneling probability and modulate the effective bar-
rier height φ. We compare GB

1 and GB
3 deduced from Eqs. (2),

(3), and (4) with the experimental data to discuss the barrier
modulation effect and the role of Bloch states in the nonlinear
conductance.

We start with the calculation of d and φ dependence of G1

and G3 in Eq. (4) as shown in Fig. 5. The barrier thickness d
is swept from 0.5 nm to 2 nm, and φ is swept from 0.3 eV
to 1 eV, both of which cover the reasonable value range for
CoFeB/MgO/CoFeB. Both G1 and G3 are the monotonous
decreasing function of d and φ [see Fig. 5(c)].

Now, we compare these calculations with the experimental
data and discuss that the Brinkman model is not sufficient to
explain our experimental observation. As an example, we use
the experimental data of MTJ with MgO thickness 1.33 nm
as shown in Fig. 2. Note that the results shown below hold

FIG. 5. Calculated results of (a) the linear conductance GB
1 and

(b) the nonlinear conductance GB
3 by the Brinkman model as func-

tions of d and φ. (c) Correlation plot of GB
1 and GB

3 with changing
φ from 0.3 to 1 eV (d is fixed at 1.3 nm). GB

1 -maximum (minimum)
region is marked as black dotted circle, noting P (AP) configuration
and �1 (�5) Bloch state.

true for other MgO thickness (1.06, 1.13, and 1.27 nm) in the
experiment.

At the nonlinearity at P configuration where the �1 Bloch
state is dominant, the experimental value is G1 � 9 × 10−6

�−1 V−1 and G3 � 4 × 10−6 �−1 V−2, respectively [see the
circled area in Fig. 2(c) annotated “P configuration”]. These
values correspond to the ones expected for φ = 0.3 eV and
d = 1.3 nm in the above calculation, which give GB

1 � 9 ×
10−6 �−1 V−1 and GB

3 � 4 × 10−6 �−1 V−2 [see the circled
area in Fig. 5(c) annotated âP configuration (�1 Bloch state)].
Therefore, it is suggested that the barrier modulation effect
by this �1 state is the dominant source of nonlinearity at
P configuration. In addition, the estimated effective barrier
height and thickness (∼0.3 eV and ∼1.3 nm) agree with those
in the previous report [4].

Now, in the AP configuration where the �5 Bloch state is
dominant, the experimental value is G1 � 3 × 10−6 �−1 V−1

and G3 � 15 × 10−6 �−1 V−2, respectively [see the circled
area in Fig. 2(c) annotated âAP configuration]. Here, the effec-
tive barrier height should be higher than that in P configuration
because the �5 state decays more rapidly than the �1 state
[8]. Considering that the G3 is the decreasing function of φ

[see Eq. (4)], however, the barrier modulation effect from
this �5 state cannot be larger than that in the �1 state [e.g.,
G3 � 4 × 10−6 �−1 V−2 at 20 mT in Fig. 2(c)]. Therefore, it
is estimated that the nonlinearity due to the �5 state counts at
most 4×10−6

15×10−6 ∼ 26% of the total value of G3. In addition, if we
directly apply the Brinkman model to the AP configuration,
we obtain φ = 0.08 eV and d = 2.4 nm, which significantly
deviate from the experimental condition and are unrealistic.
These results suggest that Bloch states play a role in nonlin-
earity especially for the P configuration, while an additional
mechanism is required to further account for the nonlinear
behavior of MTJ of the whole configuration.

In addition, according to Eq. (2), both GB
1 and GB

3 are the
monotonous decreasing functions of d and φ. This means
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FIG. 6. (a) Differential conductance of the NIF junction. Black
dotted line is the parabolic fit. (b) Magnetic field dependence of G1

and G3.

that even when d and φ change with experimental conditions
(magnetic field, temperature, and MgO thickness), G1 and G3

change in the same way. Therefore, as long as we consider the
barrier modulation mechanism such as the Brinkman model,
we would expect positive correlation between G1 and G3

[see Fig. 5(c)], which is opposite to the negative one that we
observed in experiment.

The model presented here does not explicitly take the effect
of spin-dependent DOS into account. In principle, we can ex-
tend the Brinkman model to include such an effect. However,
it turned out that our conclusion that the experimental results
cannot be explained by the Brinkman model alone remains
the same whether we take the effect of DOS into account
or not. To keep the discussion uncomplicated, therefore, we
simply show the Brinkman model without the effect of DOS
here. For this reason, the estimated φ (the effective barrier
height) should be different from the actual value. We note that
the same conclusion can be obtained based on the Simmons
model as well.

B. Control experiment

We perform a control experiment with a normal metal-
insulator-ferromagnet (NIF) junction of Ta(5 nm)/Ru(10 nm)/
Ta(5 nm)/Co20Fe60B20 (5 nm)/MgO(1.0 nm)/Ta(5 nm)/
Ru(5 nm) film. From this experiment, we can estimate the
effect of impurity scattering [22] because the film is prepared
in the same manner as MTJ so that it has almost the same
quality of tunneling barrier and impurity concentration. The
sample is patterned into an elliptical pillar of 300 nm ×
450 nm. Note that the area of the ellipse is twice as much
as the one in the MTJ.

We measure the magnetic field dependence of the IV char-
acteristics at room temperature, which is again well fitted by
a parabolic function G = G1 + 2G2V + 3G3V 2. Contrary to
the case in MTJ, G2 is not negligible in this result. This is
consistent with the Brinkman model [see Eq. (2)] that expects
finite G2 when the materials for the left and right electrodes
(CoFeB and Ta) are different. Now we discuss the origin of
the nonlinearity observed in this control experiment. Firstly,
the impurity scattering yields the conductance proportional to
|V | [22], which is not the case in this experiment. Secondly,
we consider the barrier modulation effect according to the
Brinkman model. As shown in Fig. 6, neither G1 nor G3

depends on the magnetic field in our experimental condition.

Such behavior is totally different from the case with MTJ.
Actually, according to Eq. (2), the estimated barrier height
(∼0.3 eV) and barrier thickness (∼1.3 nm) are reasonable
compared to the previous works [4,5]. This implies the non-
linear conductance in this control experiment originates from
the barrier modulation effect, which does not depend on the
magnetic field.

From the above discussion based on the Brinkman model
and the control experiment, we can say that those mechanisms
arising from the tunnel junction structure alone cannot explain
the negative correlation, and a certain intrinsic mechanism that
stems from the spin-dependent tunneling dynamics depending
on the magnetization dynamics is required.

C. Magnon-assisted tunneling

We propose the contribution of the quasiparticles, partic-
ularly magnons, to the nonlinear conductance. It is created
by the magnetization fluctuation, whose energy scale is a few
tens of meV (a few hundreds of kBT ) [22]. This implies that
the magnon-assisted tunneling is likely to be relevant in the
observed nonlinear conductance. In Ref. [16], it is argued that
the G ∝ V 2 component appears when the electrons interact
with magnons that exist at the junction interface. Besides,
it has also been found that the contribution of such surface
magnons is important in the tunnel junctions based on Co such
as Co/Al2O3/Co [15] and CoFeB/MgO/CoFeB [22].

To further apply this idea to our analysis, we present a
Jullire model [1] extended to include the spin-flip tunneling
assisted by magnons. Figure 7(a) illustrates the tunneling
processes we consider below. Originally, the Jullire model de-
scribes the linear current as the elastic tunneling (Ielastic ∝V ),
which conserves spin and energy of electron [see the black
dotted arrow annotated “Elastic” in Fig. 7(a)]. The current is
proportional to the product of the DOS with the same spin and
energy,

Ielastic = G1V = At (DL↑DR↑ + DL↓DR↓ )V. (5)

Here, we denote the spin-dependent density of states (DOS)
at the Fermi level as DL↑ , DL↓ for the left electrode, and DR↑ ,
DR↓ for the right electrode (↑ and ↓ are spin up and down,
respectively). A is a constant proportional to the junction area,
and t is the matrix element associated with the tunneling
process.

We define the tilt angle θ of the magnetization in the right
electrode as seen from the left one. θ = 0 and π correspond
to P and AP, respectively. Note that DR↑ and DR↓ corresponds
to the magnetization direction projected to the θ = 0 axis and
thus is a function of θ .

DL↑ = 1 + p

2
L, (6)

DL↓ = 1 − p

2
L, (7)

DR↑ = 1 + p

2
R − pRsin2 θ

2
, (8)

DR↓ = 1 − p

2
R + pRsin2 θ

2
. (9)
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FIG. 7. (a) Schematic energy diagram of the MTJ. The vertical
axis corresponds to the energy. Red and blue areas represent the DOS
of the spin up and down electrons in each electrode, respectively,
separated by the insulating barrier (gray rectangle). The energy and
spin conserving (“Elastic,” black dotted arrow) path and the noncon-
serving path (“Inelastic,” black arrows) are shown. (b) Temperature
dependence of the coefficient m. Black dotted curves are the results
of the fitting. (c) MgO thickness dependence of the coefficient BtLR
obtained from the fitting (left axis), plotted together with the linear
conductance in P configuration (T = 260 K) (right axis). Black bro-
ken line is the fitting with exponential function ∝ e−dMgO/L . Here,
L ∼ 0.15 nm is the constant with the length dimension obtained from
the fitting.

We note DR↑ and DR↓ at θ = 0 as D0
R↑ and D0

R↓ . The spin po-
larization of left/right electrode is p ≡ |(DL↑ − DL↓ )/(DL↑ +
DL↓ )| = |(D0

R↑ − D0
R↓ )/(D0

R↑ + D0
R↓ )|. We also define L ≡

DL↑ + DL↓ and R ≡ D0
R↑ + D0

R↓ . According to Eqs. (6)–(9),
one obtains the linear conductance as below.

G1 = AtLR(DL↑DR↑ + DL↓DR↓)

= AtLR

[
1 − p2

2
+ p2 cos2 θ

2

]
(10)

This equation is a straightforward extension of the Jullire
model [1] to include magnetization angle dependence [7].
The energy dependence of DOS [23] is neglected because the

energy scale of the bias voltage (eV ∼ a few tens of meV) is
small enough compared to the Fermi energy.

Next, we further extend the Jullire model to describe
the nonlinear conductance (G3). We assume that the non-
linear current corresponds to the inelastic tunneling current
(Iinelastic ∝V 3), where the electron changes its energy and spin
[see the black arrow in Fig. 7(a) annotated “Inelastic”]. We
describe the nonlinear conductance using the products of DOS
with opposite spins,

Iinelastic = G3V
3 = BtLR(DL↑D∗

R↓ + DL↓D∗
R↑ )V 3. (11)

Here, we set an ad-hoc assumption on DOS:

D∗
R↑ ≡ DR↑ − D0

R↑ = −pR sin2 θ

2
(12)

D∗
R↓ ≡ DR↓ − D0

R↓ = pR sin2 θ

2
. (13)

In this assumption, the DOS in the P configurations is sub-
tracted from the original one, which enables us to subtract the
nonlinearity that is already present at the P configuration. This
allows us to focus on the continuous changes of nonlinearity
between P and AP configurations. We will examine the rele-
vance of this assumption later. The inelastic term is simplified
to

G3 = BtLR(DL↑D∗
R↓ + DL↓D∗

R↑ )

= BtLRp2 sin2 θ

2
. (14)

In this expression, G3 becomes minimum in the P configu-
ration (θ = 0) in agreement with the observation shown in
Fig. 2.

From Eqs. (10) and (14), the above expressions of G1 and
G3, we obtain

G3 = −B

A
G1 + BtLR

2
(1 + p2) = −kG1 + m. (15)

Here,

k = B/A. (16)

m = BtLR

2
(1 + p2). (17)

According to this formula, only the intercept m depends on
the barrier thickness and the temperature, while the slope k is
a constant that is independent to them. This indicates the linear
negative correlation between G1 and G3, which qualitatively
explains the experimental observation in Fig. 3.

Now, let us further try to apply the above model to the ex-
perimental data. According to this model, only the intercept m
depends on temperature through polarization p. Most simply,
p is assumed to obey Bloch’s law [24,25]

p = p0

[
1 −

(
T

Tc

) 3
2

]
. (18)

This describes the change of magnetization due to the magnon
excitation (p0 is the spin polarization at 0 K and Tc is the
Curie temperature). The details of the magnon in this system
are included in these macroscopic parameters. Note that such
temperature dependence is introduced through the definition
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of the nonlinear conductance such as seen in Eq. (14). Con-
versely, if we naively defined G3 = Bt (DL↑DR↓ + DL↓DR↑ ),
the correlation would become G3 = −B

A G1 + BLRt
2 and no

temperature dependence would appear in the intercept, which
fails to explain the experimental observation. This is the rea-
son why we adopted the ad-hoc assumption to interpret the
behavior of m.

Thus, according to Eq. (17) and Eq. (18), the intercept m is
obtained as below.

m = BtLR

2

⎡
⎣1 + p2

0

(
1 −

(
T

Tc

) 3
2

)2
⎤
⎦ (19)

We show the results of the fitting of m with Eq. (19) in
Fig. 7(b). The parameters (B, t, L, R, p0, and Tc) are set as free
parameters. The estimated Curie temperature Tc ∼ 800 K and
spin polarization p0 ∼ 0.7 are reasonable for the CoFeB thin
film [26–28]. The agreement between the data and the fitting
is not sensitive to the slight change of Tc and p0. Furthermore,
as shown in Fig. 7(c), the coefficient BtLR exponentially
decreases with increasing dMgO. This behavior is most likely
attributed to the dMgO dependence of the tunneling probability
t . In fact, as shown in Fig. 7(c), the linear conductance G1 ∝ t
decreases with the same exponential function with BtLR. This
agreement ensures that the t obtained from the model actually
corresponds to the transmission probability.

The above model is a simple one, but the obtained rela-
tion consistency between G1 and G3 seems to suggest that
this captures the essential characteristics of the experimen-

tal results. The model is nevertheless still phenomenological
and it cannot explain, for example, the microscopic origin
of the constant k and the validity of the ad-hoc assumption.
For further study, the calculation based on the microscopic
Hamiltonian of electron tunneling and the electron-magnon
interactions (e.g., nonequilibrium Green function) would be a
powerful approach.

V. CONCLUSION

In conclusion, we have investigated the electron transport
right beyond the linear response regime in MTJ at low bias
regime. We have found a clear negative correlation between
the linearity and the nonlinearity. This cannot be fully at-
tributed to the barrier modulation effect (Brinkman model),
the rest of which we attribute to the magnon-assisted tunneling
through our phenomenological model by extending the Jullire
model. Our findings contribute to the deeper understanding
of the MTJ based on the rigorous understanding of the linear
response regime.
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