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Reduction of the twisted bilayer graphene chiral Hamiltonian into a 2×2 matrix operator
and physical origin of flat bands at magic angles
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The chiral Hamiltonian for twisted graphene bilayers is written as a 2 × 2 matrix operator by a renormalization
of the Hamiltonian that takes into account the particle-hole symmetry. This results in an effective Hamiltonian
written in terms of Pauli matrices with three contributions: a kinetic term, a confinement potential, and a non-
Abelian gauge field. The action of the proposed renormalization maps zero-mode flat bands into ground states.
On each graphene layer, modes near zero energy have an antibonding nature in a triangular lattice. This leads to
a phase-frustration effect associated with massive degeneration and makes flat-band modes similar to confined
modes observed in other bipartite lattices. At magic angles, it is shown that the intralayer frustration is exactly
zero. Surprisingly, the proposed Hamiltonian renormalization suggests that flat bands at magic angles are akin to
floppy-mode bands in flexible crystals or glasses, making an unexpected connection between rigidity topological
theory and twisted two-dimensional superconductor systems.
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I. INTRODUCTION

Superconducting states are difficult to reach as they require
very strict laboratory parameters [1]. High-Tc superconduc-
tors use cuprates which are well-ordered structures of atoms
combined in three-dimensional arrangements [2–7]. For these
materials, the mechanism that counteracts the Colombian re-
pulsion force between electrons is not exactly known, and
for this reason, these unconventional states are referred to
as strongly correlated [8,9]. Recently, it has been discovered
that twisted bilayer graphene exhibits superconducting states
at certain rotation angles [10,11] where the electron inter-
actions are maximized [12]. This rotated graphene bilayer
model generates a moiré pattern as a function of the rotation
angle, defining a moiré Brillouin zone (mBZ) in reciprocal
space. These special angles are called “magic” and were
predicted as a possible consequence of flat bands observed
in previous theoretical work [13]. In the work of Cao et al.
[10], a Mott insulating state appears in the middle of these
superconducting phases. The study of the electronic properties
of rotated graphene over graphene started before the discovery
of superconductivity at magic angles. In the work of J. Santos
[14] and A. MacDonald [13], a continuous Hamiltonian model
was presented; however, due to the presence of an interlayer
amplitude AA coupling (see Fig. 1), this model did not present
chiral symmetry. In a recent work by G. Tarnopolsky et al.
[15], a chiral continuum model was studied, and only the AB
and BA inter-layer couplings are different from zero. Perhaps,
so far, it is the simplest model that best captures the nature of
magic angles; at these angles the dispersion energy becomes
flat and has a recurrence behavior. At these magic angles, the
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Fermi velocity also goes to zero. Due to its chiral symmetry,
the Hamiltonian of this model also produces an intravalley
inversion symmetry [16], so the energy dispersion is inver-
sion symmetric at all twist angles. Also, we can distinguish
between different magic angles when zero modes occurs, and
thus the inter-valley inversion classifies the topology of the
twist angle. The zero-mode flat-band solutions have some
resemblance to the ground state of a quantum Hall effect
wave function on a torus [15,17], and, therefore, the solution
is of the harmonic oscillator type, where Landau levels arise
[17–19]. The mechanism that causes the appearance of these
magic angles is still not known, however, many investigations
suggest that it is a topological aspect of the band structure
[20–26]. The aim of this work its to clarify the physical behav-
ior of this model and to develop an effective 2 × 2 effective
Hamiltonian matrix by taking into account the particle-hole
symmetry. This results in a folding of the spectrum around
zero energy. Then we discuss the physical picture that arises
from this renormalization by showing that at magic angles, the
intralayer electron wave-function frustration is exactly zero.
Also, our effective Hamiltonian clearly shows the presence
of three main contributions: kinetic and confinement energies
and a non-Abelian gauge potential. The layout of this paper
is the following: we start with the model and renormalization
in Sec. II, the corresponding physical picture is analyzed in
Sec. III and the relationship with a rigidity phonon problem
is discussed in Sec. IV. In Sec. V, we discuss how to write
the effective Hamiltonian using Pauli matrices and triangular
coordinates. Finally, the conclusions are given.

II. TWISTED BILAYER GRAPHENE EFFECTIVE MODEL

Tarnopolsky et al. derived a chiral Hamiltonian for
electron-holes in twisted bilayer graphene. It captures the
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FIG. 1. (a) Real space moiré unit cell, a1,2 are two moiré lattice
vectors. Point r0 = (a1 − a2)/3 is the BA stacking point where all
components of the wave function vanish at magic α. (b) mBZ in
reciprocal space, b1,2 are the base vectors.

“true magic” of the magic angle physics [15],

H =
(

0 D∗(−r)
D(r) 0

)
, (1)

where the zero-mode operator is

D(r) =
( −i∂̄ αU (r)

αU (−r) −i∂̄

)
(2)

and

D∗(−r) =
( −i∂ αU ∗(−r)

αU ∗(r) −i∂

)
(3)

with ∂̄ = ∂x + i∂y, ∂ = ∂x − i∂y. The potential is

U (r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r. (4)

For this Hamiltonian, the parameters are φ = 2π
3 and q1 =

kθ (0,−1), q2 = kθ (
√

3
2 , 1

2 ) and q3 = kθ (−
√

3
2 , 1

2 ), the moiré
modulation vector is kθ = 2kD sin θ

2 with kD = 4π
3a0

is the
magnitude of the Dirac wave vector and a0 is the lattice
constant of monolayer graphene, see Fig. 1. The physics
of this model is captured by the parameter α, defined as
α = w1

v0kθ
. Here w1 is the interlayer coupling of stacking

AB and BA, take the value w1 = 110 meV and v0 is the
Fermi velocity, with value v0 = 19.81eV

2kD
. At magic angles

α = 0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829,

11.345, . . . , flat bands appear. Magic α’s follow a remarkable
3/2 quantization rule [15] for α > 0.586.

This Hamiltonian is difficult to tackle and in fact most
of the studies have been restricted to the zero-mode op-
erator solutions at energy zero [16,17]. Here, instead of
solving the Schrödinger equation with H we first pro-
pose to reduce the dimensionality of the problem. Starting
with the Schrödinger equation H� = E�, where �(r) =
(ψ1(r), ψ2(r), χ1(r), χ2(r))T are the four components of the
twisted graphene bilayer, and the index 1,2 represent each
graphene layer, we consider the squared Hamiltonian H2,

H2 =
(

D∗(−r)D(r) 0
0 D(r)D∗(−r)

)
. (5)

This transforms the off-diagonal blocks into zeros. We
can understand such transformation as a removal of
the particle-hole symmetry that is an antiunitary anti-

symmetry. Therefore we obtain a decoupled equation
H2�(r) = E2�(r), where the eigenvalues are the squares of
the original energies. States at E = 0 are thus ground states
of H2�(r). For arbitrary α, there are always two zero-mode
solutions in the K and K ′ points [15], the signature of a
magic angle in H2 is that the Fermi velocity at k = K, K ′
points of the Moiré Brillouin zone (mBZ) approaches zero
and a massive degenerate ground state. We now define a
2 × 2 effective Hamiltonian H2 = D∗(−r)D(r). As detailed
in Appendix A, the resulting effective Hamiltonian is

H2 =
(−∇2 + α2|U (−r)|2 αA†(r)

αA(r) −∇2 + α2|U (r)|2
)

. (6)

The norm of the potential is

|U (r)|2 = 3 + 2 cos(b1 · r − φ) + 2 cos(b2 · r + φ)

+ 2 cos(b3 · r + 2φ), (7)

where b1,2 = q2,3 − q1 are the mBrillouin zone moiré vectors
and b3 = q3 − q2 (see Fig. 1). Notice the similarity with a
triangular lattice energy dispersion Eq. (C12) but at the scale
of the moiré pattern. The off-diagonal terms are

A(r) = −i
3∑

μ=1

eiqμ·r(2q̂⊥
μ · ∇ − kθ

)
(8)

and

A†(r) = −i
3∑

μ=1

e−iqμ·r(2q̂⊥
μ · ∇ + kθ

)
, (9)

where ∇† = −∇ with ∇ = (∂x, ∂y) and μ = 1, 2, 3. This
is an essential point as eigenvalues must be reals [notice
that −A†(−r) = A(r)]. Also, q̂⊥

μ is a set of unitary vectors
perpendicular to the set qμ (see Appendix A). The term q̂⊥

μ · ∇
is the directional gradient along the triangle defined by the
moiré vectors and has an interpretation in terms of frustration
(see next section) and is a kind of non-Abelian gauge field
[27,28]. We see in H2 three terms that define the physics of the
problem: the kinetic energy (corresponding to the Laplacian),
a confinement due to the potential and the non-Abelian
gauge term that couples layers. Any eigenfunction of the
original Hamiltonian is an eigenfunction of H2, therefore,
the spinor 
(r) = (ψ1(r), ψ2(r)) is a solution of H2. In
a similar way, we can proceed to use D(r)D∗(−r) with
solutions (χ1(r), χ2(r)). These solutions are easily obtained
from (ψ1(r), ψ2(r)) using symmetry operations, and thus
here we only study H2. H2 eigenfunctions are made from a
superposition of pseudospin polarized states of H.

III. PHYSICAL INTERPRETATION OF THE EFFECTIVE
MODEL AND FLAT BANDS

The renormalization into a 2 × 2 matrix not only simplifies
the mathematics but has a profound physical meaning. What
we achieved is the decoupling of the A and B bipartite lat-
tices for each graphene layer. As we detail in Appendix C,
for graphene such squared Hamiltonian is equivalent to
renormalize the honeycomb lattice into a triangular lattice
with renormalized interactions and a self-energy [29,30]. As
sketched in Fig. 2 for monolayer graphene, the transformation
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FIG. 2. For each noninteracting monolayer graphene case, we
present the density of states ρ(E ) and of ρ(E 2) corresponding to the
squared Hamiltonian, equivalent to a folding of the spectrum. The
signs are a sketch of the relative signs and amplitudes on bipartite
sublattices A and B (shown in red and blue). Arrows indicate how
the states are mapped under such transformation. Zero modes and
close-by states are in the antibonding limit on a triangular lattice
(indicated by the triangle inside the hexagon). The frustration is seen
here in the bond that joins the + and + sites in the triangle (in
reality, the minimal phase difference is φ). For the twisted bilayer
with interlayer interaction, H2 produces a similar DOS folding and
relative signs for the superlattice.

of E to E2 produces a fold in the spectrum such that bonding
states with the lowest energy are mapped into higher energies.
In other words, the transformation deletes the alternating sign
of one of the bipartite sublattices as explained in Fig. 2. Here
our Eq. (6) shows that we have a similar situation as we detail
below.

As zero modes are ground states of H2, we end up having a
clear picture of nearby states around zero-energy modes, they
correspond to the antibonding limit in two coupled triangular
lattices. However, as detailed in Appendix C, anti-bonding
states in non-bipartite lattices are frustrated as they cannot
achieve a phase difference of π between sites as odd-rings are
present [31,32]. For disordered systems, states are localized
in regions of lower frustration [33] and a kind of Lifshitz
tail appears [32]. Moreover, frustration is always associated
with massive degeneration [31,32,34]; it leads to Van Hove
singularities or if possible, in a condensation of confined
states. These confined states appear in chiral models of the
Penrose lattice [35–37], where they form beautiful fractal
patterns [36], in random binary alloys [38,39] and in graphene
with defects [29,40]. Strictly confined states are degenerate.
However, there is a basis in which the amplitude in one of the
bipartite sublattices is zero while in the other, the sum of all
neighbors amplitudes is always zero for any site [36,38].

To understand how zero modes are related with confined
states and frustration as in Fig. 2 for twisted graphene bilayers,
let us made the following remarks. From the Hamiltonian
(1), we confirm that for E = 0 there are always solutions
of the form �A

k (r) = (ψA
k,1(r), ψA

k,2(r), 0, 0) and �B
k (r) =

(0, 0, χB
k,1(r), χB

k,2(r)), where the labels A and B are used to
denote zero amplitude in the opposite bipartite sublattice. We
remark that linear combinations,

�k(r) = 1√
2

(
�A

k (r) + eiγ �B
k (r)

)
(10)

with γ a phase, result in a different basis, which does
not show zeros in one sublattice, as for example with the
symmetrized/antisymmetrized cases γ = 0, π . As the poten-
tial does not brake the C3 symmetry, the states k = K, K ′ are
always a E = 0 solution for any α. As a conclusion, for α

not a magical angle there are four linearly independent wave
functions, as confirmed from a Wronskian analysis [17] and
therefore, at any angle there are “confined states” in the sense
of Fig. 2. At magic angles, the Wronskian of the solutions is
zero and there are E = 0 solutions at any k, resulting in the
flat band. Still, �A

k (r) and �B
k (r) are solutions meaning that

now all states are “confined.” Any linear combination using
different sets of k is a solution. As explained below, this is
similar to the Van-Hove singularity in monolayer graphene,
where dimers are disconnected from the lattice and thus can
be thought as a kind of highly degenerated confined state.

As we detail in Appendix C, the antibonding or bonding
nature and therefore frustration is obtained from all bonds en-
ergy contribution, the latter one obtained from the product of
the wave function in a site with the conjugated wave function
of a neighboring site [39]. For the present system, this requires
to take into account three factors: (1) the system has two lay-
ers, (2) we are dealing with a low-energy continuous version
of the original tight-binding model, and (3) the system has
a superlattice. Concerning point 1, we look at the intralayer
frustration to see how the interlayer interaction tunes such
contribution. Points 2 and 3 are more delicate as we need to
understand that k is a moment that departs from K and K ′.
In a two-layer bipartite continuous lattice, for a given state k
such procedure is equivalent to consider bonds joining A and
B sublattices sites. Although this can be made using any basis,
it is easier to use in a symmetrized one γ = 0.

To see how the interlayer contributions tunes the frustration
between layers, the local intralayer frustration is obtained
from the function (see Appendix C),

gk(r) = ψk,1(r)χ∗
k,1(r) + ψk,2(r)χ∗

k,2(r), (11)

which contains the relative phases between each pair of neigh-
bors, in this case applied to each graphene layer. As we are
interested in states near E = 0, we set k = K in Eq. (11). Us-
ing the symmetry of the problem, we can show that χ∗

K (r) =
ψK (−r) and

gK (r) = ψK,1(r)ψK,1(−r) + ψK,2(r)ψK,2(−r) ∼ vF (α)

(12)

where this last step is obtained from the fact that gK turns out
to be an invariant (see Appendix B), which can be identified
with the Fermi velocity at a given angle [15], here denoted by
vF (α). At magic angles vF (α) = 0 and therefore also gK = 0,
i.e., frustration is zero, making a flat band by pushing all states
towards E = 0.

As gK (r) = vF (α), we have that ∇gK (r) = 0. Thus, from
Eq. (14), we conclude that as expected the ground state is
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always the minimally frustrated state for all α and that the
total frustration is,

F (k) ≈
∫

S
d2r|gk(r)|2 = v2

F (α) (13)

At magic angles, F (k) = 0. Finally, notice some similarity of
the gradient term in Eq. (14) and the term A(r) in the squared
Hamiltonian as we can write by using the symmetry that

F (k) ≈
∫

S
d2rg∗

k(r)

(
gk(r) +

3∑
s=1

as · ∇[gk(r) + gk(−r)]

)
,

(14)
where as points to the layer underlying trigonal lattice ver-
tices. In A(r), eiqμ·r is the phase difference between neighbors
due only to geometrical reasons multiplied by the gradient of
the local phase difference q̂⊥

μ · ∇. In A(r), the kθ term will give
the averaged geometrical phase difference over all space once
its expectation value is calculated.

The fine tuning required to have zero-frustration leads to a
special condition for the wave function Fourier components.
The explicit form of the wave function is

ψk(r) =
∑
m,n

(
amn

bmneiq1·r

)
ei(Kmn+k)·r, (15)

where Kmn = mb1 + nb2. am,n and bm,n are the Fourier coeffi-
cients. At the BA stacking point r0 = (a1 − a2)/3, and for any
α and due to symmetry reasons ψK,2(r0)ψK,2(−r0) = 0, while
for magic α we have that [15] ψK,1(r0) = 0.

Consider the particular case r = r0 and k = K = 0 as the
K point is at the origin. We have

Kmn · r0 = Kmn ·
(a1 − a2

3

)

= 1

3
(mb1 + nb2) · (a1 − a2), (16)

where we used that bi · a j = 2πδi j . Then we obtain

ψK,1(r0) =
∑
m,n

amneiKmn·r0

=
∑
m,n

amnei(m−n)φ (17)

while

ψK,2(r0) =
∑
m,n

bmne−iKmn·r0

=
∑
m,n

bmne−i(m−n)φ (18)

but with the extra conditions

ψK,2(r0 ± a1) = e±iφ
∑
m,n

bmne−iKmn·r0

= e±iφψK,2(r0). (19)

At magic angles ψk,1(r0) = 0 from where,∑
m,n

amn(ei(m−n)φ + e−i(m−n)φ ) = 0 (20)

with φ = 2π/3. By a simple analysis of the phases, we obtain
the condition at magic angles,∑

m,s

(
am,3s + am,3s+1eiφ + am,3s−1e−iφ

) = 0. (21)

The same equation holds for bmn. The previous equation
shows a precise tuning of components and hints how the
electron density tends to develop sharp local maxima as
α → ∞, in agreement with the quantum dot picture of the
problem [41].

IV. FLAT BANDS IN TWISTED GRAPHENE BILAYERS AS
FLOPPY MODES IN A RIGIDITY THEORY OF PHONONS

Quite surprisingly, our renormalization is akin to a phonon
problem, and the flat-band can be interpreted as a massive
zero frequency vibrational band, since E2 is analogous to a
frequency. These floppy modes are well known in the Phillips
rigidity theory of glasses [42] and are reminiscent of the pro-
tected electronic boundary modes that occur in the quantum
Hall effect and in topological insulators [43].

To understand this, let us start in the limiting case where
α → 0. The TBG Hamiltonian reduces to

H(r) =
(

0 D∗(−r)
D(r) 0

)
, (22)

where

D(r) ≈
(−i∂̄ 0

0 −i∂̄

)
, ∂̄ = ∂x + i∂y. (23)

Therefore, if we take k = (kx + iky)σ0, we have that the
Hamiltonian in momentum space is given by

H(k) =
(

0 k∗

k 0

)
. (24)

Using the relation χ (r) = 
∗
K (−r), as is done in Ref. [15],

one gets the following expression for the Fermi velocity:

vF (α) = |〈
∗
K (−r)||
K (r)〉|

|〈
∗
K (r)||
K (r)〉| . (25)

Expression (25) is independent of k since |∂kE (k)| = vF (α) is
constant, here E = h̄w(k). As a result we have that

vF (α)|k| = E (k). (26)

If we take h̄=1, Eq. (26) implies

w(k) = vF (α)|k|. (27)

We can achieve a better understanding of vF (α) using Eq. (27)
and the connection established in Ref. [43] with floppy modes.
In Ref. [43], the authors develop a dynamic matrix D = QQT

with eigenvalues w2
n . In our paper, a direct relation is drawn

among H2 = D∗(−r)D(r) and D. Now w2
n are eigenvalues of

H2. Consequently, vF (α) is analogous to the speed of sound.
Therefore, at magic α, vF (α) is zero and a massive degen-
eracy is found. This is exactly the case of the floppy mode
peak which occurs at zero frequency [44–47]. These modes
have the property of being deformations without elastic en-
ergy cost, available due to the lack of mechanical constraints
when compared with the number degrees of freedom [42]. It
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seems that here α somehow controls the effective number of
constrains.

V. EFFECTIVE FIELDS AND HAMILTONIAN
IN TRIANGULAR COORDINATES

It is useful to write the renormalized twisted graphene
bilayer Hamiltonian in terms of the Pauli matrix vector σ̂ as
follows:

H2 = h0(r)σ0 + h(r) · σ̂, (28)

where the vector h(r) is

h(r) = (αhx(r), αhy(r), α2hz(r)) (29)

with

hx(r) = −
∑

μ

[kθ sin (qμ · r) + 2i cos (qμ · r)q̂⊥
μ · ∇],

hy(r) =
∑

μ

[kθ cos (qμ · r) − 2i sin (qμ · r)q̂⊥
μ · ∇],

hz(r) = |U (−r)|2 − |U (r)|2
2

. (30)

The operator in front of the identity σ0 is

h0(r) = −∇2 + α2V̄ (r), (31)

V̄ (r) = |U (r)|2 + |U (−r)|2
2

. (32)

We observe that h0(r) corresponds to a Hamiltonian
with an average potential. The Hamiltonian structure is
akin to the one found in Ref. [28]. Observe that the term
h(r) contains all the topological properties of the operator.
Moreover, as the three Pauli matrices are present, there is
no rotation that produces a real and symmetric Hamilto-
nian, therefore time-reversal invariance is broken explicitly.
Let us further simplify this Hamiltonian. Define ψ±(r) =
ψ1(r) ± ψ2(r). The Schrödinger equation is transformed into
Heff(ψ+(r), ψ−(r))T = E2(ψ+(r), ψ−(r))T . The stated effec-
tive Hamiltonian is

Heff =
(−∇2 + Veff(r) A†

eff(r)
Aeff(r) −∇2 + Veff(r)

)
. (33)

Here we defined the effective potentials as

Veff(r) = α2V̄ (r) + αhx(r) (34)

and

Aeff(r) = α2hz(r) + iαhy(r). (35)

Next we show how this Hamiltonian can be further simpli-
fied by using triangular coordinates and thus map the problem
into a friendly rectangular domain. Due to the symmetry,
we introduce the triangular coordinates uj with u1 = b1 · r,
u2 = −b2 · r, u3 = b3 · r. This transformation has the impor-
tant property that

∑
j u j = 0 and gives the distance to the

edges of a triangle as seen in Fig. 3. Putting this transforma-
tion in the potential we get V̄ (r) = 3 − ∑

j cos u j and hz(r) =
−√

3
∑

j sin u j . A second change of variable is useful to
reduce the Hamiltonian by taking into account mirror sym-
metries. We use, ζ = u1 and η = u2 − u3, where 0 � η � 4π

and 0 � ζ � 4π . ζ and η are coordinates that indicate the

FIG. 3. Triangular coordinates.

departure from or along the median of the triangle. The inverse
transformation is u2 = (η − ζ )/2 and u3 = −(η + ζ )/2. The
average and Zeeman like terms are

V̄ (r) = 3 − cos ζ − 2 cos
ζ

2
cos

η

2
, (36)

hz(r) = −
√

3

(
sin ζ − 2 sin

ζ

2
cos

η

2

)
, (37)

and the Laplacian operator is

∇2 = 3k2
θ (∂2

ζ + 3∂2
η ). (38)

To reduce the other terms, we introduce an intermediate
change of variable qμ · r = sμ,

hx(r) = −
∑

μ

kθ sin sμ − 2i
[
cos s1 − cos s2 + cos s3

2

]
∂x

− i
√

3[cos s2 − cos s3]∂y (39)

while

hy(r) =
∑

μ

kθ cos sμ − 2i

[
sin s1 − sin s2 + sin s3

2

]
∂x

− i
√

3[sin s2 − sin s3]∂y.

(40)

Then, we use the transformation into the ζ and η coor-
dinates by first observing that u1 = s2 − s1 , u2 = s1 − s3,

and u3 = s3 − s2, and finally,

s1 = η − 3ζ

6
, s2 = η + 3ζ

6
, s3 = −η

3
, (41)

where s1 = −(s2 + s3) and

∂x =
√

3

2
kθ (∂ζ − 3∂η ), ∂y = 3

2
kθ (∂ζ + ∂η ). (42)

In ζ and η coordinates, we have
hx(r)

kθ

=
(

sin
η

3
− 2 cos

ζ

2
sin

η

6

)

− i2
√

3

(
cos

ζ

2
cos

η

6
− cos

η

3

)
∂ζ

+ i6
√

3 sin
ζ

2
sin

η

6
∂η (43)

and
hy(r)

kθ

=
(

cos
η

3
+ 2 cos

ζ

2
cos

η

6

)

− i2
√

3

(
cos

ζ

2
sin

η

6
+ sin

η

3

)
∂ζ

− i6
√

3 sin
ζ

2
cos

η

6
∂η. (44)
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Therefore we have all expressions for our effective Hamil-
tonian in terms of the triangular coordinates, i.e., Heff =
Heff(ζ , η), and more importantly, in a rectangular domain
amenable to numerical and analytical calculations. We end up
this section by observing how the results indicate that we can
scale the operator H2 by defining α′ = α/kθ and ε = E/kθ ,
in such a way that kθ is no longer in the Hamiltonian, while
we make the replacement α → α′ and E → ε. In fact, such
effective parameters can be found right away from the start by
defining a scaled set of coordinates,

r′ = kθ r, q′
μ = qμ

kθ

. (45)

This transformation maps the kθ dependent basis vectors of
the unitary cell into the kθ independent basis vectors a′

1,2 =
4π/3(±√

3, 1/2). Although is possible to make this scaling
of the full Hamiltonian right from the start, in our develop-
ment, we decided to stick with the notation used by others in
previous works and keep this argument as a cross-check point.

VI. CONCLUSIONS

We showed that the chiral Hamiltonian for twisted
graphene bilayers can be written as a 2 × 2 matrix operator.
The operator has three contributions, a kinetic term, a con-
fining potential and a non-Abelian gauge field. The action
of the proposed renormalization maps the zero-mode region
into the ground state. Modes next to zero energy have an
antibonding nature in a triangular lattice and at zero energy
are similar to confined modes observed in many other bipartite
systems [37–39]. Then we showed that at magic angles, the
intralayer electron wave-function frustration is exactly zero.
A surprising result is that our renormalization suggests that
flat band are somehow analogous to floppy modes in rigidity
phonon models.
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APPENDIX A: EXPLICIT CALCULATION OF H2

We write the potential as

U (r) = (1, eiφ, e−iφ ) · (
e−is1 , e−is2 , e−is3

)
. (A1)

This suggest to define a tensorial form as U (r) = e · S(r) =
eμSμ, where μ = 1, 2, 3 and the Einstein sum rule is applied
to repeated dummy indices. The components of the vectors e
and S(r) are

eμ = ei(μ−1)φ (A2)

and

Sμ(r) = e−isμ . (A3)

Using the tensorial definition of the potential, we have

|U (r)|2 = U ∗(r)U (r)

=
∑
μ,ν

(
e−i(ν−1)φeisν

)(
ei(μ−1)φe−isμ

)

=
∑
μ,ν

ei(μ−ν)φei(sν−sμ ). (A4)

Working with the upper block Hamiltonian H2 =
D∗(−r)D(r), we have that the initial expression is

H2 =
( −∇2 + α2|U (−r)|2 −iα(U ∗(−r)∂̄ + ∂U (r))

−iα(U ∗(r)∂̄ + ∂U (−r)) −∇2 + α2|U (r)|2
)

.

(A5)

Then, the eigenvalue equation is H2
(r) = E2
(r), with the
spinor 
(r) = (
1(r), 
2(r))T . Here its convenient to de-
fine the operators:

B1(r) = −i[U ∗(r)∂̄ + ∂U (−r)],

B2(r) = −i[∂U (r) + U ∗(−r)∂̄]. (A6)

Focussing on the off-diagonal terms, we first multiply B1(r)
with respect to the component spinor, so, we have

B1(r)ψ2(r) = −i[U ∗(r)∂̄
2(r) + 
2(r)∂U (−r)

+ U (−r)∂
2(r)]. (A7)

However, note that

∂U (−r) =
∑

μ

ei(μ−1)φ∂eisμ =
∑

μ

ei(μ−1)φ (∂x − i∂y)eisμ

=
∑

μ

ei(μ−1)φ
(
iqx

μ − i
(
iqy

μ

))
eisμ

= −kθ

∑
μ

eisμ , (A8)

where we used that qx
μ + iqy

μ = −ikθei(μ−1)φ , so, qx
μ − iqy

μ =
ikθe−i(μ−1)φ . Substituting this result into B1(r), we get

B1(r) = −i[U ∗(r)∂̄ + ∂U (−r) + U (−r)∂]

= −i(U ∗(r)∂̄ − kθ

∑
μ

eisμ + U (−r)∂]. (A9)

Therefore

B1(r) = −i
∑

μ

eisμ [e−i(μ−1)φ∂̄ − kθ + ei(μ−1)φ∂]

= −i
∑

μ

eisμ [−kθ + 2q̂⊥
μ · ∇],

(A10)

where we define, q̂⊥
μ = (cos [(μ − 1)φ], sin [(μ − 1)φ]), this

is a unitary vector perpendicular to qμ and ∇ = (∂x, ∂y) is the
gradient. In a similar way, we calculate B2(r):

B2(r)
1(r) = − i[U (r)∂
1(r) + 
1(r)∂U (r)

+ U ∗(−r)∂̄
1(r)] (A11)
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and

∂U (r) =
∑

μ

ei(μ−1)φ∂e−isμ =
∑

μ

ei(μ−1)φ (∂x − i∂y)e−isμ

=
∑

μ

ei(μ−1)φ (−iqx
μ − i(−iqy

μ))e−isμ . (A12)

Using this result in B2(r), we get

B2(r) = −i[U (r)∂ + ∂U (r) + U ∗(−r)∂̄]

= −i[U ∗(−r)∂̄ + kθ

∑
μ

e−isμ + U (r)∂]

= −i
∑

μ

e−isμ [kθ + e−i(μ−1)φ∂̄ + ei(μ−1)φ∂]

= −i
∑

μ

e−isμ [kθ + e−i(μ−1)φ∂̄ + ei(μ−1)φ∂].

(A13)

When comparing B1(r) and B2(r), we see that the rela-
tion B†

1(r) = B2(r) is satisfied. Therefore it is convenient to
change, B1(r) = A(r) and B2(r) = A†(r), where A(r) is a
non-Abelian potential.

APPENDIX B: INVARIANT AND THE FERMI VELOCITY

Consider a zero-mode condition

D(r)

(

k,1(r)

k,2(r)

)
=

(
0
0

)
, (B1)

where 
k,1(r) = eik·ruk,1(r) and 
k,2(r) = eik·ruk,2(r). For
k = K = 0, it follows that

D(r)

(

k,1(r)

k,2(r)

)
=

( −i∂̄ αU (r)
αU (−r) −i∂̄

)(
uk,1(r)
uk,2(r)

)
=

(
0
0

)
.

(B2)
Therefore we get

−i∂̄uK,1(r) + αU (r)uK,2(r) = 0 (B3)

and

αU (−r)uK,1(r) − i∂̄uK,2(r) = 0. (B4)

Multiply by uK,1(−r) in Eq. (B3) and uK,2(−r) in Eq. (B4).
We have

αU (−r)uK,1(−r)uK,1(r) − iuK,1(−r)∂̄uK,2(r) = 0 (B5)

and

αU (−r)uK,2(−r)uK,1(r) − iuK,2(−r)∂̄uK,2(r) = 0, (B6)

respectively. Changing r′ → −r in the last equation,

αU (r′)uK,2(r′)uK,1(−r′) + iuK,2(r′)∂̄uK,2(−r′) = 0. (B7)

Subtracting equation Eq. (B7) to Eq. (B5) and ignoring
primes,

i(uK,2(r)∂̄uK,2(−r) + uK,1(−r)∂̄uK,1(r)) = 0. (B8)

On the other hand,

∂̄ (uK,1(r)uK,1(−r) + uK,2(r)uK,2(−r))

= uK,2(r)∂̄uK,2(−r) + uK,2(−r)∂̄uK,2(r)

+ uK,1(−r)∂̄uK,1(r) + uK,1(r)∂̄uK,1(−r), (B9)

but using Eq. (B8), we find the relation

∂̄ (uK,1(r)uK,1(−r) + uK,2(r)uK,2(−r))

= uK,1(r)∂̄uK,1(−r) + uK,2(−r)∂̄uK,2(r) (B10)

changing r → −r′ and by comparison to Eq. (B9) we can
write last equation as

∂̄ (uK,1(r)uK,1(−r) + uK,2(r)uK,2(−r)) = 0. (B11)

Therefore this equation gives a invariant and its follows that

v(α) = uK,1(r)uK,1(−r) + uK,2(r)uK,2(−r), (B12)

or using 
K = uK ,

v(α) = 
K,1(r)
K,1(−r) + 
K,2(r)
K,2(−r), (B13)

where v(α) is the Fermi velocity. Also in the point r0 =
1
3 (a1 − a2), the spinor component 
K,2(r0) = 0 and the Fermi
velocity reduces to

v(α) = 
K,1(r0)
K,1(−r0). (B14)

APPENDIX C: FRUSTRATION IN THE ELECTRONIC
WAVE-FUNCTIONS OF GRAPHENE: EFFECTS

OF THE UNDERLYING TRIGONAL SYMMETRY

Consider the case of graphene. Each sublattice, say A, is a
2D Bravais triangular lattice with lattice vectors,

a1 = a

2
(
√

3, 3), a2 = a

2
(−

√
3, 3), (C1)

where a = 1.42 Å is the distance between C atoms. The B
sublattice is obtained by a shift of the A sublattice by the
basis vector δ1. It is customary to define the following triad
of vectors:

δ1 = a(0,−1), δ2 = a

2
(−

√
3, 1), δ3 = a

2
(
√

3, 1), (C2)

that point out to the first neighbors and serve as a translation
to obtain the other bipartite sublattice. Then,

a1 = δ3 − δ1,

a2 = δ2 − δ1,

a3 = a1 − a2 = δ3 − δ2.

(C3)

The trigonal lattice has the following reciprocal lattice
vectors:

G1 = 2π

3a
(
√

3, 1), G2 = 2π

3a
(−

√
3, 1). (C4)

Graphene’s electronic properties are well described by a
single-orbital tight-binding (TB) approximation,

H0 = −t0
∑

r j

3∑
n=1

[
ψ̂†(r j )χ̂ (r j + δn) + H.c.

]
, (C5)

where r j runs over all A sites of the Bravais lattice, and
the hopping integral (also known as the transfer integral)
t0 ≈ 2.7 eV. ψ̂†(r j ) and χ̂ (r j + δn) are creation and annihi-
lation electron operators on the A sublattice (at position r j)
and the B sublattice (at position r j + δn), respectively.
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GERARDO G. NAUMIS et al. PHYSICAL REVIEW B 103, 245418 (2021)

One can reduce the Hamiltonian to a 2 × 2 matrix (because
the lattice only contains two non-equivalent sites) by a Fourier
transform:

ψ̂†(r j ) =
∑

k

ψ̂
†
k eik·r j (C6)

and

χ̂ (r j + δn) =
∑

k

χ̂keik·(r j+δn ). (C7)

The Hamiltonian is written as an effective 2 × 2 Hamilto-
nian matrix H (k) acting on a wave vector,

H0 = −t0
∑

k

(ψ∗
k , χ∗

k )

(
0 HAB(k)

H∗
AB(k) 0

)(
ψk

χk

)
, (C8)

where HAB(k) = −t0 f (k) and f (k) with the following com-
plex function:

f (k) =
3∑

n=1

e−ik·δn . (C9)

The corresponding Schrödinger equation is(
0 HAB(k)

H∗
AB(k) 0

)(
ψk

χk

)
= E (k)

(
ψk

χk

)
, (C10)

Graphene’s energy dispersion is found from Eq. (C10),
from where E (k) = ±t0| f (k)| with

| f (k)|2 =
3∑

n,s=1

eik·(δn−δs ) (C11)

or using the relations Eq. (C3),

| f (k)|2 = 3 + 2 cos (k · a1) + 2 cos (k · a2) + 2 cos (k · a3)
(C12)

where the energy dispersion is now given by the triangular
lattice basis vectors. The eigenfunctions are thus


k(r j ) ≡
(

ψk(r j )
χk(r j + δ1)

)
= eik·r j

√
N

(
1

±e−ik·δ1

)
. (C13)

Observe how in the previous definition, we assign arbitrarily
the vector δ1 to a given A site. This avoid to carry a label for
n in the left-hand side of the definition.

Now consider the squared Hamiltonian H2
0 obtained from

Eq. (C8), its Schrödinger equation is(
H2

AB(k) 0
0 H2

AB(k)

)(
ψk

χk

)
= E2(k)

(
ψk

χk

)
, (C14)

implying that the components of the wavefunction on the A
and B sublattices are decoupled. Thus H2

0 describes atoms in
a triangular lattice as the squaring of H renormalizes one of
the bipartite sublattices. The spectrum of H2

0 is obtaining by
folding the original spectrum of H0 around E = 0. Obviously,

H2
0 =

(| f (k)|2 0
0 | f (k)|2

)
, (C15)

which using Eq. (C12) completes our renormalization to a
triangular lattice. We now remark that t0 is squared in H2

0
and thus now antibonding and bonding states are map into the
top of the band. This is seen by setting in Eq. (C12) k · a1 =

k · a2 = 0 from where k · a3 = 0 resulting in E2(0) = 9t2
0 or

E (0) = ±3t0.
Let us find the ground state of Eq. (C15). A naive way

is to perform a trial of the phases with the maximal phase
difference, k · a1 = k · a2 = π , but now

k · a3 = k · (a1 − a2) = 0. (C16)

The third bond is thus frustrated and increases the energy by
2, resulting in E (k) = ±t0. It turns out that this is exactly
the energy where the Van-Hove singularities are found in
graphene. These singularities are in fact similar to the con-
fined states in the sense that are made form localized dimers,
disconnected from the lattice by making zero such bonds. The
degeneracy is given by the number of dimers. To lower the
energy, the system needs to further reduce its frustration. As
explained in the text, this leads to a depletion of the DOS. In
disordered systems, such depletion leads to a Lifshitz tail. In
graphene, this leads to the Dirac cone where the DOS goes
linearly to zero towards E → 0. Once graphene’s periodicity
is broken by adding impurities or by adding edges, confined
zero energy modes appear at E = 0 and in fact is possible to
count them; they are important for the magnetic properties of
graphene [29,40].

To reach zero, we set k · a1 = φ, k · a2 = −φ from where
k · a3 = 2φ. As cos φ = cos(−φ) = −1/2, we finally obtain
E (k) = 0. By working out the algebra, it turns out that this
special wave vector is precisely the point k = K. By inter-
changing the sign of the phases, we get the other Dirac point
k = K ′. As for E = 0 states can be pseudo-spin-polarized, we
end up concluding that our minimal frustrated state is fourfold
degenerated.

Let us quantify the previous observations about frustration.
First notice how Eq. (C11) depends upon phase differences
between neighboring bonds, as we have from Eq. (C13),

gk(r j ) = ±ψk(r j )χ
∗
k (r j ) = ±eik·δ1

√
N

(C17)

where now we drop the vector δ1 in χ∗
k (r j + δ1) as is clear that

on each site in A we assign only one corresponding partner in
B. Also, we drop the minus sign as this is irrelevant in the
squared Hamiltonian. In such a form, we can perform a sum
over all bonds and notice that

| f (k)|2 = 1

2

∑
r j

6∑
s=1

g∗
k(r j )gk(r j + as) + 3 (C18)

where as are the second neighbors in H0 and first neigh-
bors if using the triangular lattice corresponding to H2

0 , i.e.,
±a1,±a2,±(a1 − a2), while the last term is the self-energy
corresponding to the interaction of the phases at the same site.
It follows that

E2(k) − 3t2
0 = t2

0 F (k), (C19)

where the sum of bonding (frustration) plus antibonding
contribution is

F (k) = 1

2

∑
r j

6∑
s=1

g∗
k(r j )gk(r j + as). (C20)
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The total contribution from frustration can be further obtained
by subtracting the bonding limit, however, as is a constant, we
leave F (k) as a measure of frustration. The ground state E = 0
is obtained when the frustration and antibonding contributions
balance the self-energy in such a way that F (K ) = −3, while
the frustration is increased as we depart from the K point
resulting in

F (k) = 2 cos (k · a1) + 2 cos (k · a2) + 2 cos (k · a3). (C21)

Obviously, this is the contribution from the six bonds in H2
0,

however, the important point here is that the frustration is
written in terms of the phase differences between neighbors.

How do we translate these ideas to a continuous low-
energy model? The simplest way is to go into the lowest
frustrated state and develop F (k) in Eq. (C21) using
k = K + q where qa0 << 1. As expected,

F (k) = F (K ) + (vF /t0)2q2 (C22)

from where is clear that the Fermi velocity indicates how fast
the frustration is raising with q. Yet, we need to generalize this

procedure to the twisted bilayer without knowing the energy
dispersion.

We start by noticing that for the twisted bilayer, still we
have the phases between neighbors, which are contained in
gk(r) = ψk(r)χ∗

k (r) where the site index j was dropped as we
deal with a continuous. Next we need to compare with the
phases of the first-neighbors in the triangular lattice gk(r +
as). Here where we depart from the case of graphene as we can
not use the Moiré vectors a1, a2 as neighbors as, for example,
r + a1 produces a site that is far away from a second neighbor.
Therefore as is used to denote a second neighbor. We develop
in series and sum over neighbors, gk(r + as) resulting in

F (k) ≈
∫

S
d2rg∗

k(r)

(
gk(r) + 1

2

6∑
s=1

as · ∇gk(r)

)
. (C23)

Here, the gradient will produce a term proportional to q in the
low energy version developed around K, as observed in the
spectrum [15].
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