
PHYSICAL REVIEW B 103, 245417 (2021)

Nonlinear optical response of twisted bilayer graphene
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Twisted bilayer graphene (TBG) exhibits many fascinating electronic and transport properties. Here we
analyze the nonlinear optical response in TBG in the terahertz regime. By considering an effective two-band
model with a simplified interlayer tunnel, we write the time-dependent wave function in terms of generalized
Floquet states consisting of multiple high-order harmonics. A two-component spinor recursion relation is
solved up to terms in the third order of the applied field. The third-order conductivity of TBG with different
twist angles is obtained. For small twist angles the Kerr effect dominates over the high harmonic processes,
while for large twist angles, the high harmonic processes completely dominate the nonlinear response. We
attribute this phenomenon to the band dispersion sensitive transition probability in low- and high-energy regimes.
The frequency- and temperature-dependent critical field is also presented. The critical field is insensitive to the
temperature, indicating that the nonlinear response persists at room temperature.
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I. INTRODUCTION

The advancements in fabrication of atomically thin ma-
terials have provided a catalyst for the theoretical and
experimental study of new two-dimensional superlattice mate-
rials in which the orientations of the sublattices are purposely
misoriented [1–5]. Owing to the diverse range of exciting
properties found in single-layer graphene (SLG), such as uni-
versal optical conductance [6–9], the half-integer quantum
Hall effect [4,10,11], strong suppression of weak localization
[12,13], magnetic enhancement of optical conductivity [14],
and a strong nonlinear response in the terahertz (THz) regime
[15,16], bilayer graphene (BLG) structures have been the
focus of intense research [17–21]. Within the framework of
BLG, interlayer interactions have been experimentally shown
to play a crucial role in determining the electronic proper-
ties [22–25]. As such many stacking orientations have been
studied theoretically and fabricated experimentally, including
AB (Bernal-inequivalent lattice sites are the opposite in the
top and bottom layers), AA (inequivalent lattice sites match
each other in the top and bottom layers), and ABC (trilayer)
graphene bilayers [26]. However, the most intriguing BLG
structure, and the focus of our study, is so-called twisted
bilayer graphene (TBG). In TBG, the two graphene sheets are
stacked at an arbitrary angle θ to one another (see Fig. 1),
making AA (θ = 0◦) and AB (θ = 60◦) special cases of TBG.

The interaction between misoriented layers in TBG pro-
vides rich and novel electronic properties, distinct from those
seen in the Dirac setting of SLG. Of particular interest are
the spectral properties of TBG for small twist angles, in-
cluding the opening of band gaps, creation of a Van Hove
singularity, and significantly reduced band velocity near the
Dirac point [5,27–30]. These dispersion properties have been
verified experimentally via numerous spectroscopy methods
such as Raman spectroscopy [31–33], angle-resolved pho-

toemission spectroscopy [34], optical reflection spectroscopy
[35], and terahertz time domain spectroscopy [36]. A plethora
of intriguing properties have since been shown to result from
the electronic structure of TBG, including, but not limited
to, the anomalous Hall effect [37,38], plasmon resonance
[39], circular dichroism [40], the chiral response [41,42],
topologically protected zero modes [43], Mott insulating
and superconductivity [44], the THz photogalvanic response
[45,46], exotic Landau levels [43,47,48], and Kerr effects
[37,48]. TBG has even been studied for use in gratings and
metasurfaces [42,49,50].

The property we are most interested in is the optical non-
linear response of TBG. There have been numerous studies
of the linear optical response of TBG [17,39–41,51,52] which
revealed a strong optical response (up to 8 times that of SLG
under equivalent conditions), physically rich optical selection
rules depending on the crystalline symmetries, and Landau
levels strongly dependent on twist angle. Such studies have
been verified experimentally and computationally [36,53].
However, the nonlinear optical response of TBG is still
largely unstudied. Studies on the nonlinear optical response
of Bernal BLG [18,54] revealed a strong nonlinear effect in
the THz to far-infrared (FIR) region where for very moderate
electric fields of 1000 V/cm the nonlinear conductivity be-
comes relevant and at room temperature a frequency-tripling
term can be induced. A recent computational nonperturba-
tive model by Ikeda [55] revealed appreciable higher-order
harmonics (up to the eighth order) exist in TBG with fixed
θ = 21.79◦ in the near- to mid-infrared (NIR-MIR) region.
Since the higher-order harmonics are not attributed to Dirac-
like carriers, but rather interlayer couplings, these harmonics
are not seen in SLG or BLG. Inspired by these conclu-
sions and recent evidence of the nonlinear activity of TBG
through other properties such as Kerr rotation [37], nonlinear
Hall effects [37,56], second harmonic generation [57], Rabi
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FIG. 1. (a) and (b) show the unit cells of TBG (spanned by L1

and L2), the top layer (spanned by a(2)
1 and a(2)

2 ), and the bottom layer
(spanned by a(1)

1 and a(1)
2 ) at different twist angles. The blue lattice

represents the top layer (layer 2), and the orange lattice represents
the bottom layer (layer 1). (c) and (d) show the first Brillouin zones
of each layer. The first Brillouin zone of TBG is defined by K and
K′, which come from the K points of the top and bottom layers,
respectively. The solid black hexagon in (d) represents the “folded-
back” Brillouin zone of TBG.

oscillations [58], and circular dichroism [40] we proceed to
survey the nonlinear optical response of TBG in the THz-FIR
region.

To study the nonlinear optical response we adopt a quan-
tum mechanical model which couples the carriers (electrons)
to a time-dependent electric field. By expanding electronic
states in successive orders of the electric field we can ob-
tain arbitrary-order nonlinear wave functions. Furthermore,
we can identify unique electron-photon processes for each
order wave function by grouping together different frequency
harmonics. The current response for any order wave function
is straightforwardly calculated, and the sensitivity to the tem-
perature, Fermi level, direction of the field, and twist angle
may be surveyed.

II. THEORY

A. Atomic structure and Brillouin zone

In reference to Fig. 1 the structure of TBG may be char-
acterized by a single twist parameter 0◦ � θ � 30◦ since
rotation by 60◦ − θ is equivalent to rotation by −θ followed
by a translation of the second layer [59,60]. Some studies

also include such a translation parameter δ in which the top
(or bottom) layer is moved in the xy plane relative to the
other [53,61]. We fix δ = 0 from the outset. Since AB stacked
BLG is difficult to fabricate thanks to disorders introduced
by substrates, our coordinate frame is chosen so that θ = 0,
the system is AA stacked, and the lattice vectors for both
layers are a1 = a(1, 0) and a2 = a(1/2,

√
3/2), where a ≈

0.246 nm is the lattice constant. When θ �= 0, we rotate each
layer θ/2 in different directions around a common B site so
that the lattice vectors of the individual layers are

a(1)
1 = a[cos(θ/2),− sin(θ/2)]

a(1)
2 = a[cos(π/3 − θ/2), sin(π/3 − θ/2)]

a(2)
1 = a[cos(θ/2), sin(θ/2)]

a(2)
2 = a[cos(π/3 + θ/2), sin(π/3 + θ/2)]. (1)

Using (1), we can determine the Brillouin zones (BZs) of
each layer and hence the vector connecting their K points for
any θ ,

�K = K(2) − K(1) = 2π sin(θ/2)√
3a

(
√

3,−1). (2)

Although the TBG lattice is not generally periodic for any
twist angle, for some specific twist angles the two periods
happen to match, allowing us to rigorously define a lattice
constant L and BZ for TBG. Such angles occur when two gen-
eral lattice vectors (spanned by a( j)

i : i, j = 1, 2) from each
layer are equal,

ma(1)
1 + na(1)

2 = ma(2)
1 + na(2)

2

⇒ cos θ = m2 + n2 + 4mn

2(m2 + n2 + mn)
. (3)

The lattice constant L is then determined by

L = |ma(1)
1 + na(2)| = a|m − n|

2 sin(θ/2)
, (4)

with the TBG lattice vectors

L1 = (√
3L/2, L/2

)
,

L2 = (0, L). (5)

Using the lattice vectors in (5), we can analytically calculate
the BZ as

[BZ] =
{

(kx, ky) ∈ R2 : |ky| � π√
3L

∩ |ky +
√

3kx|

� 2π

L
∩ |ky −

√
3kx| � 2π

L

}
. (6)

Consistent with Figs. 1(a) and 1(b) the k-space BZ in (6)
grows ∝ L−1 for larger twist angles corresponding to the
increased unit cell size in position space for smaller twist
angles. Despite the difference in area, each BZ of TBG can
be folded back into a central hexagonal region, as shown in
Fig. 1(d), where the K(′)(i) points are translated to K(1) → K′,
K(2) → K, K′(1) → K, K′(2) → K′ [53,62]. This procedure
shows (2) represents the vector connecting the K and K′
points in TBG.
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B. Electronic and topological properties

The most popular model for describing the electronic struc-
ture of BLG is given by the 4 × 4 Hamiltonian [43,47,51,63],

H (k) =
(

HG(k + �K/2)
∑1

i=−1(Hi
⊥)∑1

i=−1(Hi
⊥)† HG(k − �K/2)

)
, (7)

where

HG(k) = vF h̄

(
0 kx − iky

kx + iky 0

)

is the SLG Hamiltonian, vF ≈ 3 × 105 m/s is the Fermi
velocity [18,28,47],

H0
⊥ = t

(
1 1
1 1

)
, H±1

⊥ = t

(
e∓i2π/3 1
e±i2π/3 e∓i2π/3

)

are the three lowest-order Fourier components of the hopping
matrix between the two layers, which are dominant for small
twist angles 3◦ � θ � 10◦ [47,51], and t is a hopping param-
eter which generally depends on θ but may be taken to be
constant and ≈150 meV [24,43,64] for the region of small
twist angles considered here. It should be noted that this model
neglects commensuration effects between the two layers. Al-
though these effects are minor since coupling between Dirac
cones is negligible [59,65,66], in reality commensuration ef-
fects restrict the BZ to a small degree.

The model described by (7) is a continuum limit around
a single pair of K points (K, K′); as such, when discussing
symmetries, we do not refer to the lattice symmetries, but
rather to those of its energy bands,

εs,m = s

√
9t2 + (ε+

G )2 + (ε−
G )2 + m

√
[9t2 + (ε+

G )2 + (ε−
G )2]2 − 4(ε+

G )2(ε−
G )2, (8)

where (s, m) = ±1 denote the bands and

ε±
G = vF h̄

√
(kx ± �Kx/2)2 + (ky ± �Ky/2)2.

The Hamiltonian in (7) may be reduced to an effective two-
band model in the low-energy limit t � vF h̄�K , which is
valid for the twist angles 3◦ � θ � 10◦ discussed in this work.
To establish the two-band model we first assume a simplified
version of the interlayer coupling term

1∑
i=−1

Hi
⊥ → 3 × 5

2
t

(
0 0
1 0

)
,

where the factor of 5
2 is introduced to match the

Bernal-stacked (θ = 0) spectrum [47]. In the eigenbasis
{ψ1, ψ2, ψ1

θ , ψ2
θ } where (1,2) belong to the bottom layer

and (1θ , 2θ ) belong to the twisted bottom layer, the time-
independent Schrödinger equation (TISE) reads

vF (kx + iky + �Kx/2 + i�Ky/2)∗ψ2 = Eψ1,

vF (kx + iky + �Kx/2 + i�Ky/2)ψ1 + t̃ψ1
θ = Eψ2,

t̃ψ2 + vF (kx + iky − �Kx/2 − i�Ky/2)∗ψ2
θ = Eψ1

θ ,

vF (kx + iky − �Kx/2 − i�Ky/2)ψ1
θ = Eψ2

θ ,

(9)

where t̃ = 15
2 t . With (9) we observe that the zero-energy so-

lutions are spanned by ψ1 and ψ2
θ and the other basis vectors,

ψ2 and ψ1
θ , are strongly hybridized by the hopping parameter

t̃ . Since we seek low-energy solutions, we can neglect

Eψ2 ≈ 0,

Eψ1
θ ≈ 0.

The effective two-band Hamiltonian can be written as
[43,47,63]

H2,Band(k) = −v2
F h̄2

t̃

(
0 q†(k)

q(k) 0

)
, (10)

where q(k) = (kx + iky)2 − (�Kx/2 + i�Ky/2)2 := k2 +
(�K/2)2. The associated dispersion relation is

εs = s
v2

F h̄2

t̃
|q(k)| = s

v2
F h̄2

t̃
ε+

G ε−
G . (11)

The dispersion relation is plotted in Fig. 2. The most salient
features of the TBG dispersion are evidently captured in the
saddle point at k = 0, logarithmic Van Hove singularity cor-
responding to the Dirac points at ±�K (one from each layer),
and the overall anisotropy owing to �Kx �= �Ky. From the
low-energy expansion of (10) around ±�K, we observe that
electrons with fixed energy at K have the same chirality as
equivalent energy carriers at K′. Hence, electrons at either
K(′) point will experience a Berry phase of γ = (±)π on
a closed orbit around that Dirac point. Moreover, collapsing
the Dirac points, �K = 0 need not be accompanied by a gap

FIG. 2. Dispersion relation for the effective two-band model of
TBG with θ ≈ 5◦. The pop-out shows the two Dirac points at ±�K,
while the arrows depict the single-photon current and two different
three-photon contributions to the third-order current.
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opening (Van Hove singularity). In view of these topological
properties H2Band may be viewed as a representative of the
topological universality class that also includes H , respect-
ing the same representation of inversion symmetry H (−k) =
−H (k)∗ [E (k) → −E (−k)].

C. Nonlinear conductivity

Consider a system subject to a spatially constant, time-
dependent optical field along the x axis described by E =
Eeiωt x̂. It yields a vector potential A = − E

−ih̄ω
e−iωt x̂, so that

under Pierel’s substitutions (e > 0) the Hamiltonian becomes

H2 Band(k, A) = −v2
F h̄2

t̃

(
0 q∗ + 2eE

ih̄ω
k∗eiωt − e2E2

h̄2ω2 e2iωt

q + 2eE
ih̄ω

keiωt − e2E2

h̄2ω2 e2iωt 0

)
. (12)

Now we assume that the time-dependent wave function is given in the form of generalized Floquet states,

ψ (k, t ) =
∞∑

n=0

φn(k)einωt e−iεt/h̄, (13)

where ε = |εs| and the two-component spinor φn(k) = (αn(k), βn(k))T . Substituting (13) into the TISE yields

h̄
∞∑

n=0

(ε/h̄ − nω)φn(k)ei(nω−ε/h̄)t = −
∞∑

n=0

ei(nω−ε/h̄)t v
2
F h̄2

t̃

(
0 q∗ + 2eE

ih̄ω
k∗eiωt − e2E2

h̄2ω2 e2iωt

q + 2eE
ih̄ω

keiωt − e2E2

h̄2ω2 e2iωt 0

)
.

The TISE above contains information on all-order multiple
photon processes in TBG. Owing to the orthonormality of eiωt ,
we can isolate each order through the two-level recurrence
relations for the spinor components

t̃ (ε − nh̄ω)αn = −v2
F

(
βnq∗ + 2eE

ih̄ω
k∗βn−1 − e2E2

h̄2ω2
βn−2

)
,

t̃ (ε − nh̄ω)βn = −v2
F

(
αnq + 2eE

ih̄ω
kαn−1 − e2E2

h̄2ω2
αn−2

)
.

(14)

From the solutions to (14) we can calculate the nth-order total
current using the relation

Jn
ν = e

4π2

∫
[BZ]

d2kNF (μ, ε)(ψ†
mvνψm′ ), (15)

where [BZ] is the BZ in (6),

NF (μ, ε) = nF (μ,−ε) − nF (μ, ε)

= sinh(ε/kBT )

cosh(μ/kBT ) + cosh(ε/kBT )

is the interband distribution function, vν = h̄−1∂kν
H2 Band

is the velocity operator in the direction ν = x, y, and
indices m, m′ ∈ Z have the restriction m + m′ = n. The time-
averaged observable part of the current in each direction is
given by

Re
{
Jn

x

} = −ev2
F h̄

π2t̃

∫
[BZ]

d2kNF Re

{
k

n∑
n′=0

α∗
n′βn−n′

}
(16)

and

Re
{
Jn

y

} = ev2
F h̄

π2t̃

∫
[BZ]

d2kNF Im

{
k

n∑
n′=0

α∗
n′βn−n′

}
. (17)

Note that since we seek the real part of the spinor sum,
each α∗

n′βn−n′ is interchangeable with its complex conjugate.
Hence, when isolating oscillatory terms, both α∗

n′βn−n′ and

α∗
n−n′βn′ are ∝ ei|n−2n′ |ωt . In this view (16) and (17) will con-

tain only one term oscillating with frequency 1ω for n = 1
and two terms, one oscillating with frequency 1ω and another
oscillating with frequency 3ω (frequency-tripled term), for
n = 3, as per Fig. 2. When discussing nonlinear conductivities
herein, we define the nth-order conductivity σ (n)

ν from (15) by

Jn
ν = σ (n)

ν En

for ν = x, y.

III. RESULTS

For the parameters discussed in the previous section, the
minimum of the ε1,1 band in the four-band model ranges
from 0.78 eV for (m, n) = (4, 3) ⇒ θ = 9.43◦ to 0.34 eV for
(m, n) = (11, 10) ⇒ θ = 3.15◦. Hence, for our effective two-
band model to remain valid we should sample only fields for
which h̄ω + μ < 0.34 eV ⇒ ω < 2.13 × 1014 Hz. Terahertz
frequencies adhere well to this restriction and are the focus
of this paper.

In the absence of an electric field only the n = 0 terms
contribute, and the solution to (14) is

φ0(k) = 1√
2

(−v2
F h̄2q∗/(t̃ε)

1

)
. (18)

Substituting (18) into (16) or (17) yields no current as there
must be a nonzero electric field for a nonzero current.

A. First-order conductivity

Substituting (18) into (16) results in Re(J (0)
x ) = 0, as one

would expect. The single-photon processes are described by
the spinor

φ1(k) =
√

2eE

i(h̄ω)2(2ε − h̄ω)

(
v2

F h̄2t̃−1(2εkx − kh̄ω)
−ε(q∗)−1(2εkx − k∗h̄ω)

)
.

(19)

245417-4



NONLINEAR OPTICAL RESPONSE OF TWISTED BILAYER … PHYSICAL REVIEW B 103, 245417 (2021)

The simplest analytic expression for Re(J1
x ) is obtained by substituting (19) into (16) and using the Sokhotski-Plemelj

relations to yield

Re
{
J (1)

x

} = −4eEv8
F h̄7

t̃4π2

∫
[BZ]

d2k
NF

(h̄ωε)2

⎡
⎢⎣

− KxKy
[
2εk2

x − h̄ω
(
k2

x + k2
y

)](
k2

x + k2
y − K2

x + K2
y

)
(2ε − h̄ω)−1

+
([

2εk2
x − h̄ω

(
k2

x + k2
y

)](
k2

x k2
y + K2

x K2
y

)
+εk2

x k2
y

(
k2

x − k2
y − K2

x + K2
y

) )
2πδ(2ε − h̄ω)

⎤
⎥⎦, (20)

where Kν = �Kν/2 for short. The Sokhotski-Plemelj rela-
tions allow us to separate a diffuse part of the current ∝ (2ε −
h̄ω) [top line in (20)] and a harmonic part ∝ δ(2ε − h̄ω). The
diffuse part is not present in SLG. Numerically, the δ functions
are approximated using the Lorentzian representation δ(x) →
(ν/π )/(x2 + ν2), where ν = 7 meV is the broadening pa-
rameter [51]. The first-order conductivity σ (1)

x = Re(J (1)
x )/E

scaled by σ
(1)
0 = e2/4h̄ is plotted as a function of frequency

for different twist angles, temperatures, and Fermi levels in
Fig. 3. In terms of frequency dependence, unlike SLG, TBG
has no universal conductivity and instead decreases approx-
imately as ∝ ω−2 using the low-energy effective two-band
model. This was observed previously in the lower limit of
previous optical conductivity studies in the MIR-NIR range
[51,55]. The first-order conductivity magnitude of TBG was
previously reported to vary between 0.4σ

(1)
0 and 1.5σ

(1)
0 in

the THz region [17,39,40,51] for intermediate twist angles
θ ≈ 5◦. Our results lie within this region of validity.

Figure 3(a) shows the most striking result of the first-order
conductivity. By changing the twist angle only a few degrees
the conductivity is altered by up to an order of magnitude. This
sensitivity is defined by two competing factors. First, the BZ is
enlarged almost twofold when increasing θ = 3.15◦ → 9.43◦,
encapsulating the influence of a broader spectrum of carriers
leading to an increased conductivity. Second, from a disper-
sion perspective, the saddle point is lowered for smaller twist
angles, as is the gradient of the bands at larger k. Since a
lower saddle point enhances interband conductivity (carriers
transitioning between K and K′) and the spectral regions
around each K(′) point are broadened by a lower Fermi veloc-

FIG. 3. First-order conductivity σ (1)
x in the THz region with dif-

ferent (a) twist angles, (b) temperatures, and (c) Fermi levels. Unless
otherwise stated, the parameters are (m, n) = (7, 6), T = 300 K, and
μ = 0.1 eV.

ity, one should expect an increase in conductivity. Evidently,
the BZ expansion is the dominant mechanism for our chosen
parameters, saturating the dispersion effects, leading to an ex-
ponential increase in first-order conductivity with twist angle.

The dependences shown in Figs. 3(b) and 3(c) are both
completely defined by the distribution function NF . As μ →
0, the term cosh(μ/kBT ) decreases towards 1, increasing NF

and the overall conductivity. Physically, this may be attributed
to Pauli blocking mitigating the interband contribution of
deep carriers, increasing the chemical potential, leading to a
reduced phase space for the final states, a process not present
in the intraband response of SLG where σ (1) increases ∝
ln[2 cosh(μ/2T )], in accordance with the Boltzmann-Drude
expression. Similarly, there is an approximately twofold in-
crease in conductivity when lowering the temperature from
300 to 0 K, mirroring what is observed in SLG using the same
technique[16]. The anisotropy of the first-order conductivity
is surveyed in Fig. 4. These data are obtained by using E =
Eeiωt ŷ, following the same steps to calculate φn and numeri-
cally evaluating (17). One observes first that TBG is a better
linear conductor in the y direction of our coordinate system,
following directly from �Ky < �Kx, allowing interlayer car-
riers to move between K and K(θ ) more freely. Furthermore,
anisotropy is larger for smaller twist angles since the lower
saddle point also enhances interlayer conductivity. Both of
these features are very robust to THz frequency, with the
dominance of Jy shown to persist for frequencies into the NIR
region for fields as high as 3.2 MV/cm [55]. The anisotropy
is not sensitive to temperature or Fermi level since the distri-
bution function is not sensitive to field direction.

FIG. 4. Anisotropy of the first-order conductivity for T = 300 K
and μ = 0.1 eV.
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B. Third-order conductivity

Consistent with the compound inversion plus time-reversal symmetry of the system, we find that σ (2n)
ν = 0 ∀ n ∈ Z

[18,67–69]. Hence, the lowest-order nonlinear contribution to the current response will be the third order. The third-order solution
to (14) yields the spinor

φ3(k) = v2
F h̄2e3E3

i3(h̄ω)5t̃2(2ε − 3h̄ω)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
8v8

F h̄8

(
k∗qε(2εkx − k∗h̄ω)[(ε − 2h̄ω)(k∗q + kq∗) − h̄ωk∗q]

+kq∗(2εkx − kh̄ω)[ε2(kq∗ + k∗q) − h̄ω(5ε − 6h̄ω)k∗q]

)
4
√

2t̃3ε2h̄ω(2ε − h̄ω)(ε − h̄ω)

+ 2ε{kε[εt̃2(ε − 2h̄ω) + v4
F h̄4(q∗)2] + k∗(ε − 3h̄ω)[εt̃2(ε − h̄ω) + v4

F h̄4q2]}
4
√

2t̃εq(ε − h̄ω)

+
√

2v4
F h̄4[(2εkx − kh̄ω)εq∗ − (2εkx − k∗h̄ω)(ε − 3h̄ω)q]

t̃ε(2ε − h̄ω)
,

8v6
F h̄6

(
ε3t̃2k(2εkx − kh̄ω)[(ε − 2h̄ω)(k∗q + kq∗) − h̄ωkq∗]

+k∗q2v4
F h̄4(2εkx − k∗h̄ω)[ε2(kq∗ + k∗q) − h̄ω(5ε − 6h̄ω)kq∗]

)
4
√

2t̃4ε3h̄ω(2ε − h̄ω)(ε − h̄ω)

− 2v2
F h̄2{k∗ε[εt̃2(ε − h̄ω) + v4

F h̄4q2] + k(ε − 3h̄ω)[εt̃2(ε − 2h̄ω) + v4
F h̄4(q∗)2]}

4
√

2t̃2q(ε − h̄ω)

+
√

2v2
F h̄2[(2εkx − k∗h̄ω)εq − (2εkx − kh̄ω)(ε − 3h̄ω)q∗]

q∗(2ε − h̄ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

We find that the third-order conductivity scales with fre-
quency as ω−6, a drop off two orders of magnitude sharper
when compared to SLG [16] and one order sharper than
BLG [18] over an equivalent frequency range. Physically, this
sharper drop off corresponds to the twist-induced saddle point
disproportionately blocking higher-order electron-photon pro-
cesses and is seen at NIR frequencies where the harmonic
bandwidth is reduced for higher orders [55]. As in most
systems the high-frequency conductivity will then be domi-
nated by the linear conductivity. Figure 5 shows that in the
region ω ∈ [1, 3] THz, for a temperature of 300 K and electric
field of 105 V/m, σ (3)

x E2 ∈ [4.32 × 10−8, 5.75 × 10−3]σ (1)
0 .

Under the same parameters for BLG σ (3)
x E2 ∈ [6 × 10−3, 6 ×

10−1]σ (1)
0 , showing that TBG exhibits an appreciably smaller

nonlinear response due to the �K �= 0 Van Hove singular-

FIG. 5. Third-order conductivity σ (3)
x in the THz region for

different twist angles with T = 300 K, μ = 0.1 eV, and σ
(3)
0 =

e4vF at̃−3 A m2/V3.

ity minimizing the spectral weight in the vicinity of k =
0. Furthermore, we observe that for larger twist angles
the frequency-tripled portion of the third-order conductivity
σ (3)

x (3ω) can be dominant over σ (3)(ω) even at higher THz
frequencies. This feature is caused by the increased sensitivity
of σ (3)(3ω) to the twist angle as the decreased BZ for smaller
θ inhibits the higher transition energy three-photon absorption
processes more drastically than the two-photon absorption,
one-photon emission process σ (3)(ω). This is in direct contrast
to both SLG and BLG, where σ (3)(ω) remains dominant at
THz frequencies [16,18].

The anisotropy of the nonlinear response is more feature
rich than its linear counterpart. Figure 6 shows a marked
difference between the anisotropies of σ (3)(3ω) and σ (3)(ω).
The dominance of σ (3)

y (ω) is far more pronounced at lower
frequencies owing to the lower transition energy. However,
as the field frequency increases, σ (3)

y (ω) falls more rapidly

FIG. 6. Anisotropy of the third-order conductivity T = 300 K
and μ = 0.1 eV. (a) For two-photon absorption, one-photon emission
processes. (b) For three-photon absorption processes.
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FIG. 7. Critical field in the THz region for T = 300 K, μ =
0.1 eV, and different twist angles. (a) In the x direction. (b) In the
y direction.

as available carriers begin to disproportionately participate
in single-photon processes until σ (3)

y (ω) becomes negative
and the defocusing discontinuity occurs. This phenomenon is
magnified at larger twist angles where the interlayer response
is mitigated. Figure 6(b) shows the frequency-tripled response
in the x direction remains dominant by ≈10% over the entire
frequency domain. We attribute this feature to carriers selec-
tively participating in lower transition energy processes more
readily in the y direction, where the interlayer response is
greater. Our attribution of most nonlinear anisotropy features
to the interlayer response is consistent with findings in the
NIR range where, relative to the overall response, the inter-
layer response at the third harmonic is 5 times larger than at
the first harmonic [55].

C. Critical field

Since the first-order current scales with E/ω2 and the third-
order current scales with E3/ω6 at sufficiently high fields or
low frequencies, the nonlinear current will be of considerable
magnitude. To quantify when this occurs, we define the crit-
ical field as the electric field required to make the first- and
third-order current equal in magnitude,

Ec,ν =
√∣∣∣∣σ

(1)
ν

σ
(3)
ν

∣∣∣∣.
Figure 7 shows that the magnitude of the critical field en-
compasses Ec,x ∈ [102–107] V/m over the frequency range
surveyed for different twist angles. For THz frequencies
SLG lies well within the lower bound of this rage with
Ec(ω) ∈ [1600–2600] V/m and Ec(3ω) ∈ [1700–2700] V/m
[16], and BLG lies more in the center with Ec(ω) ∈ [6 ×
104, 1.5 × 106] V/m and Ec(3ω) ∈ [1.1 × 105, 2 × 106] V/m
[18]. Although our model relies on fundamentally different
assumptions, an extrapolation of our results into the NIR fre-
quency region for a large twist angle of 21.8◦ falls just below
the equivalent Ec,x = 108 V/m value in [55].

In Fig. 7(a), the increased robustness of the twist angle
and frequency for Ec,x(ω) is consistent with the analysis of
σ (3)

x (ω). A salient point for the larger twist angles is that
the critical field is up to an order of magnitude smaller for

FIG. 8. Temperature dependence of the critical field Ec,x for
(m, n) = (7, 6), θ = 5.09◦, ω = 1 THz, and μ = 0.1 eV.

the frequency-tripled component at lower THz frequencies:
Ec,x(3ω) ≈ 104 for θ = 9.43◦. This is not the case for BLG,
where Ec(3ω) > Ec(ω) over the entire THz range [18] as
per the frequency dependence of σ (3). The main difference
between the frequency dependences of the critical fields in the
x and y directions is the peaked structure of Ec,y(ω) shown in
Fig. 7(b). This feature is a remnant of the change in polarity of
σ (3)

y (ω) and as such occurs at higher frequencies for smaller
twist angles.

Owing to the different harmonic processes present within
the third-order current, the distribution function is modified,
and the temperature dependence is no longer straightfor-
wardly controlled by NF (ε, μ). To capture this nontrivial
temperature dependence Fig. 8 is produced.

The nonlinear response of TBG is found to be less sensi-
tive to thermal fluctuations when compared to SLG. Figure 8
shows that Ec,x(3ω) increases ≈25% from 0 to 300 K, while
Ec,x(ω) increases ≈20.8% over the same range. These values
are in comparison to Ec(3ω) increasing ≈32.3% and Ec(ω) in-
creasing ≈46.9% in SLG, while Ec(3ω) decreases ≈45% and
Ec(ω) decreases ≈29% over the same temperature range for
ω = 1 THz [16]. For SLG at 0 K Ec,x(3ω) is ≈6.25% larger
than Ec,x(ω), but Ec,x(ω) increases faster with temperature,
producing a crossover point at ≈180 K, where Ec,x(3ω) <

Ec,x(ω). Such a feature is absent from both TBG and BLG. In
this way thermal tunability for a frequency-tripled response is
sacrificed for robustness. In TBG Ec,x(3ω) is ≈116% larger
than Ec,x(ω) at 0 K for θ = 5.09◦ and increases more rapidly
over T ∈ [0, 300] K, while in BLG Ec(3ω) is ≈83% larger
than Ec(ω) at 0 K and decreases more rapidly to end ≈29%
larger at 300 K. The fact that Ec increases with temperature
regardless of twist angle in TBG can only be attributed to
the twist-induced saddle point producing not only a more
frequency sensitive nonlinear current but a more temperature
sensitive nonlinear current as well.

IV. CONCLUSION

For a low-energy effective two-band model we have
employed a quantum mechanical formalism to recursively
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determine wave function components that couple charge carri-
ers in TBG to successive orders of a spatially constant electric
field. The wave functions were used to calculate the linear
and third-order (lowest nonlinear order) current responses in
both the x and y directions (parallel to the direction of the
applied field) and their dependence on temperature, Fermi
level, and twist angle. The validity of this model relies on ω <

2.13 × 1014 Hz so that carriers from the innermost conduction
and valence bands participate in interband transitions. Further-
more, the region of twist angles sampled was 3◦ � θ � 10◦,
which is large enough to avoid localization effects and small
enough for the interlayer hopping matrix to resemble Bernal
bilayer graphene [43,47,51,63].

The most salient feature of the first-order conductivity is its
twist angle dependence. It was shown that as θ = 3◦ → 10◦,
the first-order conductivity increases by almost two orders
of magnitude in the THz range. This is attributed to the
BZ enlargement (decreased unit cell in coordinate space) for
larger twist angles and persists for the nonlinear third-order
conductivity. The drastic change in optical conductivities by
twisting opens the possibility for use of TBG in optotwistron-
ics (also known as twistronics). With magnitudes two orders
smaller than comparative studies on the nonlinear conduc-
tance of bilayer graphene without a twist [18], TBG was found
to sacrifice nonlinear activity for high tunability with twist
angle, a high degree of anisotropy, and a larger robustness to
temperature fluctuations. This decrease in nonlinearity yields
a critical field only one order of magnitude larger than BLG

at ≈105 V/m. Given this is still a practically accessible field
and similar to other materials such as nodal semimetals [67]
and α-T3 lattices [68], TBG should be considered a candidate
for THz optics and photonics devices such as THz emitters,
detectors, and mixers. The most desirable feature uncovered
in this paper the dominance of the frequency-tripled nonlinear
conductivity for larger twist angles, producing low critical
fields of the order of 104 V/m at room temperature. This
phenomenon is imperative for THz up-conversion devices by
using another emitter at 1/3 of the desired frequency.

As a final remark we comment on our omission of phonon
excitation and relaxation phenomena. The dominant electron-
phonon coupling mode is the longitudinal acoustic (LA)
mode at room temperature [70,71]. Given LA phonons have
a velocity of ≈2 × 104 m/s and the carriers we considered
reside close to the K(θ ) points, where their velocity ≈ vF , the
probabilities of single-phonon emission and multiple-phonon
excitation are negligible. Since our model is designed to cap-
ture the current produced by low-energy carriers residing near
the Dirac points, relaxation due to impurity scattering should
become relevant only for driving fields of magnitude larger
than megavolts per centimeter [55,72,73].
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