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Influence of surface states on the conductance spectra for Co adsorbed on Cu(111)
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We calculate the conductance spectra of a Co atom adsorbed on Cu(111), considering the Co 3d orbitals
within a correlated multiple configurations model interacting through the substrate band with the Co 4s orbital,
which is treated in a mean-field-like approximation. By symmetry, only the dz2 orbital couples with the s orbital
through the Cu bands, and the interference between both conduction channels introduces a zero-bias anomaly
in the conductance spectra. We find that, while the Kondo resonance is mainly determined by the interaction of
the Co d orbitals with the bulk states of the Cu(111) surface, a proper description of the contribution given by
the coupling with the localized surface states to the Anderson widths is crucial to describe the interference line
shape. We find that the coupling of the Co 4s orbital with the Shockley surface states is responsible for two main
features observed in the measured conductance spectra, the dip shape around the Fermi energy and the resonance
structure at the surface state low band edge.
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I. INTRODUCTION

The interaction of magnetic adatoms with the conduction
electrons of the surface where they are adsorbed can lead to
the formation of a Kondo resonance near the Fermi energy
in the spectral density [1]. In scanning tunneling microscopy
(STM) experiments, the Kondo resonance is usually detected
as a zero-bias anomaly (ZBA) in the conductance spectra.
The ZBA measured by STM does not always reproduce the
Kondo resonance, since interference mechanisms between the
diverse conduction channels in the surface-atom-tip system
can give rise to different Fano line shapes for the ZBA [2]. The
mechanism leading to the Fano line shape has been associated
with an interference between the correlated orbitals of the
magnetic impurity that originates the Kondo resonance and
further conduction channels between the tip and the substrate
[3–12]. The latter channels can be due to a direct interaction of
the tip and the surface [3–8,10,11] or indirectly via a noninter-
acting orbital of the impurity [3,9,12]. Alternative approaches
neglect the direct coupling of the tip with the impurity and
assume that the tunneling occurs only via tip-substrate con-
duction channels [13–15].

Scanning tunneling microscopy measurements in the tun-
neling regime of Co atoms adsorbed on Cu show the presence
of a Fano structure in the conductance spectra [16–22]. Al-
though there are several theoretical works that model the Co
on Cu system to different degrees of approximation [3,5,7,10–
14,23], a complete understanding of the correlated behav-
ior of Co adatoms on Cu requires further research [3,10].
An important example is the relevance of Shockley surface
states [24] in the ZBA observed in conductance spectra of
magnetic impurities adsorbed on (111) surfaces, which has
been a subject of controversy. On the one hand, it has been
observed that the Kondo structure can be detected only with
the tip within a lateral distance of 10 Å from the adatom on
Au(111) [4], Ag(111) [25], and Cu(111) [16,19], suggesting a

minor contribution of the surface states to the formation of the
ZBA [5]. The dominant contribution of the bulk states to the
ZBA structures has been also supported by theoretical models
using parametric [26] and first-principles approaches to dif-
ferent degrees of approximation [7,13,27]. On the other hand,
the quantum mirage experiment where a Kondo resonance
is measured in the empty focus of an elliptical corral with a
Co adatom in the other focus, shows that the contribution of
surface states is certainly non-negligible [28]. In addition, a
Co porphyrin molecule adsorbed on a Si(111)-

√
3 × √

3 Ag
substrate, which does not have bulk states close to the Fermi
level, evidences the surface states contribution to the Kondo
resonance in this tailored system [29]. Measurements of Co
adatoms on Ag(111) showed that the Kondo temperature can
be tuned by confining the surface states, evidencing once
more their importance [6,30]. Also with a Ag(111) substrate,
terraces of different widths were used to shift the surface
state band onset above the Fermi level [31]. In this case, the
variation in the conductance spectra of Co adatoms showed
that surface states are required to observe the ZBA for lateral
distances larger than 5 Å, although the Kondo temperature
was determined by the bulk electrons [31]. The latter exper-
imental results are in agreement with theoretical predictions
based on the Anderson model [32], in which surface states
were found to play a major role in the description of the
conductance spectra of adatoms on metallic (111) surfaces
[6,14]. For example, it was found that the position of the
surface states onset with respect to the Fermi level affects
the ZBA line shape [14]. In addition, experimental results
using both magnetic and nonmagnetic metal atoms adsorbed
on Cu(111) and Ag(111) surfaces showed the presence of a
resonancelike feature in the conductance close to the surface
state low band edge [22]. By means of a simple theoretical
model, this structure was associated with the coupling of the
outermost orbital of the adatom with the surface states [22],
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which for Co is the 4s. In a recent study [12], the experimental
conductance of Co on Cu(111) presented in Ref. [22] was
used to fit the parameters of a model including the 3dz2 and 4s
orbitals of Co and the surface and bulk states of the Cu(111)
surface. In Ref. [12] the authors find that the 4s orbital and its
interaction with the tip play a major role in the description of
the STM process.

The density of states projected on the Co 4s orbital, calcu-
lated by density functional theory (DFT), shows an extended
flat structure with an appreciable value around the Fermi level
[10]. This orbital, which is strongly hybridized with the Cu
band states, is in a favorable position to interact with the tip in
the tunneling regime, allowing an indirect interaction between
the tip and the Cu surface [12]. These observations induce the
proposal of considering that the interference process leading
to the Fano line shape occurs on the Co adatom, between the
correlated 3d levels and the 4s orbital, neglecting the direct
interaction of the tip with the surface. Although corrections
related to the direct tunneling to band states may be nec-
essary in some systems, for example to model large lateral
displacements of the tip, the approach of considering that the
interference develops between the correlated d orbitals and
an essentially noninteracting level has been used to analyze
conductance in both tunneling [3] and contact [9] regimes.
Regarding in particular the Co on Cu(111) system that we
study in this work, Ref. [3] analyzes it by considering the
interference as occurring between one correlated d orbital and
a hybridized sp orbital. This assumption is supported by a re-
cent theoretical model which showed that, among the possible
direct or indirect couplings of the tip with the Co adatom, the
hopping with the Co 4s orbital should be dominant in order to
reproduce the experimental findings [12]. Taking into account
the available works on this system, such as Refs. [3,12], it
is worth emphasizing the main contributions of our proposal.
On the one hand, in our description we include the five d
orbitals in a correlated way, assuming that the noninteracting
channel is provided by the Co 4s orbital. On the other hand,
we calculate the required self-energies from first principles,
and estimate the energy levels in the same way, being the
absolute position of the latter our only adjustable parameter. In
addition, our method to calculate the Hamiltonian parameters
allows a proper description of the surface states of Cu(111)
and an exhaustive analysis of their influence in the line shape
of the ZBA. We neglect the image state band, which disperses
over a rather small energy range in the Cu(111) surface. This
assumption is not directly applicable to a Cu(100) surface,
where the large lifetime image state [33] possibly has a key
role in the interaction with the adsorbate and tip states.

For the description of the system, we use the Anderson
Hamiltonian in its ionic form [1,34]. We extend a previously
proposed multiorbital correlated model [35] to incorporate the
4s orbital as an additional conduction channel treated within
a mean-field-like approximation that assumes no contribution
to the Co spin polarization. We solve the ionic Hamiltonian
by means of Green functions calculated using the equation of
motion (EOM) method, closing the system of equations in a
second order in the atom-band coupling term [36–38]. This
method has been used in several systems where many-body
effects become relevant [35,36,39–43]. The introduction of
the Hamiltonian and its solution are presented in Sec. II.

In Sec. III we present a first approach to the description of
the Co on Cu(111) system, using DFT calculations to compute
the orbital occupations and estimate the total spin of the Co
adatom. In Sec. IV we proceed to calculate the Anderson
Hamiltonian parameters required for the description of the
system with our model, namely, the Anderson self-energies
and the energy levels. One challenge in the calculation of
the conductance spectra of very dilute impurity atoms ad-
sorbed on (111) surfaces is a first-principle calculation of
the surface states contribution to the atom-surface interaction.
Typical approaches to compute the required Hamiltonian pa-
rameters rely on DFT supercell calculations of the surface
with the impurity. Then, an accurate description of the surface
states requires a large number of atoms, with estimations of
more than a hundred atoms per slab layer [27]. However, the
number of atoms is normally restricted by the computational
cost. In consequence, some deviations of theoretical predic-
tions from experimental results have been associated with the
necessity of improving the surface states description in the
parameters calculation [3,10]. Our approach for the calcula-
tion of the Hamiltonian parameters is based on a bond-pair
model [44] which leads to the description of the Anderson
self-energies in terms of two independently calculated quan-
tities: the dimeric couplings between the adatom and each
surface atom, and the density matrix of the surface without
the impurity. In this way we obtain the density matrix using a
primitive cell of the clean surface, avoiding supercell effects
and obtaining an accurate description of the surface states. In
addition, we are able to identify the contribution of each band
to the couplings with the different adatom orbitals and their
influence in the Anderson widths.

In Sec. V we present our correlated calculations of the sys-
tem. For the conductance calculations, we model a Cu tip on
top of the Co adatom and compute the couplings with the dif-
ferent orbitals, following the same procedure used in Sec. IV.
By assuming a hypothetical Lorentzian peak as the Kondo
structure introduced by the interaction between the correlated
Co dz2 orbital and the substrate bands, we analyze the effect
of this orbital in the s level. The interference between both
channels produces a ZBA that can be detected in the s or-
bital spectral density. Using our description of the Anderson
widths, we identify the influence of the Cu(111) surface states
in the ZBA shape. We proceed then to present and discuss
the conductance results using our correlated model and to
compare them with available data. Our model is able to qual-
itatively reproduce the experimentally observed ZBA [19,22]
and the resonancelike feature close to the surface state bands
onset [22]. The conclusions are presented in Sec. VI.

II. THEORY

A. Ionic Hamiltonian

We use the ionic Hamiltonian formalism, obtained by pro-
jecting the Anderson Hamiltonian in an adequate space of
configurations [1,34,45]. The crystal field lifts the degeneracy
of the atomic configurations and the lower symmetry leads
to the quenching of the orbital angular momentum. Then we
assume that the ground state of the atom becomes an orbital
singlet with angular momentum 〈L̂〉 = 0, so that the atomic
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configurations are determined by the total spin S and the spin
projection M, and are degenerated in M. We consider the
infinite-U approximation in a strong Hund’s rule coupling
regime, in which the configuration space is restricted to states
with total spin S and S − 1

2 [1]. The infinite-U approach
has been used for the description of atom-surface interact-
ing systems in out-of-equilibrium dynamical and stationary
situations [35,36,39–43,46–49]. In particular, in Ref. [35] we
applied it to the study of a Co adatom on graphene, including
the five Co d valence orbitals in a correlated way. In this work
we extend our correlated d orbitals model to incorporate the
Co 4s orbital, treated within an independent electron approx-
imation. For the s orbital we keep the description based on
fermionic operators, and we consider the same orbital energy
εs for both spin projections within a mean-field picture. In this
way, the s orbital does not contribute to the spin polarization of
the adsorbed Co atom. Working in the hole picture, we obtain
the following Hamiltonian that describes the Co adatom on
the surface:

Ĥ =
∑
k,σ

εkn̂kσ +
∑
M,p

ES,p|S, M〉p〈S, M|p

+
∑
m,q

ES− 1
2 ,q|S − 1

2 , m〉
q
〈S − 1

2 , m|
q

+
∑

k,σ,M,p,q

(
V pq

kSMσ
ĉ†

kσ |S − 1
2 , M − σ 〉

q
〈S, M|p + H.c.

)

+
∑

σ

εsn̂sσ +
∑
k,σ

(Vksĉ
†
kσ ĉsσ + H.c.). (1)

In Eq. (1), n̂kσ is the number operator for a hole with spin
projection σ = ±1/2 in the k-band state, with energy εk. The
terms related to the Co d orbitals are written using Hubbard
projection operators |S, M〉〈S, M| [45], with S (S − 1

2 ) being
the larger (lower) total spin and M (m) its projection. The
indices p and q identify the orbitals occupied by holes in each
state. For example, p = dxzdyzdz2 when those three orbitals are
occupied by holes in an S = 3

2 configuration. If the hole in
the dz2 orbital of the latter configuration is transferred to the
substrate, we obtain the q = dxzdyz state with S − 1

2 = 1. The
quantities ES,p and Es,q are the total energies of the configu-
rations |S, M〉p and |S − 1

2 , M − σ 〉
q
, respectively. The total

energies define the single particle energy level active in the
transition between the configurations labeled with p and q,
εd (p,q) = ES,p − ES− 1

2 ,q. We identify the orbital active in the
transition between configurations p and q with d (p, q) = di.
In the previous example, d (p = dxzdyzdz2 , q = dxzdyz ) = dz2 .

The coupling between the substrate bands and the Co
d orbitals is written using the fermionic creation operator
ĉ†

kσ for the k-band states, and the annihilation projector
operator that acts in the selected space of the Co atom
|S − 1

2 , M − σ 〉
q
〈S, M|p. The coupling parameter is given by

[1]

V pq
kSMσ = 〈S − 1

2 , M − σ |
q
ĉd (p,q)σ |S, M〉pVkd (p,q), (2)

where Vkdi corresponds to the coupling between the Co di

orbital and the k-band state, and ĉdiσ is the fermionic an-
nihilation operator that acts in the di orbital. The Hermitian
conjugate is indicated with H.c.

On the other hand, the coupling term corresponding to
the Co s orbital uses fermionic operators defined in the hole
picture, with a coupling parameter Vks between the k-band
state and the s orbital.

B. Green functions and conductance expressions

The solution is found in terms of Green functions like the
following:

Gb̃
ã(t ′, t ) = iθ (t ′ − t )〈{Â†(t ′), B̂(t )}〉, (3)

where 〈•〉 is the mean value taken on the Heisenberg represen-
tation and {•, •} is the anticommutator of two operators. Both
Â and B̂ are replaced with either |S, M〉p〈S − 1

2 , M − σ |
q

or

ĉsσ , and the ã and b̃ indices are, respectively, replaced with pq
and ss. In this way we define four types of Green functions:
Gpq

pq = Gpq, Gss
pq, Gpq

ss , and Gss
ss = Gss (see Appendix A).

The Green functions are calculated by using the equations
of motion method (EOM) [37,38] and closing the system of
equations that involve an increasing number of particles in
a second order in the atom-band coupling term [36]. The
resolution method has been extensively discussed in different
applications of this approach [35,36,39–43], and therefore we
present the derivation and final expressions in Appendix A.

In the steady-state limit the Green functions are transla-
tionally invariant in time, so that the solution is given by
the Fourier transform of the EOMs. The equilibrium Green
functions corresponding to the s (Gs) and each di (Gdi ) orbitals
of the adatom are then built using the Green functions defined
in Eq. (3),

Gdi (ω) = γS

∑
p,q

δd (p,q)di Gpq(ω), (4a)

Gs(ω) = 2G0
ss(ω) + G(c)

s (ω), (4b)

where γS = 2S + 1. The mixed Green functions (Gdi
s , Gs

di
)

are defined analogously to Eq. (4a). The independent particle
Green function G0

ss in Eq. (4b) is given by

G0
ss(ω) = 1

ω − εs − �0
s (ω)

. (5)

In the presence of the correlated d orbitals, the s Green func-
tion is modified by G(c)

s , which is given by

G(c)
s (ω) =

∑
di

[
σsdi (ω)

]2
Gdi (ω), (6)

where

σsdi (ω) = �0
sdi

(ω)G0
ss(ω). (7)

The Anderson self-energies introduced in Eqs. (5) and (7)
are given by

�0
ab(ω) =

∑
k

V ∗
kaVkb

ω − εk − iη
, (8)

where a and b are replaced by s or di, �0
a ≡ �0

aa and iη
is an infinitesimal imaginary quantity. In our approach, the
spectral density corresponding to each orbital is given by the
imaginary part of the corresponding Green function, Eq. (4a)
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TABLE I. Orbital occupations per spin projection of Co adsorbed
on Cu(111) and total occupation of the d shell and sp shell.

E1 E2 A1 d shell s px/py pz sp shell

0.77 0.78 0.77 7.74 0.25 0.07 0.05 0.88

or (4b):

ρa(ω) = 1

π
ImGa(ω). (9)

In the near-equilibrium situation, at low temperature and
small bias, we calculate the conductance G(V ) between the
adatom and a tip using [9,50]

G(V ) = G0[Td (eV ) + Ts(eV ) + Tsd (eV )], (10)

where the transmission is decomposed into

Td (ω) =
∑

di

�eff
di

(ω)ImGdi (ω), (11a)

Ts(ω) = �eff
s (ω)ImGs(ω), (11b)

Tsd (ω) =
∑

di

�eff
sdi

(ω)
[
ImGs

di
(ω) + ImGdi

s (ω)
]
, (11c)

and G0 = 2e2/h is the quantum of conductance. In the previ-
ous expressions, �eff is defined as

�eff
ab (ω) = 2�0

ab(ω)�0-tip
ab (ω)

�0
ab(ω) + �

0-tip
ab (ω)

, (12)

where �0
ab and �

0-tip
ab are the Anderson widths given by the

imaginary parts of the self-energies corresponding to the inter-
action of the Co adatom with the surface and tip, respectively
[Eq. (8)]. As before, we abbreviate the notation by using �a

instead of �aa.

III. GEOMETRY AND SYMMETRY CONSIDERATIONS

We performed DFT calculations of the Co adatom on the
Cu(111) surface to obtain the geometrical structure of the
system and the orbital occupations of the adatom. We used
the SeqQuest code [51,52] with the PBE [53,54] functional
and a force convergence criterion of 0.01 eV/Å. The obtained
bulk lattice parameter for Cu was 3.62 Å. We performed
4 × 4 supercell calculations of a (111) surface slab with five
atomic layers and including the Co adatom, adding 15 Å
of vacuum to ensure the decoupling between surfaces and
relaxing the system. We found that the preferential adsorption
site is hollow, in agreement with previous works [10,55]. We
found an adsorption height of the Co adatom of 1.69 Å, ≈5%
lower than the value reported in Ref. [55] for the same system
but using a different DFT code (CASTEP [56]) and other
functional (LDA [57]).

The C3v symmetry splits the d orbitals into the groups E1
(dxz, dyz), E2 (dx2−y2 , dxy), and A1 (dz2 ). The energy levels and
self-energies depend only on the symmetry of the involved or-
bital, for example, εdxz = εdyz ≡ εE1. Then a similar notation is
used for the remaining energy levels and for the self-energies.

In Table I we present the orbital occupations per spin for
each group, obtained from DFT calculations by using Löd-
win population analysis. The obtained occupations for the d
shell suggest fluctuations between configurations with seven
and eight electrons, in agreement with previous calculations
[55,58]. Then we will consider states with total spin values of
S = 3

2 and S − 1
2 = 1, that is, fluctuations between configura-

tions with three and two holes in the d shell.
The splitting of the Co d orbitals into three groups leads

to five different ways to accommodate the three holes of the
S = 3

2 states into the five d orbitals. Five possibilities cor-
respond also to the two-holes configurations of the S − 1

2 =
1 states. The transitions between these configurations lead
to 11 nonequivalent fluctuations, that is, 11 different Green
functions to calculate. We present the possible configura-
tions for each spin state and the corresponding transitions in
Appendix B.

IV. HAMILTONIAN PARAMETERS

A. Self-energies

The most relevant quantities for our calculation are the
Anderson widths or hybridization functions, given by the
imaginary part of Eq. (8):

�0
ab(ε) = π

∑
n,k

V ∗
nkaVnkbδ(ε − εnk ). (13)

In Eq. (13) the indices a and b correspond to s or di. In this
section we write explicitly the band index n in the atom-band
coupling terms Vnka.

We calculate the atom-band coupling terms Vnka by using
the bond-pair model [44]. The model express Vnka in terms of
the coefficients of the density matrix of the surface without the
impurity and the dimeric couplings between the impurity and
each surface atom in the symmetrically orthogonalized basis
[44]. This expansion of Vnka leads to the following expression
[35]:

V ∗
nkaVnkb =

∑
α,β,r,t

eik·(Ll (r)−Ll (t ) )cnk
αh(r)

(
cnk
βh(t )

)∗
V ∗

αraVβtb. (14)

In Eq. (14) Vαra corresponds to the symmetrically orthogo-
nalized coupling between the a orbital of the impurity and
the α orbital of the r surface atom [44]. The coefficients cnk

αh
define the symmetrically orthonormalized density matrix of
the surface,

ραβrt (ε) =
∑
n,k

eik·(Ll (r)−Ll (t ) )cnk
αh(r)

(
cnk
βh(t )

)∗
δ(εnk − ε), (15)

with Ll (r) being the Bravais lattice vector of the l (r) unit cell,
where the r atom is located. We identify each atom inside
the unit cell with a basis index h(r). We write explicitly the
Bravais lattice vector to remark that the cnk

αh coefficients can
be calculated using a primitive cell of the surface without
the impurity, which allows us to identify the couplings of
the Co orbitals with each surface band. Using this method
also allows us to determine the Anderson widths avoiding
supercell effects [35]. Note that we use the term density matrix
to refer to the object defined by Eq. (15), which are the matrix
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FIG. 1. (a) Density of states and (b) band structure of Cu(111). The shadowed regions correspond to the bulk bands projected into the
surface. Two surface states are indicated, SS1 (green) and SS2 (red). (c)–(h) |Vnka|2 for three orbitals of Co on Cu(111) on hollow position at
1.69 Å. The colors and linewidths show the correspondence between the bands in (a) and the |Vnka|2 in (f)–(h). The contour plots (c)–(e) show
the |Vnka|2 corresponding to the SS2 surface state in the first Brillouin zone for the different orbitals. The k-path K�MK shown in (b) and in
(f)–(h) is indicated in the contour plots.

elements of the spectral function. We should notice that the
described approach is adequate for very dilute impurity atoms.

The coefficients of the density matrix of the Cu(111) sur-
face were obtained from DFT calculations of a 1 × 1 slab,
with nine atomic layers and a vacuum separation of 15 Å. We
used a 100 × 100 k-point grid for the calculation of the band
structure and density matrix. We verified that the Anderson
widths have converged with the number of Cu atoms by in-
cluding up to nine Cu neighbors in the calculation given by
Eq. (14).

Our approach to calculate the Anderson self-energies al-
lows us to clearly identify the contribution of the surface states
that appear in the Cu(111) surface. In Fig. 1 we show the
surface band structure and the square modulus of the atom-
band couplings |Vnka|2 computed with Eq. (14) for the orbitals
dxz, dz2 , and s. The light shadowed regions correspond to the
bulk Cu bands, projected into the (111) surface. They were ob-
tained from a bulk calculation of the system, using as supercell
the same slab as for the surface calculation, without the extra
vacuum between slabs repetitions. For the bulk calculation
we used the same k-point grid used in the slab calculation
in the surface plane and a single k-point in the normal [111]
direction.

It is clear from the total density of states [DOS, Fig. 1(a)]
that most of the states lie between −5 and −1 eV, correspond-
ing to the d bands of the bulk. In Fig. 1(b) we clearly identify
the Shockley surface states (SS), SS1 and SS2. The d orbitals
present a coupling with the surface states that is comparable or
lower than the one corresponding to the bulk bands [Figs. 1(c),
1(d), 1(f), and 1(g)]. The minor coupling of the d orbitals
with the SS has been used to support the hypothesis based on
experimental data of a small influence of the surface states
in the Kondo structures [16,19]. However, for the s orbital
[Figs. 1(e) and 1(h)], the couplings with the Shockley surface
states in the sp band gap are the most important, about ten
times larger than the corresponding couplings of the d orbitals

(note the change in scale). As we will discuss later on, this
significant coupling of the surface states with the Co 4s orbital
can explain the ZBA observed in the measured conductance
spectra [19,22].

The |Vnks|2 coupling of the s orbital with the surface states
is strongly localized around the � point [Figs. 1(e) and 1(h)].
Then the influence of these states in the hybridization function
will be mainly seen at the energy of the SS bands close to that
point of the reciprocal space (≈−0.5 eV). The same is true for
the A1 (dz2 ) orbital, which also presents a localized coupling
with the surface states around the � point [Fig. 1(g)]. For the
E1 orbitals there is a localized coupling with the Shockley
states at the K points, where the corresponding bands are at
≈4.6 eV [we only show dxz in Figs. 1(c) and 1(f)]. Then we
expect to observe an important influence of the surface states
in the E1 hybridization function at this energy.

In Fig. 2 we show the Anderson widths �0 for each orbital.
The calculation is performed by using Eqs. (13) and (14),
where we identify the contribution of each band to the total
hybridization functions. This approach allows us to perform
the theoretical exercise of neglecting the coupling of the sur-
face states in the calculation of the Anderson self-energies.
Then, in Fig. 2 we also present the results obtained for Co
on Cu(111) without including the coupling with the Shockley
states SS1 and SS2 in Eq. (13), in order to obtain an hypothet-
ical Anderson width without the surface states contribution.
In addition, we present the contribution corresponding to the
surface states to the total widths. Due to the symmetry of the
system, only the dz2 orbital couples with the s orbital through
the substrate band. Then, the only off-diagonal width that is
non-null is �0

sdz2
= �0

dz2 s, shown in Fig. 2(e).
The Anderson widths present a large weight between ω =

−3 eV and ω = −1 eV, in the energy region where the
bulk Cu d bands are located [see Fig. 1(a)]. Considering the
position of the Shockley surface states in the Cu(111) band
structure and their coupling strength with the Co orbitals we
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FIG. 2. (a)–(e) Anderson widths �0 for Co on Cu(111) at the
calculated adsorption height, including and neglecting the surface
states SS1 and SS2 shown in Fig. 1. The arrows indicate the energy
position of the surface states bands in (a) the K point and (c)–(e)
the � point. (f)–(j) The contribution of the surface states to the total
Anderson widths.

can identify their influence on the atom-band hybridization
functions �0. In Fig. 2(a) the �0

E1 of Co on Cu(111) presents
a peak at ω = 4.6 eV, associated with the coupling of the
Shockley states SS1 and SS2 with the Co E1 orbitals at the K
points [Figs. 1(c) and 1(f)]. The same Shockley states are re-
sponsible for the structure that appears in �0

s at ω = −0.5 eV
[Figs. 2(d) and 2(i)], the energy position close to the � point
where the surface states reach their maximum coupling with
the Co 4s orbital [Figs. 1(e) and 1(h)]. The couplings �0

A1
and �0

sdz2
are also modified in the same energy region, while

the influence on the remaining E2 orbitals close to the Fermi
energy is negligible.

The ratio of the contributions to the total hybridization
function at the Fermi level of the surface (�0(S)) and bulk
states (�0(B)), �0(S)/�0(B), corresponds to 0.08 for the E1
orbitals, 0.03 for the E2, 0.50 for the A1, and 1.11 for the
4s orbital. The values for the d orbitals are roughly one order
of magnitude larger than those obtained in Ref. [27], where
a parametrized tight-binding Hamiltonian was used for their
calculation. Our value for the ratio �0(S)/�0(B) for the A1
orbital is instead in line with an estimation based on modeling
the quantum mirage effect, which found a lower limit of 0.1
[59] and with a further refinement of the estimation leading to

a value of 1 [6], and agrees with the value used in Ref. [12] to
model the Co on Cu(111) system.

B. Energy levels

The calculation of the energy levels is also performed by
using the bond-pair model [44]. The many-body Hamiltonian
that describes the atom-surface interacting system is calcu-
lated in a mean-field approximation and introducing a second
order expansion in the atomic overlap, in order to obtain the
total energies of each configuration involved, which in turn
define the energy levels active in the transitions through the
differences between them.

The asymptotic levels with respect to the vacuum were ob-
tained by taking into account experimental data of the excited
neutral (3d84s1) and ionic (3d74s1) configurations energies
[60], so that the asymptotic energy levels εdi with respect to
vacuum are given by E (3d74s1) − E (3d84s1) = −7.76 eV.
The image potential contribution 1/4(z − zp) in atomic units
(a.u.) and at a normal distance to the surface z was taken into
account by considering a matching distance of the long and
short range interactions of zc = 8 a.u. and the image plane
at zp = 2 a.u. [44,61]. The energy levels are then referred to
the surface Fermi level, considering a work function value
of 4.94 eV [62]. The obtained values at the Co adsorption
distance were εE1 = −2.6 eV, εE2 = εA1 = −2.5 eV, and
εs = 2.5 eV.

The obtained energy levels of the d orbitals lie consid-
erably below the Fermi level. As an alternative method to
estimate the energy levels, we use a simplified model (NC)
which consists of calculating the spectral densities by disre-
garding multiorbital correlation. Then we consider the orbitals
as being independent from each other, although we keep the
normalization condition for the occupation probabilities. For
the calculation of the Green functions of the d orbitals under
our NC approximation, we keep only the terms with q′ = q
and p′ = p in Eqs. (A3b) to (A3c). On the other hand, for
the s orbital we use directly the independent particle Green
function, Eq. (5). In both cases we obtain the spectral densities
from the imaginary part of the corresponding Green functions
by using Eq. (9). We compared the spectral densities obtained
by using the NC model and several energy level shifts, main-
taining the level splitting of the bond-pair calculation, with the
DFT partial DOS (PDOS). The results are presented in Fig. 3.

Figure 3 shows a good agreement between the PDOS
calculated with DFT and the spectral densities of the NC
model when we use the energy levels positions correspond-
ing to εE1 ≈ −0.2 eV. Then the values of εE1 for which
the NC results approximately match the PDOS are shifted
≈2.4 eV with respect to the values given by the bond-pair
model. This kind of uncertainty in the energy levels is present
in many approaches used to compute them [10,63–65], and
rigid shifts on the energy levels or chemical potential are
usually introduced to improve the description of experimental
results. Therefore, we will present calculations for different
energy levels, considering them as adjustable parameters of
our model. We use the criterion of maintaining the splitting
between levels obtained with the bond-pair model. In this way
we consider the energy splittings εE2 − εE1 = εA1 − εE1 =
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FIG. 3. Spectral densities for each orbital group calculated with
the NC model (discontinuous lines), compared with DFT partial
DOS (full lines). We performed calculations for different energy
level positions, assuming the splittings obtained with the bond-pair
calculation. The arrow indicates the position of the Shockley states
SS at the � point, which introduces the resonancelike peak in the s
orbital spectral density.

0.1 eV and εs − εE1 = 5.0 eV, and we use as reference the
position of the εE1 energy level.

We should notice that although our NC model neglects
correlation between multiple configurations, it includes corre-
lation in each orbital, which introduces the structures observed
in the spectral densities at the Fermi level [Figs. 3(a) to 3(c)].

In Fig. 3(d) the εs energy level position varies between
4.2 and 5.4 eV. In contrast with the d orbitals results, the
spectral densities corresponding to the s orbital, presented in
Fig. 3(d), remain largely unaffected by the energy level shifts.
In addition, they are mainly structureless, with the exception
of a peak at ω ≈ −0.5 eV observed in the NC calculation. The
peak appears to be shifted to lower energies in the DFT PDOS.
This peaked structure, introduced by the Anderson self-energy
in the independent particle Green function of Eq. (5), is related
to the Shockley states SS1 and SS2, and can be also noticed (in
a smaller scale) in the spectral density corresponding to the
A1 orbital, Fig. 3(c).

Notice that the DFT results presented in Fig. 3 use a su-
percell approach for the calculation, which would require a
much larger cell size to properly describe the surface states
of Cu(111) in the presence of the impurity [27]. On the other

FIG. 4. (a) Energy levels shifted by the real part of the An-
derson self-energy εD + �0

D(εD ), and broadened by its imaginary
part �0

D(εD ), for each group D = E1, E2, A1. (b) Hole occupa-
tion per orbital for each group and total hole occupation in the d
shell. (c) Occurrence probabilities for each configuration with three
holes, without considering the sum over equivalent configurations.
(d) Same as (c) for the two-holes configurations. The results in
(b)–(d) take into account the summation over the spin projection
index.

hand, the self-energies that we calculated are computed from
the data of the Cu surface without the impurity, so that they
include the surface states given by the DFT calculation of a
1 × 1 cell of a clean Cu(111) slab.

V. CORRELATED CALCULATIONS

A. Occurrence probabilities of each configuration
and orbital occupations

In Fig. 4(a) we present the one-particle energy levels
shifted by the real part of the noninteracting self-energies,
εD + �0

D(εD) [�0
D = �0

D + i�0
D, see Eq. (8)]. The energy lev-

els, broadened by the imaginary part �0
D(εD), are presented for

each group D = E1, E2, A1. We show the results as a function
of the position of εE1, taken as reference and being the relative
energy positions of the other orbitals given by the splitting
obtained from the bond-pair model in Sec. IV B. The hole
occupations and occurrence probabilities, which depend on
the positions of the energy levels, are shown in the remaining
panels of Fig. 4 as a function of the same reference value εE1.

Our ionic Hamiltonian approach allows us to identify the
occurrence probability of each atomic configuration of the
considered space (see Table II). Figure 4(c) presents the oc-
currence probabilities for the configurations with three holes,
obtained from Eq. (A4a) and summed over the total spin
projection index M. The same is shown in Fig. 4(d) for the
two-holes configurations, obtained from Eq. (A4b). Note that,
for example, the two-holes configuration E1A1 of Fig. 4(d)
corresponds to the configuration with holes in the dz2 orbital
and either the dxz or the dyz orbital. That is, the occur-
rence probabilities of all the equivalent configurations are not
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summed in Figs. 4(c) and 4(d) (see Appendix B). The orbital
occupations are obtained from the occurrence probabilities of
each configuration by using Eq. (A5). We present the hole
occupation per orbital in Fig. 4(b), together with the total hole
occupation of the d shell.

When εE1 � −2 eV all the orbital energies are well defined
below the Fermi energy EF = 0 eV [Fig. 4(a)]. Then the
occurrence probabilities of the three-holes configurations are
negligible [Fig. 4(c)], and all the two-holes configurations are
equally probable [Fig. 4(d)]. As a result, the occupation of
the five d orbitals is the same [Fig. 4(b)] and the total hole
occupation approaches the value 2. The other limit situation,
with all the energy levels well defined above EF , occurs for
εE1 � 3 eV. In this case, the three-holes configurations are
the most probable, and the total hole occupation approaches 3.
For εE1 � −1 eV, the shifted energy levels [Fig. 4(a)] increase
quite linearly with the bare energy level εE1.

When the energy levels are close to the Fermi level
(−0.5 � εE1 � 0.5 eV), the three-holes configurations that
have the A1 orbital occupied, namely E1E1A1, E1E2A1, and
E2E2A1, are the most probable [Fig. 4(c)]. The dominant
two-holes configurations in this region are also those with the
A1 orbital occupied, E1A1 and E2A1 [Fig. 4(d)]. In a first
approximation we can relate this observation to the shifted en-
ergy levels presented in Fig. 4(a). The A1 energy level remains
above the other levels, and therefore is the most favorable
orbital to be occupied by holes. As a result, the mean occupa-
tion of the A1 orbital including spin, approximately constant
around EF , results in ≈0.85 holes, that is ≈1.15 electrons. We
observe that the occupation of the E1 orbitals also presents
a small variation in this region, which can be related to the
relatively broad energy width [Fig. 4(a)]. On the other hand,
the E2 level has a smaller Anderson width, giving place to a
more marked dependence of the orbital hole occupation when
the energy level is close to EF . The hole occupation tends
to increase as the E2 level crosses EF [Fig. 4(b)]. Around
EF , both E1 and E2 present a mean occupation of ≈0.4
holes, that is ≈1.6 electrons. While the occupations of the E1
and E2 orbitals are similar to the DFT results presented in
Table I (≈1.55 electrons), the occupation of the A1 orbital is
driven closer to 1 when compared with the DFT result of 1.54
electrons.

Our ionic Hamiltonian proposal, where all the d orbitals
are considered as active, gives place to a multiconfigurational
state with many S = 3/2 and S = 1 configurations. For each
three-holes configuration we have the possibility of fluctua-
tions to three configurations with two holes (see Table IIc).
From Figs. 4(c) and 4(d) we can extract the occurrence
probability of each three-holes configuration and of the corre-
sponding two-holes configurations to which it can fluctuate, as
a function of the energy level position. In principle, different
probabilities suggest different correlation regimes associated
with each fluctuation. If the S = 3/2 configuration has a much
larger probability, a Kondo regime is expected, while if the
probabilities of both spin configurations S = 3/2 and S = 1
are similar, a mixed valence is occurring. Finally, the empty
orbital regime takes place for a predominant probability of the
S = 1 configuration. On the other hand, if the three possible
fluctuations for a given three-holes configuration correspond
to the Kondo regime with very similar Kondo scales, a full

FIG. 5. (a) Geometry and (b) couplings involved in the surface-
atom-tip system.

screened Kondo effect is suggested. In our case, where dif-
ferent energy levels and hybridization widths are involved,
either a partially screened or a two stage Kondo effect would
be expected [66,67].

It is important to note that in our proposal all the configu-
rations become mixed, and the resulting charge redistribution
that occurs can suppress the local moment of the Kondo-
active space of configurations [68]. As it was discussed in
a previous work [35], the spectral densities calculated with
our model show various peaks whose positions and widths are
determined by the self-energies defined by Eq. (A3b). These
structures, coming from the different orbitals that give place
to virtual transitions, are related to the electronic correlation
in a multiorbital system [35].

B. Considerations for conductance calculations

We consider the conductance through a Co adatom on
Cu(111) when a tip is placed on top of it. With that aim
we modeled a tip of Cu with a three layers pyramid on a
4 × 4 × 6 slab of Cu(111). The calculation of the atom-tip
Anderson widths �0-tip was done following the same proce-
dure of Sec. IV, by computing the dimeric couplings between
the Co adatom and the atoms of the tip and afterwards con-
structing �0-tip by using the density matrix of the Cu tip
obtained by DFT. In Fig. 5 we present schemes of the ge-
ometry of the surface-atom-tip system and the hybridization
functions involved.

The hybridization functions of the Co adatom with the
tip are shown in Fig. 6. We present the dependence of �0-tip

evaluated at the Fermi level with the atom-tip distance, as well
as �0-tip(ω) when the tip is near (2.1 Å) and far (6.3 Å) from
the Co adatom.

The hybridization strength follows symmetry considera-
tions: the extended s orbital has the largest coupling, and
the A1 orbital is favored because the tip is on top of the
adatom. The E1 orbitals have a considerably lower coupling,
while the coupling of the E2 orbitals, located in the surface
plane, is negligible. At large atom-tip distances, the relative
coupling of the s orbital with respect to the remaining ones
increases. Then, when the tip is far from the atom, the trans-
mission through the d orbitals [Eq. (11a)] is negligible due to
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FIG. 6. Atom-tip coupling �0-tip for Co-tip distances of (a) 2.1 Å
and (b) 6.3 Å, for each orbital. (c) The dependence of �0-tip at the
Fermi level with the atom-tip distance.

their localization [14], and the transmission will occur mainly
through the s orbital [Eq. (11b)]. In this case, if there is a zero-
bias anomaly (ZBA) in the conductance spectra introduced by
the Co 4s conduction channel, this will be the dominant one.

We should mention that in our calculations we consid-
ered the Co adatom at its equilibrium position without the
tip, that is, we used the hybridization functions presented in
Sec. IV A for the atom-surface coupling and did not compute a
relaxed geometry including the tip at different distances. This
approximation is supported by the observation that geometry
relaxation effects can be neglected in this system [10,20,27].

C. Effect of the 3dz2 orbital in the Co 4s spectral density
and surface states influence

The conductance of the s orbital, calculated from Eq. (11b),
has two contributions: the independent particle term given
by G0

ss [Eq. (5)] and the term introduced by the interaction
with the correlated d orbitals G(c)

s [Eq. (6)] [9]. Then the Ts

contribution to the conductance is given by

Ts(ω) = 2�eff
s (ω)ImG0

ss(ω) + �eff
s (ω)ImG(c)

s (ω). (16)

Clearly any possible zero-bias anomaly in the conductance
spectra of the s orbital will be introduced by the second
term of Eq. (16), given that the first term corresponds to an
independent particle calculation. The function G(c)

s is given
by Eqs. (6) and (7), and depends on the off-diagonal Anderson
widths �0

sdi
. Given that, among the off-diagonal hybridization

functions between the s and d orbitals, only �sdz2 is nonzero,
we obtain

ImG(c)
s (ω) = Im

[(
σsdz2 (ω)

)2
Gdz2 (ω)

]
, (17)

where

[
σsdz2 (ω)

]2 =
(

�0
sdz2

(ω)

ω − εs − �0
s (ω)

)2

. (18)

In this way, σsdz2 gives place to an interference between the
real and imaginary parts of the Gdz2 Green function, and can
introduce structures in the conductance spectra of the s level.

Let us analyze the effect of σsdz2 in Ts. With that aim we
assume that Gdz2 is given by a hypothetical Green function Gd

[9],

Gd (ω) = Z

ω − i�K
= Z/�K

(ω/�K )2 + 1
(ω/�K + i), (19)

the imaginary part of which corresponds to a Lorentzian peak
of width �K centered at ω = 0 eV. Using Eq. (19) for Gd ,
we evaluate the structures that are introduced in Ts [Eq. (17)]
through (σsdz2 )2, which is in turn calculated from the self-
energies using Eq. (18). We can write the contribution of
ImG(c)

s (ω) in Eq. (17) as a Fano-like function [2,9]. By re-
placing Eq. (19) in Eq. (17) we obtain

ImG(c)
s (ω) = Z

�K

[
Imσsdz2 (ω)

]2
(

(qF + ω/�K )2

1 + (ω/�K )2
− 1

)
, (20)

where the Fano factor qF is defined as

qF = Reσsdz2 (ω)

Imσsdz2 (ω)
. (21)

Notice that the Fano structure of Eq. (20) has the same width
�K as the Lorentzian Gd of Eq. (19). Then the resonance width
�K, associated with the Kondo temperature, is determined by
the original Kondo resonance that emerges from the correlated
d orbitals, which hybridize mainly with the bulk states. The
effect of the surface states is to modify the line shape by means
of the interaction with the s orbital. We present the results of
this analysis in Fig. 7. Given that it is observed a negligible de-
pendence of σsdz2 (ω) with ω in the region near the Fermi level
where the interference structures are relevant (|ω| � 0.04 eV),
we consider its value at ω = 0 eV to calculate qF .

Figure 7(a) shows the parameter (σsdz2 )2 evaluated at ω =
0 eV and as a function of the s orbital energy level εs.
Figure 7(b) presents the same quantity but without includ-
ing the surface states in the calculation of the self-energies
(see Fig. 2). In Fig. 7(c) the qF factor [Eq. (21)] is shown
also as a function of εs, including and neglecting the sur-
face states contribution. In Fig. 7(d) we show the theoretical
Gd given by Eq. (19). We used �K = 4.5 × 10−3 eV, which
corresponds to the Kondo temperature TK ≈ 54 K estimated
from measurements of Co on Cu(111) [19] and we chose
Z = 6 × 10−4, based on the scale of the Kondo structures
obtained in Sec. V D. We notice that this Z value is lower
than the one expected by the estimation Z = �K/�A1(EF ) ≈
1.5 × 10−2. This underestimation of the Kondo structure is a
known artifact of the second order approximation of the EOM
[69]. The real and imaginary parts of (σsdz2 )2 vary with εs and,
together with Gd , produce different interference structures, in-
troduced by ImG(c)

s in the spectral density of the Co 4s orbital.
The ImG(c)

s contribution to the spectral density is shown in
Fig. 7(e), for different values of εs and including or neglecting
the surface states contribution. The shape of the interference
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FIG. 7. (a) Quantity (σsdz2 )2 calculated using Eq. (18) from the
obtained self-energies and evaluated at ω = 0 eV, as a function of εs.
(b) The same quantity as in (a) but computed from the self-energies
without including the surface states. (c) Fano factor qF , calculated
using Eq. (21) and as a function of εs, including or neglecting the
surface states contribution. (d) Hypothetical Gd given by Eq. (19),
with a Lorentzian imaginary part. (e) The contribution to the s
spectral density given by the interaction with the dz2 orbital via the
surface band ImG(c)

s , considering the theoretical Gd of (d) and the
(σsdz2 )2 quantity, for several values of εs and including (full lines)
or neglecting (dashed lines) the surface states contribution. (f) The
total ImGs, which, in addition to the contribution of (e), includes the
independent electron contribution ImG0

ss.

structures respond to the qF factor shown in Fig. 7(c). In
Fig. 7(f) the contribution of the independent electron Green
function ImG0

ss is added to ImG(c)
s , in order to obtain the total

ImGs, which defines the spectral density.
We analyze first the results obtained when we include

the surface states in our calculation of the self-energies. We

observe that Re[(σsdz2 )2] ≈ Im[(σsdz2 )2] when εs ≈ −6 eV
[Fig. 7(a)], so that the structure has similar contributions from
the real and imaginary parts of Gd at this value of εs. This
situation corresponds to a Fano factor qF ≈ 2 [Fig. 7(c)],
giving rise to a slightly asymmetric line shape [Fig. 7(e)].
The relation changes when εs is shifted to higher energies.
In particular, at εs = −2 eV, Re[(σsdz2 )2] becomes negative,
so that the peak in ImGd is transformed into a dip. The dip
is better defined when εs is further shifted to higher energies,
given that Re[(σsdz2 )2] approaches zero. In the same way, qF

tends to zero when εs is increased, in correspondence with
the diplike shape. By comparing Fig. 7(e) with Fig. 7(f), we
can observe that the effect of the independent electron Green
function G0

ss is to add an approximately linear background
to the total spectral density of the s orbital. The slope of
this contribution is positive for εs � −2 eV, and negative for
εs � 2 eV.

We can find the value of εs that gives the Fano factor qF ex-
tracted from experimental measurements of the conductance
of Co on Cu(111), that is, qF = 0.18 ± 0.03 [19]. By using
Eq. (21) we find that εs = 6.2 eV leads to qF = 0.18. The
εs level position obtained is close to our estimation given
by the bond-pair calculation of the energy level including
the shift suggested by DFT results, which positioned the εs

level above the Fermi level at εs ≈ 5 eV (see Sec. IV B). This
position of the energy level gives an occupation of the s orbital
[Eq. (A13)] of 0.18 electrons, which is also consistent with
our DFT results presented in Table I (s orbital occupation of
0.25).

We evaluate now how our results change when we neglect
the surface states contribution. It has been found that a proper
description of the surface states can be relevant in the calcu-
lation of the conductance spectra of adatoms in metallic (111)
surfaces [6,14]. In Fig. 7(c) we observe that the change in
the Anderson widths induced by the exclusion of the surface
state couplings strongly modifies the Fano factor qF that deter-
mines the interference line shape of ImG(c)

s shown in Fig. 7(e).
When the s energy level is located at 2 � εs � 8 eV, the dip
observed when the SS are included changes to a peak when
their contribution is neglected [Fig. 7(e)], corresponding to a
Fano factor qF > 1 [Fig. 7(c)]. Between −2 � εs � 1 eV, the
Fano factor is qF < −1 and a peak structure is also observed
in the case of neglecting the couplings with the Shockley
states [Fig. 7(e)]. Only for a large negative value of εs =
−8 eV we obtain a diplike structure in the case of disregarding
the presence of the surface states. This position of the energy
level εs, well below the Fermi level, cannot be justified. In
summary, if we do not consider the coupling of the Co adatom
with the surface states of Cu(111), the diplike structure ob-
tained at reasonable values of εs is transformed into a peaklike
structure. This result shows that the localized surface states
play a key role in the conductance spectra through the strong
hybridization with the Co 4s orbital. Then, a correct descrip-
tion of the surface states is especially important in this system.

D. Conductance spectra and dependence
with the atom-tip distance

We continue now with the Green functions given by our
correlated calculation. The calculations were made with the
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FIG. 8. (a) Correlated ImGdz2 for different energy level posi-

tions. (b) Resulting ImG(c)
s given by Eq. (20). (c) Contributions to

ImGdz2 at εA1 = 0.7 eV of the possible transitions involving A1 as
an active orbital. A fit of the total ImGdz2 using a Fano function is
shown. The inset shows a zoom around ω = 0 eV to appreciate the
E1E1A1-E1E1 contribution.

energy splitting calculated by using the bond-pair model,
presented in Sec. IV B, and for different energy shifts. We
considered a temperature T = 4.2 K. In Fig. 8 we present
the resulting ImGdz2 and ImG(c)

s , for energy level positions
between εE1 = −0.2 eV and εE1 = 0.6 eV, that is, between
εA1 = −0.1 eV and εA1 = 0.7 eV. Recall that the value εE1 =
−0.2 eV was suggested by the comparison between our NC
model and DFT results in Sec. IV B.

We see in Fig. 8(a) that we obtain a better defined struc-
ture when we shift the energy level positions according to
εE1 = 0.6 eV, which corresponds to εA1 = 0.7 eV. Figure 8(b)
shows the different structures in ImG(c)

s for the energy level
positions considered. The structures vary with the energy lev-
els, and change from a peaklike to a diplike shape. Taking into
account the experimental line shape [19,22], our calculations
at the energy level positions corresponding to εA1 = 0.7 eV
reproduce qualitatively the experimental results. The better
defined Kondo structure obtained introducing this shift to the
energy levels resembles a Lorentzian peak, similar to the Gd

used in Fig. 7. The shift of the energy levels to εA1 = 0.7 eV
also leaves the 4s orbital energy at 5.6 eV, closer to the value
suggested by the experimental qF in Sec. V C.

In Fig. 8(c) we present the contributions of the possi-
ble fluctuations to ImGdz2 , considering εA1 = 0.7 eV. The
occurrence probabilities of the corresponding configurations
involved in the three fluctuations [see Figs. 4(c) and 4(d)] sug-
gest a Kondo regime for E1E1A1-E1E1 and E1E2A1-E1E2,
and for E2E2A1-E2E2 a Kondo regime towards a mixed
valence one. The structures shown in Fig. 8(c) indicate that

FIG. 9. Calculated conductance of a Co atom adsorbed on
Cu(111). We considered the tip far from the surface, so that the con-
ductance is dominated by the s orbital. We compare our results with
experimental data from Limot et al. [22] and Knorr et al. [19]. We
present for comparison the conductance calculated without including
the surface states in the calculation of the self-energies corresponding
to Co on Cu(111) (see Sec. V C).

the Kondo resonance is mainly defined by the fluctuation
between the configurations E2E2A1 and E2E2. This contri-
bution introduces an asymmetric structure, which is in turn
translated into asymmetric structures in ImG(c)

s in Fig. 8(b).
We should note that our description of the Kondo resonance
is certainly limited by our approximation based on the EOM
method closed up to a second order in the atom-band coupling.
In Fig. 8(c) we fit a Fano function [2] to the result obtained at
εA1 = 0.7 eV,

fFA(ε) = 1

1 + q2
F

(
(qF + ε)2

1 + ε2
− 1

)
, (22)

considering a linear offset, an energy window of ±0.01 eV,
and with ε = (ω − ω0)/(kB�FA). The fitting parameter ω0

corresponds to the center of the resonance, while kB is
the Boltzmann constant. The resulting half-width at half-
maximum �FA = 31.4 ± 0.6 K provides an estimation of the
Kondo temperature [70,71], which is in reasonable agreement
with experimental data [19].

When the tip is far from the surface, the dominant con-
tribution to the conductance is given by Ts [Eq. (11b)]. In
Fig. 9 we present Ts, calculated by considering εA1 = 0.7 eV
and the bond-pair energy levels splitting. In order to infer the
importance of a good description of the surface states, we also
present the result obtained without including the Shockley sur-
face states in the calculation of the self-energies, as discussed
in Sec. V C. We consider for the conductance calculation a
practically flat �

0-tip
s , which was adjusted from the result of

�
0-tip
s far from the Co atom [Fig. 6(b)]. We compare the results

with available experimental data, measured by STM [19,22].
The experimental curves, given in arbitrary units, are scaled
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FIG. 10. (a) Calculated conductance for a Co adatom on Cu(111)
as a function of the tip-surface distance, compared with experimental
data from Vitali et al. [20] and theoretical results from Baruselli et al.
[10]. Given that the experimental data of Ref. [20] is given in terms
of relative distances, we rigidly shift the experimental data to better
compare with our results. This shift is 0.8 Å smaller than the one
used in Ref. [10] with the same objective. (b) Shows the same data
in logarithmic scale.

and vertically shifted to facilitate the comparison with our
calculations.

Our results shown in Fig. 9 are in qualitative agreement
with the experimental data. We obtain a diplike structure, as
observed in the measurements. As we pointed out before, the
ZBA at the Fermi level is introduced by G(c)

s , and is given by
the interference of the structure in the Green function of the
dz2 orbital with the noncorrelated conduction channel given by
the s orbital. Then, the asymmetry of the structure presented in
Fig. 8(c) is translated into an asymmetric dip. The resonance-
like structure at ω ≈ −0.5 eV in the spectra corresponds to
the interaction of the s orbital with the Shockley surface states.
This peak was noticed in the calculation without considering
multiorbital correlation, Fig. 3, and is introduced by the in-
dependent electron part of the s orbital Green function G0

ss
[Eq. (5)]. In Fig. 9 we observe that neglecting the contribution
of the surface states in the calculation of Co on Cu(111) com-
pletely changes the conductance spectra. First, the resonance
feature at ω ≈ −0.5 eV is absent, since it is directly given by
the effect of the surface states on the Anderson widths [see
Fig. 2(d)]. In addition, the diplike structure at the Fermi level
is lost, in agreement with the variation observed in Sec. V C.
Both observations show the importance of a proper descrip-
tion of the Cu(111) surface states in the calculation.

In Fig. 10 we show the zero-bias conductance as a function
of the tip-surface distance, compared with available experi-
mental [20] and theoretical [10] data. Since the experimental
distances are relative, we rigidly shift the experimental curve
along the tip-surface distance axis to compare with our cal-
culation [10]. It is worth mentioning that the referenced
experimental and theoretical data were compared in Ref. [10],
and that the shift introduced in the experimental data in
Ref. [10] is 0.8 Å larger than the one used by us in Fig. 10.
The theoretical results of Ref. [10] were calculated using
an approach of DFT coupled with numerical renormalization
group [72,73] (DFT+NRG). The authors use the Quantum
ESPRESSO DFT code [74] and PBE functional to obtain the
conductance through the Co adatom in a supercell approach.
The results are then used to estimate the parameters for the
Anderson impurity model in the wide band limit, by matching

the DFT results to the Hartree-Fock solution of the Anderson
model, and the Anderson Hamiltonian is then solved using
NRG [10]. In Fig. 10 we observe an overall agreement be-
tween our results and the available data.

We stress the importance of a correct description of the
surface states to account for the ZBA line shape (Sec. V C).
In fact, deviations from experimental results of theoretical
calculations of the ZBA of Co on Cu(111) have been related to
a poor description of the surface states of Cu(111) [3,10]. Typ-
ical approaches to compute the Hamiltonian parameters, like
that used in Ref. [10] or the embedded cluster calculation used
in Ref. [3], require large supercells in the DFT calculation to
describe the surface states [27] and are usually not considered
due to the associated computational cost. Our description of
the Hamiltonian parameters allows us to properly describe the
coupling of the Co 4s orbital with the Cu(111) surface states,
leading to an acceptable agreement with the observed ZBA
and also with the measured tip-surface distance dependence
of the conductance.

VI. CONCLUSIONS

We calculated the conductance spectra of a Co atom ad-
sorbed on Cu(111) from first principles. We considered the Co
3d orbitals within a multiorbital correlated model and intro-
duced the 4s orbital within a mean-field-like approximation.

Among the d orbitals, only dz2 couples with the s orbital
through the substrate bands. The influence of the dz2 orbital
in the Co 4s spectral density introduces a zero-bias anomaly
in its contribution to the conductance spectra. In this way
both conduction channels (s and dz2 ) interfere to produce a
Fano structure in the s contribution to the conductance spectra,
which dominates the total conductance when the tip is far
from the surface.

Our proposal satisfactorily describes several features ex-
perimentally observed in the conductance spectra of the Co
on Cu(111) system: the dip structure of the zero-bias anomaly
around the Fermi energy, the resonancelike structure close to
the surface state low band edge, and the tip-adsorbate distance
dependence in the tunneling regime. Nevertheless, our theo-
retical description of the Kondo resonance is limited by our
approximated calculation based on the equations of motion
method closed up to a second order in the atom-band coupling.

We showed the importance of a proper description of the
interaction of the Co adatom with the surface states present in
Cu(111), which can be conceptually extended to other (111)
surfaces like Ag(111) and Au(111). Neglecting the contribu-
tion of these states in the Anderson widths completely changes
the shape of the zero-bias anomaly, from a diplike structure
to a peaklike structure, and eliminates the resonance feature
located close to the onset of the surface state bands.
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APPENDIX A: GREEN FUNCTIONS EXPRESSIONS

We propose the following Green functions:

Gpq(t ′, t ) = iθ (t ′ − t )
〈{|S, M〉p〈S − 1

2 , M − σ |
q
(t ′), |S − 1

2 , M − σ 〉
q
〈S, M|p(t )

}〉
, (A1a)

Gss(t
′, t ) = iθ (t ′ − t )〈{ĉ†

sσ (t ′), ĉsσ (t )}〉, (A1b)

Gss
pq(t ′, t ) = iθ (t ′ − t )

〈{|S, M〉p〈S − 1
2 , M − σ |

q
(t ′), ĉsσ (t )

}〉
, (A1c)

Gpq
ss (t ′, t ) = iθ (t ′ − t )

〈{
ĉ†

sσ (t ′), |S − 1
2 , M − σ 〉

q
〈S, M|p(t )

}〉
. (A1d)

Since the off-diagonal Anderson widths of the d orbitals are zero (�0
did j

= 0 eV for i 	= j), we do not require to compute

functions of the form Gp′q′
pq with p, q 	= p′, q′. We use the equation of motion method to evaluate the evolution of Eq. (A1) with

the Hamiltonian (1) and close the system of equations in a second order in the atom-band coupling term.
In equilibrium, the Fourier transform of Gpq in Eq. (A1a) is given by

Gpq(ω) = Opq + Xpq(ω)

ω − εd (p,q) − �pq(ω)
. (A2)

The expressions for the terms of Eq. (A2) are given by

Opq = 〈S〉p + 〈S − 1
2 〉

q
, (A3a)

�pq = g1

∑
q′∈p

�>
d (p,q′ )

(
ω − �ε

d (p,q)
d (p,q′ )

) + gS

∑
p′�q

�<
d (p′,q)

(
ω − �ε

d (p,q)
d (p′,q)

)

+g1

∑
q′∈p

σsd (p,q′ )
(
ω − �ε

d (p,q)
d (p,q′ )

)
�>

sd (p,q′ )
(
ω − �ε

d (p,q)
d (p,q′ )

)

+gS

∑
p′�q

σsd (p′,q)
(
ω − �ε

d (p,q)
d (p′,q)

)
�<

sd (p′,q)

(
ω − �ε

d (p,q)
d (p′,q)

)
, (A3b)

Xpq = g1

∑
q′∈p

Ξ
[
�0

d (p,q′ ), Gpq′
](

ω − �ε
d (p,q)
d (p,q′ )

) − gS

∑
p′�q

Ξ
[
�0

d (p′,q), Gp′q
](

ω − �ε
d (p,q)
d (p′,q)

)

+g1

∑
q′∈p

Ξ
[
�0

sd (pq′ ), Gss
pq′

](
ω − �ε

d (p,q)
d (p,q′ )

) − gS

∑
p′�q

Ξ
[
�0

sd (p′,q), Gss
p′q

](
ω − �ε

d (p,q)
d (p′,q)

)

+g1

∑
q′∈p

σsd (p,q′ )
(
ω − �ε

d (p,q)
d (p,q′ )

)(
Ξ

[
�0

sd (p,q′ ), Gpq′
](

ω − �ε
d (p,q)
d (p,q′ )

) + Ξ
[
�0

s , Gss
pq′

](
ω − �ε

d (p,q)
d (p,q′ )

))

−gS

∑
p′�q

σsd (p′,q)
(
ω − �ε

d (p,q)
d (p′,q)

)(
Ξ

[
�0

sd (p′,q), Gp′q
](

ω − �ε
d (p,q)
d (p′,q)

) + Ξ
[
�0

s , Gss
p′q

](
ω − �ε

d (p,q)
d (p′,q)

))
. (A3c)

We use the following notation for the occurrence probabilities:

〈|S, M〉p〈S, M|p〉 = 1

π

∫ ∞

−∞
dω f<(ω)ImGpq(ω) ≡ 〈S〉p, (A4a)

〈|S − 1
2 , m〉

q
〈S − 1

2 , m|
q
〉 = 1

π

∫ ∞

−∞
dω f>(ω)ImGpq(ω) ≡ 〈S − 1

2 〉
q
, (A4b)

which are independent of the spin projection due to the spin
degeneracy assumed. The hole occupation of the di orbital is
obtained from Eq. (A4) by summing over the configurations
where the di orbital is occupied,

odi = γS

∑
p�di

〈S〉p + (γS − 1)
∑
q�di

〈S − 1
2 〉

q
, (A5)

where γS = 2S + 1 accounts for the sum over the spin projec-
tion index.

The total self-energies �pq are defined in terms of the
Anderson, lesser and greater self-energies,

�
[0/</>]
ab (ω) =

∑
k

V ∗
kaVkb

ω − εk − iη
f[0/</>](εk ), (A6)
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with a and b replaced by s or di, �a ≡ �aa, and iη an in-
finitesimal imaginary quantity. The self-energies are evaluated
considering the energy level splittings �ε

d (p,q)
d (p′,q′ ) = εd (p,q) −

εd (p′,q′ ) and coefficients related to Hund’s rule coupling g1 =
1 and gS = 1 + 1

2S . The restriction q′ ∈ p in the sums of
Eq. (A3) enables only the q′ configurations which have al-
lowed transitions with p, that is, those for which there is an
active orbital d (p, q′). A similar restriction p′ � q accounts
for the complementary case. We work in the hole formalism,
where the Fermi function is defined as

f<(ε) = 1 − 1

1 + e(ε−μ)/kBT
, (A7)

with μ being the chemical potential, kB is the Boltzmann con-
stant, and T is the temperature. We define f>(ε) = 1 − f<(ε)
and for convenience we introduce the notation f0(ε) = 1.

The atom-band derived terms Xpq are given by the operator
Ξ ,

Ξ [�, G](ω̃) = 1

π

∫ ∞

−∞
dω′ f<(ω′)

ω̃ − ω′ − iη
{Im[�(ω′)G(ω′)]

− �(ω̃)ImG(ω′)}. (A8)

The effects introduced by the s orbital on the d orbitals are
related to the factor

σsdi (ω) = �0
sdi

(ω)

ω − εs − �0
s (ω)

, (A9)

which involves the off-diagonal self-energy �0
sdi

between the
s and di orbitals.

The Green function of Eq. (A1c), involving operators of s
and d orbitals, is given by

Gss
pq = σsd (p,q)(ω)Gpq(ω) (A10)

and a similar expression is found for Eq. (A1d).

The Green function related to the s orbital is given by

Gss(ω) = G0
ss(ω) + γS

2

∑
pq

[σsd (p,q)(ω)]2Gpq(ω). (A11)

The independent particle Green function G0
ss is

G0
ss(ω) = 1

ω − εs − �0
s (ω)

. (A12)

The occupation of the s orbital is given by

Oss = 1

π

∫ ∞

−∞
dω f<(ω)ImGss(ω). (A13)

Equations (A2) and (A11) are then used to define the orbital
Green functions of Eq. (4), where the sum over the spin index
is done.

APPENDIX B: CONFIGURATIONS

The possible configurations of Co on Cu(111) are pre-
sented in Tables IIa and IIb. They correspond to the five
nonequivalent possibilities in which the orbitals of the states
with S = 3

2 (P) can be filled with three holes, and the five
possibilities to fill the d orbitals with two holes in order to
build the S − 1

2 = 1 (Q) configurations. In the same way,
the 11 nonequivalent fluctuations giving place to the required
Green functions are those of Table IIc.

TABLE II. The five nonequivalent possibilities for (a) S = 3
2 (P) and (b) S − 1

2 = 1 (Q), to accommodate the corresponding holes into the
three symmetry groups: E1, E2, and A1. (c) Nonequivalent fluctuations between the five sets of configurations with three holes (P) and the
five with two holes (Q) of the Co orbitals split into the three symmetry groups. The symmetry of the active orbital involved in the transition is
indicated by D(P, Q).

P Q Fluctuation P Q D(P, Q) Fluctuation P Q D(P, Q)

E1E1E2 E1E1 1 E1E1E2 E1E1 E2 7 E1E2A1 E1A1 E2
E1E2E2 E1E2 2 E1E1E2 E1E2 E1 8 E1E2A1 E1E2 A1
E1E1A1 E2E2 3 E1E2E2 E1E2 E2 9 E1E2A1 E2A1 E1
E1E2A1 E1A1 4 E1E2E2 E2E2 E1 10 E2E2A1 E2A1 E2
E2E2A1 E2A1 5 E1E1A1 E1E1 A1 11 E2E2A1 E2E2 A1

(a) S = 3
2 (b) S − 1

2 6 E1E1A1 E1A1 E1

(c) Nonequivalent fluctuations
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