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Magnetic field induced formation of a stationary charge density wave in a conducting Möbius stripe
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Magnetic field induced edge currents propagate in opposite directions at opposite edges of a Hall bar. We
consider a system that possesses just one edge: a Möbius stripe. We show that if the carrier mean free path is
less than the width of the stripe, magnetic field induced edge currents vanish. Instead, a stationary charge density
wave is formed. Its profile is governed by the interplay between the magnetic field dependence of the chemical
potential and the screened Coulomb repulsion of charge carriers. This effect offers an experimental tool for
studies of the electron density of states in two-dimensional crystal films.
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I. INTRODUCTION

At equilibrium, an isolated nonsuperconducting solid state
system subject to a stationary magnetic field cannot propagate
conventional electric currents for a simple reason: The work of
a stationary Lorentz force is always zero (see e.g., [1–3]). Still,
nondissipative edge currents may propagate. Edge currents in-
duced by a strong magnetic field in a metal or semiconductor
crystal represent an electron transport effect that is unique
from many points of view [4,5]. Edge currents are ballistic
in their nature. They may be generated at zero applied voltage
solely under an effect of the Lorentz force provided that the
electron mean free path strongly exceeds its cyclotron orbit
diameter [5]. In this regime, scattering of carriers plays no
significant role, which is why edge currents are dissipationless
and may propagate persistently. Furthermore, these currents
are topologically protected, the value and the direction of
each current is only dependent on the topology of the edge,
temperature, and the magnitude of the applied magnetic field
[6,7]. A great number of publications is devoted to the studies
of edge currents in the quantum Hall regime, where they play
a crucial role [4,8,9]. Recently, we have shown how persistent
edge currents in a Corbino disk [7] may affect the macro-
scopic diamagnetic response of the system. In this context,
as we show below, the topology of a Möbius stripe offers an
interesting example of a system where edge currents cannot
propagate in the stationary regime (excluding the limiting
case of strictly no scattering). A Möbius stripe is a famous
example of a self-connected surface that possesses just one
edge. A quantum-mechanical description of electron transport
on a Möbius ring and its comparison with conventional ring
geometry was made in [10], the effects caused by the topology
of the Möbius stripe were described for both metals [11] and
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graphene [12]. If a Möbius stripe is subject to an uniform
stationary magnetic field, on its surface one can always draw a
crossing line that is parallel to the field, and another crossing
line that is perpendicular to the field. A convenient way to
describe the edge of a Möbius stripe is by introducing an
angular coordinate θ that spans the interval between 0 and 4π

as one describes the full circle and comes back to the point of
departure following the edge. The normal to the plane of the
stripe projection of the external magnetic field H depends on
θ as H = H0 sin θ/2, where H0 is the magnitude of the applied
field. One can see in Fig. 1(a) that between θ = 0 and θ = 4π ,
H crosses 0 and changes its sign twice. Figure 1(b) shows
schematically the trajectories of carriers that might contribute
to the edge currents for different values and signs of H . We
assume that for positive H the direction of cyclotron motion
of the carriers is clockwise. One can see that the direction of
the edge current changes at θ = 0 and θ = 2π . Currents flow
from both sides towards one of these points and away from
the other one. Obviously, in the stationary regime, the electric
charge cannot accumulate continuously in the vicinity of zero
field points. In the absence of scattering, the currents must
jump between the edges of the stripe near θ = 0 and θ = 2π

points, so that the system would propagate two currents of
the same magnitude simultaneously: one going clockwise and
another one going anticlockwise. These currents cross each
other when jumping between the edges of the stripe in the
vicinity of zero magnetic field points [13]. In this, ballistic,
regime, the coherence of propagating quasiparticles is never
broken and interesting interference effects such as the analog
of Aharonov-Bohm [14] effect may be observed. However,
this regime is unlikely to be realised in macroscopic crystal
structures at nonzero temperatures. Indeed, in macroscopic
structures, the width of the stripe D must be expected to be
much larger than the mean free path of propagating carriers.
Hence, the current between opposite sides of the stripe must
be dissipative rather than ballistic [15]. The propagation of
dissipative currents would result in a permanent generation
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FIG. 1. (a) A conducting Möbius stripe subjected to a magnetic
field. The red line along the edge corresponds to the area where the
normal to the plane projection of the magnetic field is positive, the
green line shows where it is negative. (b) The trajectories of cyclotron
orbits of charge carriers for a section of the Möbius stripe near the
points 0 and 2π .

of heat out of nowhere, that would be equivalent to the re-
alization of a perpetuum mobile. Clearly, this is impossible.
One should conclude that in a realistic Möbius stripe the
circuit of edge currents is broken in the vicinity of θ = 0
and θ = 2π points, so that no current can be flowing in the
system. Still, this regime offers some beautiful physics that
can be studied experimentally and theoretically. In this work,
we present an analytical theory that describes the profile of
a charge density wave (CDW) [16,17] that forms itself along
the edge of a conducting Möbius stripe subjected to a strong
spatially uniform magnetic field. We also consider the ballistic
regime, where the CWD is not form, and edge currents in both
directions do propagate.

II. CHARGE DENSITY WAVE

We shall describe the Coulomb repulsion of charge carriers
with use of the standard screened Poisson equation written
in form of a Klein-Gordon equation [18,19] that links the
electron density δn3D with the electrostatic potential φ:

(
1

R2

d2

dθ2
− λ2

)
φ = eδn3D

ε0ε
, (1)

where R is a radius of the Möbius stripe, λ is the reverse
screening length, ε is a dielectric constant. For simplicity, we
write Eq. (1) in a one-dimensional form while it can be easily
generalised to the two-dimensional case that would enable one
to account for the decay of CDW as one moves away from the
edge of the stripe.

Assuming that radius R of the Möbius stripe is much larger
than any characteristic length in the system, we can neglect
the first term in Eq. (1) and obtain a linear dependence of the

electrostatic potential on the electron density:

φ = − e

λ2εε0
δn3D. (2)

In what follows we shall operate with the two-dimensional
electron density defined as n2D = n3DL, where L is the thick-
ness of the stripe. The variation of carrier concentration is
defined as δn2D = n2D − n0, where n0 is the uniformly dis-
tributed electron density in the absence of the magnetic field.
We shall follow the approach of [1] and [20] who postu-
late the constancy of the electrochemical potential at thermal
equilibrium:

μ − eφ = const. (3)

We shall also assume that the chemical potential is
coordinate-dependent. Note that an alternative concept that
defines the electrochemical potential locally and postulates
the constancy of chemical potential at equilibrium would yield
exactly the same result.

The concentration of carriers in a 2D-electron gas depends
on the chemical potential, temperature, and magnetic field
[21]:

n2D = 2
S(μ)

(2π h̄)2
+ mωc

π2h̄

× arctan
sin 2π

( S(μ)
2π h̄e|H | − γ

)
e

2πkTD
h̄ωc − cos 2π

( S(μ)
2π h̄e|H | − γ

) , (4)

where S(μ) is the cross section of the Fermi surface, m is the
electron effective mass, ωc is the cyclotron frequency that is
defined by the component of the magnetic field that is normal
to the plane of the stripe, TD is the Dingle temperature that
describes the broadening of Landau levels [22], and γ is the
topological parameter that allows to distinguish between car-
riers having a parabolic energy spectrum and Dirac fermions
[23].

Equations (2)–(4) form a closed system that can be re-
solved for any specific value of θ . As a result, the stationary
distribution n(θ ) can be obtained that describes the CDW in
a Möbius stripe. (We will omit the superscripts 2D from now
on for simplicity.)

Substituting Eqs. (2) and (4) into Eq. (3) one can obtain an
equation for the angle-dependent chemical potential:

μ + e2

λ2εε0L

[
2

S(μ)

(2π h̄)2
+ mωc

π2h̄

× arctan
sin 2π

( S(μ)
2π h̄e|H | − γ

)
e

2πkTD
h̄ωc − cos 2π

( S(μ)
2π h̄e|H | − γ

) − n0

⎤
⎦ = C. (5)

The value of the constant in the right part of Eq. (5) is defined
by the normalization condition. The integrated variation of the
electronic concentration along the entire edge of the Möbius
stripe must be zero: ∫ 4π

0
δn2Ddθ = 0. (6)

As an example of a system sustaining a 2D-electron gas
characterised by a parabolic dispersion, we consider an ultra-
thin metallic foil. We refer to a multitude of works reporting
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FIG. 2. Variation of the electron density at the edge of a metallic
Möbius stripe as a function of the angular coordinate calculated at
different values of the applied magnetic field: (a) H0 = 15 T, (b)
H0 = 10 T, (c) H0 = 5 T. Blue, green, and red lines correspond to
the values of the Dingle temperature: TD = 2 K, TD = 10 K, and
TD = 50 K, respectively. The insets show on a larger scale the dis-
tribution of the electron density in the vicinity of the 3π point
(θ1 = 3π − π

32 ; θ2 = 3π + π

32 ).

fabrication of a micrometer scale metallic rings [24,25] and
strongly believe that the fabrication of a metallic Möbius
stripe is within the reach of modern technologies. We intro-
duce the reverse screening length for normal carriers in the
Thomas-Fermi approximation:

λNC = me2

2πε0ε h̄2 . (7)

The Fermi surface cross-section writes [21]

S(μ) = 2πmμ. (8)

The other parameters essential for the calculation are: ωc =
e|H |/m, γ = 1/2, L = 50 nm, m = m0, where m0 is the free
electron mass. We estimate for the static dielectric permittiv-
ity in metals as ε = 1 [26]. Figure 2 shows the calculated
profiles of CDW in a metallic Möbius stripe at different
values of magnetic fields and Dingle temperatures. We took
the Fermi energy of a two-dimensional electron gas in a
metal to be 4.8 eV, which roughly corresponds to gold. One
can see that the oscillations of the electron density become
stronger at stronger magnetic fields. Also, one can see that
the magnitude of oscillations decreases with the increase of
the Dingle temperature, which characterizes the broadening
of Landau levels. Sharp oscillation of the carrier density for
H0 = 15 T, TD = 2 K, which are shown by the blue curve in
the inset in Fig. 2(a) are almost washed out at the magnetic

FIG. 3. Variation of the electron density at the edge of the
graphene Möbius stripe as a function of the angular coordinate calcu-
lated at different values of the applied magnetic field: (a) H0 = 15 T,
(b) H0 = 10 T, (c) H0 = 5 T. Blue, green, and red lines correspond
to the Dingle temperatures TD = 2 K, TD = 10 K, and TD = 50 K,
respectively.

field H0 = 5 T and Dingle temperature TD = 50 K as shown
by the red curve in the inset to Fig. 2(c). It is instructive to
compare the profile of CDW calculated for carriers having a
parabolic dispersion with the corresponding profile obtained
for Dirac fermions characterized by a linear dispersion. We
shall consider graphene, where charge carriers are character-
ized by the ∼k1/2 Landau energy spectrum, with k being the
Landau quantum number [27]. The reverse screening length
for Dirac fermions in the Thomas-Fermi approximation is [28]

λDF = μe2

πε0ε h̄2v2
, (9)

where v is the Fermi velocity. For Dirac fermions [21]

S(μ) = π
μ2

v2
. (10)

The other parameters become ωc = e|H |v2/μ, γ = 0, ε =
6.9, L = 0.22 nm, v = 108 cm/s [27,29].

The solutions of Eq. (5) in the case of a graphene Möbius
stripe for various values of the magnetic field and Dingle
temperatures are shown in Fig. 3. One can see that the vari-
ation of the electron density along the edge of the stripe is
qualitatively similar to one obtained in the case of metal.
However, the positively and negatively charge parts are redis-
tributed in the real space. The difference in a shape of CDW
for carriers with a parabolic dispersion and Dirac fermions
is governed by the topological parameter γ that takes values
1/2 and 0 for the two types of carriers, respectively. We note
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FIG. 4. The electronic chemical potential as a function of the
normal-to-plane magnetic field calculated for a graphene Möbius
stripe in the presence (red line), and in the absence (blue line) of
the electron density redistribution caused by the CDW effect. La-
beled lines show the energies of the corresponding Landau levels as
functions of the magnetic field. TD = 10 K is assumed.

that also the magnitude of the electron density oscillations in
graphene is smaller than in metallic foil because of the lower
Fermi energy.

To shed light on the mechanism of the CDW formation
in the Möbius stripe, it is instructive to compare the angular
dependencies of the chemical potential calculated accounting
for and neglecting the formation of the CDW. In the latter case
we need to assume a constant charge density along the edge of
the stripe. In order to perform this analysis, we invert Eq. (4)
following [27,30] and obtain

S(μ) = 2h̄2π2n − 2h̄e|H |

× arctan
sin 2π

(
π h̄n
e|H | − γ

)
e

2πkTD
h̄ωc + cos 2π

(
π h̄n
e|H | − γ

) . (11)

Using Eqs. (10) and (11) one can calculate the chemical
potential for a graphene for a uniformly distributed electron
density that is taken to be n0 = 1012 cm−2. Figure 4 shows
the chemical potential calculated as a function of the normal-
to-plane projection of the magnetic field in the presence and in
the absence of the charge density redistribution (red and blue
curves, respectively).

One can see that the oscillations of the chemical poten-
tial are dumped by the redistribution of the electron charge.
Clearly, the system tends to reduce the spatial inhomogeneity
of the chemical potential. The price to pay for smoothing of
the chemical potential profile is the induced inhomogeneity of
the electron density, i.e., the CDW effect.

III. EDGE CURRENTS

Here we consider the ballistic limit where carriers can
“jump” from one to another side of the stripe as Fig. 1(b)
shows. In this regime, the Möbius stripe represents a two-
dimensional Chern insulator [13]. The net contribution to the
current from a single electron moving along the edge of the
stripe on a ballistic trajectory is

�i = − e2

mc

�A
2πR

. (12)

The circulation of the current can be evaluated with use of the
Stokes theorem,∮

L

�id�r = − e2

mc

1

2πR

∮
L

�Ad�r

= − e2

mc

1

2πR

∫
�Hd �S = − e2

mc




2πR
�en, (13)

where R is radius of the Möbius stripe, which is assumed to
be much larger than any characteristic length in the system.

 is the magnetic flux through the surface limited by a circle
formed by the central line of the Möbius stripe, �en is a unit
vector oriented along the axis of the stripe. In order to obtain
the full current we need to estimate the total number of elec-
trons moving over ballistic trajectories and able to accomplish
a full round:

�I = �iNe. (14)

We assume that in the point where the magnetic field is
perpendicular to the stripe Landau levels nL = 0, 1, ..., p − 1
are fully occupied accommodating Ñ electrons in total and
the level p is partially occupied with λÑ electrons, where
0 � λ < 1. One can express

N = νÑ, (15)

where ν = p + λ is the filling factor, which is connected with
the magnetic field magnitude as

ν = nφ0

H
, (16)

where n = N/S is the number of electrons per unit area and
φ0 is the flux quantum and in the case of spin degeneracy
φ0 = hc/2e.

At each Landau level only those electrons that are sepa-
rated from the edge by a distance that does not exceed the
corresponding cyclotron radius:

rnL =
√

(2nL + 1)h̄c

eH
(17)

can contribute to the current. In order to find the total number
of electrons contributing to the edge currents, we multiply
the two-dimensional electron density at each Landau level by
the area occupied by electrons, which can contribute to the
current. Next, we sum up the contribution of all filled levels
and take into account the partially filled highest Landau level:

Ne =
p−1∑

nL=0

n

ν
rnL 2πR + λ

n

ν
rp2πR. (18)

Combining Eqs. (13) and (18) we obtain the identical clock-
wise and anticlockwise currents as functions of the magnetic
field, see Fig. 5. It is important to note that, in contrast to the
Corbino disk, in a Möbius stripe the magnitudes of clockwise
and anticlockwise edge currents are always equal.

IV. CONCLUSIONS

We have shown that a one-dimensional stationary CDW
may be formed along the edge of a conducting Möbius stripe
in the presence of a strong magnetic field. CDW results

245416-4



MAGNETIC FIELD INDUCED FORMATION OF A … PHYSICAL REVIEW B 103, 245416 (2021)

FIG. 5. The ballistic limit: clockwise and anticlockwise edge
currents in a Möbius stripe are shown by green and red lines, re-
spectively. No CDW is formed. We have used the parameters of a
metallic foil n = 0.2 × 1016 cm−2, R = 5 μm.

from the electron density redistribution in real space that is
governed by the interplay between the chemical potential de-
pendence on the normal-to-plane projection of the magnetic

field and the screened Coulomb repulsion of carriers. The
predicted charge density variation is macroscopic and it may
be significant at low temperatures. The electron density of
states in a material that forms the stripe can be restored from
the experimentally measured profile of the electron density
distribution. At extremely low temperatures, in pure crys-
talline samples, a ballistic regime can be recovered where the
electron mean free path exceeds the width of the stripe. In this
regime, the CDW along the edge of the stripe is suppressed.
Instead, nondissipative edge currents start flowing. Clockwise
and anticlockwise edge currents in a Möbius stripe are exactly
equal to each other. The topology of a Möbius stripe of-
fers a powerful tool for studies of one-dimensional fermionic
systems.
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