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Nonperturbative quasiclassical theory of graphene photoconductivity
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We present a nonperturbative quasiclassical theory of graphene photoconductivity. We consider the influence
of low-frequency (microwave, terahertz, midinfrared) radiation on the static conductivity of a uniform graphene
layer and calculate its photoconductivity as a function of the frequency, polarization, and strength of the external
ac electric field, as well as on the material properties (electron density, scattering time) and temperature. The
theory is valid at frequencies h̄ω � 2EF and at arbitrarily strong ac electric fields. We compare our results with
those of the third-order perturbation theory and determine the applicability range of the perturbative solutions.
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I. INTRODUCTION

A distinctive feature of graphene [1] is the linear energy
dispersion of its electrons and holes [2]. It was predicted [3]
that this feature would lead to a strongly nonlinear electrody-
namic and optical response of this material in relatively weak
external electric fields. Subsequent experimental and theoret-
ical studies confirmed this prediction (see, e.g., Refs. [4–19]).
Currently, nonlinear electrodynamics and optics of graphene
are a hot and quickly developing area of research.

Theoretically, the nonlinear electrodynamic response of
graphene was mainly considered within the framework of the
perturbation theory [3,4,8–12,15]. Within such a theory, the
electric current j(t ) is expanded in a Taylor series up to third
order in powers of the electric field E(t ),

jα (t ) =
∫ ∞

−∞
dω1σ

(1)
αβ (ω1)Eβ

ω1
e−iω1t

+
∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3σ

(3)
αβγ δ (ω1, ω2, ω3)

× Eβ
ω1

Eγ
ω2

E δ
ω3

e−i(ω1+ω2+ω3 )t + · · · , (1)

where Eβ
ω are Fourier components of the time-dependent elec-

tric field

Eα (t ) =
∫ ∞

−∞
dωEα

ω e−iωt . (2)

The linear and third-order conductivities σ
(1)
αβ (ω1) and

σ
(3)
αβγ δ (ω1, ω2, ω3) have been calculated as functions of fre-

quencies ω1, ω2, ω3; Fermi energy EF ; and scattering
parameters in Refs. [20–22] and Refs. [8,10,11], respectively.
The latter describes a large number of different physical ef-
fects, such as the third harmonic generation (at ω1 = ω2 =
ω3), saturable absorption and the Kerr effect (at ω1 = ω2 =
−ω3), direct current induced second harmonic generation (at
ω1 = ω2 and ω3 = 0), static photoconductivity (at ω1 = −ω2

and ω3 = 0), and many others.
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The perturbation approach allows us to obtain corrections
to results of the linear theory, but its applicability is also
restricted: the Taylor expansion (1) implies that the third order
term is smaller than the first one. However, in many experi-
ments the external electric field is so strong that the third-order
theory becomes insufficient for a proper description of the
nonlinear response of the material. In graphene this may hap-
pen already in electric fields of the order of 1–3 kV/cm [3,4].
In such cases a nonperturbative theory is required.

In Ref. [13] we developed a nonperturbative quasiclassical
theory of the nonlinear electrodynamic response of uniform
graphene. The kinetic Boltzmann equation was solved there
in the relaxation time approximation, which allowed us to
describe the graphene response to arbitrarily strong external
electric fields at “low” (microwave, terahertz, infrared) fre-
quencies satisfying the condition h̄ω � 2EF . In Ref. [13] we
applied our general results to the case in which a strong ac
electric field Eω sin ωt acts on the system and analyzed the
odd harmonic generation and Kerr effects.

In this paper we apply the theory [13] to the analysis of an-
other physical effect, the static photoconductivity of graphene.
Without irradiation, the graphene response to a weak external
dc electric field E0 is described by the conventional isotropic
Drude conductivity σ0, j0 = σ0E0. Now we assume that, in
addition to the weak dc field E0, a strong monochromatic ac
electric field Eac(t ) acts on graphene electrons,

E(t ) = E0 + Eac(t ), (3)

and calculate the resulting time-averaged direct current in the
linear order in E0,

j0
α = σ

ph
αβ (Eac)E0

β . (4)

The photoconductivity tensor σ
ph
αβ (Eac) here is a function of

graphene parameters as well as the amplitude, frequency, and
polarization of the incident radiation. We analyze these depen-
dencies and compare the nonperturbative results with those
obtained within the third-order perturbation theory.

Theoretically, the photoconductivity of graphene was stud-
ied in a number of publications (see, e.g., Refs. [23–29]). Most

2469-9950/2021/103(24)/245406(11) 245406-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0880-3249
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.245406&domain=pdf&date_stamp=2021-06-03
https://doi.org/10.1103/PhysRevB.103.245406


S. A. MIKHAILOV PHYSICAL REVIEW B 103, 245406 (2021)

of these papers mainly focused on the photoresponse of intrin-
sic graphene (EF ≈ 0) generated by the interband excitation
of charge carriers, h̄ω � 2EF , which is typically relevant for
near-IR/optical excitation. Here we concentrate on the oppo-
site limit, h̄ω � 2EF , where the interband transitions can be
ignored and which is relevant for microwave/terahertz/mid-
IR excitation of the system. For example, if the density of
graphene electrons is ∼1013 cm−2, the condition h̄ω � 2EF

is satisfied at frequencies f � 175 THz or the wavelength
λ � 1.7 μm.

II. THEORY AND RESULTS

A. General formulas

Within the quasiclassical approach the nonlinear electrody-
namic response of graphene to the field (3) can be described
by the Boltzmann equation in the relaxation time approxima-
tion,

∂ f (p, t )

∂t
− eE(t )

∂ f (p, t )

∂ p
= − f (p, t ) − f0(p)

τ
, (5)

where

f0(p) =
[
1 + exp

(Ep − μ

T

)]−1

(6)

is the Fermi-Dirac distribution function and τ is the momen-
tum relaxation time, which we assume is energy independent.
For definiteness we will consider graphene electrons assum-
ing that the chemical potential is positive, μ > 0, and will
describe their spectrum near Dirac points by the linear energy
dispersion

Ep = vF |p| = vF

√
p2

x + p2
y, (7)

with vF ≈ 108 cm/s being the Fermi velocity.
The solution of Eq. (5) at arbitrary electric fields E(t ) has

the form [13,30]

f (p, t ) =
∫ ∞

0
e−ξ f0[p − p0(t, ξ )]dξ, (8)

where the vector

p0(t, ξ ) = −e
∫ t

t−ξτ

E(t ′)dt ′ (9)

is determined by the external electric field. The induced
electric current is then found by summation over occupied
quantum states

j(t ) = − e

S

∑
pσv

∂Ep

∂ p
f (p, t )

= − e

S

∑
pσv

∂Ep

∂ p

∫ ∞

0
e−ξ f0[p − p0(t, ξ )]dξ, (10)

where S is the sample area and σ and v are the spin and valley
quantum numbers. Substituting (9) and (7) into Eq. (10),
we get, after some algebra, the following expression for
the electric current (a similar calculation can be found in

[13]):

j(t ) = egsgvπ

(2π h̄)2vF

1

4T

∫ ∞

−∞

E2
F dEF

cosh2
(

μ−EF

2T

)
×

∫ ∞

0
e−ξ dξP(t, ξ , EF )N[P(t, ξ , EF )]. (11)

In Eq. (11), gs and gv are the spin and valley degeneracies,
gs = gv = 2,

P(t, ξ , EF ) = − p0(t, ξ )

pF
, P(t, ξ , EF ) = |P(t, ξ , EF )|, (12)

pF = EF /vF is the Fermi momentum, and the function N (x)
is defined as

N (x) = 1√
1 + x2

2F1

(
1

4
,

3

4
; 2;

(
2x

1 + x2

)2)
, (13)

where 2F1(a, b; c; z) is the hypergeometric function. Equation
(11) gives a general expression for the current as a function of
the chemical potential, temperature, and the scattering param-
eter τ at different time dependencies and polarizations of the
external electric field.

Before moving further let us discuss the temperature de-
pendence of the current (11). At zero temperature T = 0 the
factor with the cosh function is reduced to the δ function,

lim
T →0

1

4T cosh2
(

μ−EF

2T

) = δ(μ − EF ). (14)

At higher temperatures the current varies with T , but these
changes are not very large. Indeed, in the quasiclassical theory
the chemical potential should be considered to be large to
satisfy the condition h̄ω � 2EF . For example, if EF is about
0.2 eV or larger (this corresponds to electron densities larger
than ∼3 × 1012 cm−2), the condition T � EF is satisfied not
only at room temperature T0 but also at T exceeding T0 by a
factor of 2–3. Therefore, we can get accurate results assuming
T � EF and using the following simplified expression for the
current:

j(t ) = egsgvπE2
F

(2π h̄)2vF

∫ ∞

0
e−ξ dξP(t, ξ , EF )N[P(t, ξ , EF )].

(15)

Here we have used the limit (14) and replaced μ by a more
convenient designation, EF . In the rest of the paper except
Sec. II F we will use the simplified expression (15). In
Sec. II F we analyze the finite-temperature effects using the
more general formula (11) and show that temperature does
not substantially influence the T = 0 results.

Now we discuss results for the photoconductivity of
graphene obtained from the general equation (15) in different
limiting cases. We assume that the weak dc field is parallel to
the x axis, E0 ‖ ex, and consider several possible polarizations
of the strong ac electric field.

B. Linearly polarized light: Photoconductivity versus
polarization angle

First, let us consider the case when the ac field is linearly
polarized and the polarization plane of the incident radiation
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constitutes an angle θ with respect to the E0 field. Then we
have

E(t ) = ex(E0 + Eω cos θ sin ωt ) + eyEω sin θ sin ωt . (16)

According to the definition (12),

P(t, ξ ) = ex

(
F0ξ + Fω cos θ

sin(ωτξ/2)

ωτ/2
sin(ωt − ωτξ/2)

)

+ eyFω sin θ
sin(ωτξ/2)

ωτ/2
sin(ωt − ωτξ/2), (17)

where we have introduced dimensionless quantities

F0 = eE0τ

pF
, Fω = eEωτ

pF
, (18)

characterizing the electric fields strength: the conditions
F0,ω � 1 and F0,ω � 1 correspond to the linear-response and
nonlinear regimes, respectively [3]. Substituting (17) into (15)
and averaging the resulting expression over time, we obtain
the absolute value of the direct current(

j0
x

j0
y

)
= ensvF

∫ ∞

0
e−ξ dξ

1

2π

∫ π

−π

dx

(
F0ξ + Z cos θ sin x

Z sin θ sin x

)

× N

(√
(F0ξ + Z cos θ sin x)2 + (Z sin θ sin x)2

)
,

(19)

where

ns = gsgvE2
F

4π h̄2v2
F

(20)

is the density of electrons in graphene and we have introduced
the short notation

Z ≡ Z (Fω, ωτ, ξ ) = Fω

sin(ωτξ/2)

ωτ/2
. (21)

As seen from Eq. (19), the current flows in both the x and
y directions. In order to get compact expressions for compo-
nents of the tensor σ

ph
αβ (Eac) it is convenient to introduce two

functions,

A(Fω, ωτ ) =
∫ ∞

0
ξe−ξ dξ

2

π

∫ π/2

0
dxN (Z sin x), (22)

B(Fω, ωτ ) =
∫ ∞

0
ξe−ξ dξ

2

π

∫ π/2

0
dx(Z sin x)2M(Z sin x),

(23)

where the function M(x) is related to the derivative of N (x),
N ′(x) = −xM(x) and is determined by the formula

M(x) = 1

(1 + x2)3/2

[
2F1

(
1

4
,

3

4
; 2;

(
2x

1 + x2

)2)

−3

4

1 − x2

(1 + x2)2 2F1

(
5

4
,

7

4
; 3;

(
2x

1 + x2

)2)]
. (24)

Taking the linear-response limit E0 → 0, we get the compo-
nents of the tensor σ

ph
αβ (Eac):

σ
ph
xx (Fω, ωτ, θ )

σ0
= A(Fω, ωτ ) − cos2 θB(Fω, ωτ ) (25)

and

σ
ph
yx (Fω, ωτ, θ )

σ0
= − sin θ cos θB(Fω, ωτ ). (26)

Figure 1 illustrates the θ dependence of the diagonal pho-
toconductivity σ

ph
xx (Fω, ωτ, θ ) at a few values of the electric

field strength parameter Fω and the frequency parameter ωτ .
First, one sees that σ

ph
xx is smaller than σ0; that is, the infinite

uniform graphene layer is characterized by the negative diag-
onal photoconductivity. Second, the influence of radiation on
the conductive properties of the material can be very large: at
a quite moderate value of the electric field parameter Fω � 1
the conductivity at low frequencies ωτ � 1 can be reduced by
a factor of 2 [Fig. 1(a), black curve]. At larger values of Fω

the effect of radiation increases further: at Fω = 5 the con-
ductivity changes by 80%–90% [Fig. 1(b)]. Also, the effect is
highly frequency dependent: it is highest at low frequencies
ωτ � 1 and decreases at ωτ � 1. The maximal reduction of
σ

ph
xx is seen when the dc and ac electric fields are parallel to

each other, at θ = 0 or π . At θ = π/2 the conductivity change
δσ

ph
xx is weaker, and the difference between δσ

ph
xx (θ = 0) and

δσ
ph
xx (θ = π/2) is comparable to the value of δσ

ph
xx (θ = π/2)

itself; that is, the effect is quite sensitive to the polarization of
the wave.

The negative sign of the intraband photoconductivity
σ

ph
xx (Fω, ωτ, θ ) is explained by the linear energy dis-

persion of graphene electrons. Under intense irradiation
electrons get additional energy E from the ac electric
field occupying quantum states with E > EF (see Ap-
pendix A). As a result, the “effective mass” of electrons
∼E/v2

F increases, and the intraband (Drude) conductivity
decreases.

Figure 2 shows the θ dependence of the off-diagonal photo-
conductivity σ

ph
yx (Fω, ωτ, θ ) at the same values of Fω and ωτ .

Now, if the direction of the ac field is parallel or perpendicular
to the direction of the dc field (θ = 0, π , or π/2), the y
component of the photocurrent j0

y vanishes. If θ lies between
0 and π/2, the current j0

y is negative, while if π/2 < θ < π ,
it is positive; see the directions of the resulting photocurrent
in Fig. 2 (black arrows). The dependence of the transverse
photoconductivity σ

ph
yx on Fω and ωτ is less trivial and more

interesting than that of σ
ph
xx . First, one sees that the maximum

(θ = 3π/4) low-frequency (ωτ = 0.1) value of the transverse
photoconductivity in moderate ac field Fω = 1 is larger than
in the strong field Fω = 5, σ

ph
yx (Fω = 1) ≈ 0.13 vs σ

ph
yx (Fω =

5) ≈ 0.107 [compare Figs. 2(a) and 2(b)]. Furthermore, the
moderate-field value σ

ph
yx (Fω = 1) decreases, while the high-

field value σ
ph
yx (Fω = 5) increases with growing frequency:

for example, σ ph
yx (Fω = 1, ωτ = 3) ≈ 0.016, while σ

ph
yx (Fω =

5, ωτ = 3) ≈ 0.15. We investigate these interesting Fω and
ωτ dependencies further in Sec. II D.

C. Elliptically polarized light: Photoconductivity
versus ellipticity

Now, let us consider the case when the ac field is ellip-
tically polarized, with the polarization ellipse axes parallel to
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FIG. 1. The photoconductivity (25) as a function of θ at several values of ωτ and at (a) the electric field parameter Fω = 1 and (b) Fω = 5.
Blue and red arrows illustrate the mutual orientation of the dc and ac electric fields at different points on the θ axis.

the x and y directions. The dc field E0 is assumed to be parallel
to the x axis as before. Then we write the electric field in the
form

E(t ) = ex(E0 + Eω cos δ cos ωt ) + eyEω sin δ sin ωt, (27)

where δ is the ellipticity. The value of δ = 0 corresponds to
the linear polarization of the ac field along the x axis; δ =
±π/4 corresponds to the left and right circular polarizations,
and δ = π/2 corresponds to the linear polarization along the
y axis. Then, following the same steps as before, we get the
time-averaged electric current j0 = ex j0

x , where

FIG. 2. The photoconductivity (26) as a function of θ at several values of ωτ and at (a) the electric field parameter Fω = 1 and (b) Fω = 5.
Blue and red arrows illustrate the mutual orientation of the dc and ac electric fields at different points on the θ axis. Black arrows show the
direction of the wave-induced photocurrent.

j0
x

ensvF
=

∫ ∞

0
e−ξ dξ

1

π

∫ π

0
dx(F0ξ + Z cos δ cos x)N

(√
(F0ξ + Z cos δ cos x)2 + (Z sin δ sin x)2

)
. (28)

This result does not evidently depend on the sign of δ, i.e., on the direction (left or right) of the elliptic polarization. For
any value of the ellipticity δ the current flows only in the direction of the dc electric field: the current component j0

y and the

photoconductivity σ
ph
yx equal zero in the considered case. In the limit E0 → 0 we then get

σ
ph
xx (Fω, ωτ, δ)

σ0
= C(Fω, ωτ, δ) − cos2 δD(Fω, ωτ, δ), (29)
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FIG. 3. The photoconductivity (29) as a function of the ellipticity δ at several values of ωτ and at (a) the electric field parameter Fω = 1
and (b) Fω = 5. The left and right edges of the plot, δ = 0 and δ = π/2, correspond to linear polarizations of radiation along the x and y axes,
respectively. The central dashed line at δ = π/4 refers to the circular polarization of radiation.

where we have introduced two new functions,

C(Fω, ωτ, δ) =
∫ ∞

0
ξe−ξ dξ

2

π

∫ π/2

0
dxN

(√
(Z cos δ sin x)2 + (Z sin δ cos x)2

)
, (30)

D(Fω, ωτ, δ) =
∫ ∞

0
ξe−ξ dξ

2

π

∫ π/2

0
dx(Z sin x)2M

(√
(Z cos δ sin x)2 + (Z sin δ cos x)2

)
. (31)

Comparing definitions (30) and (31) with (22) and (23) we see that the following identities are valid:

C(Fω, ωτ, 0) = C(Fω, ωτ, π/2) = A(Fω, ωτ ), D(Fω, ωτ, 0) = B(Fω, ωτ ). (32)

Consequently, Eq. (29) gives the same result at δ = 0 and δ = π/2 as Eq. (25) at θ = 0 and θ = π/2. In the circular polarization
case δ = π/4 the argument of the functions N and M in Eqs. (30)–(31) does not depend on x, the integral over dx can be taken,
and formulas (30) and (31) are simplified:

C(Fω, ωτ, π/4) =
∫ ∞

0
ξe−ξ dξN

(
Z√
2

)
=

∫ ∞

0
ξe−ξ N

(Fω√
2

sin(ωτξ/2)

ωτ/2

)
dξ, (33)

D(Fω, ωτ, π/4) = 1

2

∫ ∞

0
ξe−ξ Z2M

(
Z√
2

)
dξ = 1

2
F2

ω

∫ ∞

0
ξe−ξ

(
sin(ωτξ/2)

ωτ/2

)2

M

(Fω√
2

sin(ωτξ/2)

ωτ/2

)
dξ . (34)

Figure 3 shows the photoconductivity σ
ph
xx (Fω, ωτ, δ) as

a function of the ellipticity δ in the moderate (Fω = 1) and
strong (Fω = 5) electric fields at a few values of ωτ . Quali-
tatively, the dependencies shown in Fig. 3 are similar to those
in Fig. 1: the photoconductivity is quite strong already in
moderate electric fields and is very sensitive to the ellipticity,
and the influence of the radiation of the conductivity is more
essential at large electric fields and low frequencies.

D. Electric field and frequency dependence
of the photoconductivity

Now we analyze the photoconductivity dependencies on
the electric field and frequency parameters Fω and ωτ . We
consider several typical cases.

1. Linear polarization, parallel orientation of the dc and ac fields:
diagonal photoconductivity

Here we consider the case of the linearly polarized radia-
tion with the parallel polarizations of the dc and ac electric

fields, δ = 0, θ = 0, E0 ‖ Eω. As we saw in Sec. II B, the
photoconductivity effect is the largest in this case. Equation
(25) gives, in this limit,

σ
ph
xx (Fω, ωτ, 0)

σ0
= A(Fω, ωτ ) − B(Fω, ωτ ) ≡ σ0 − δσ ‖

xx

σ0
.

(35)

Here we introduce the difference δσ ‖
xx = σ0 − σ

ph
xx (Fω, ωτ, 0)

to emphasize how the conductivity changes under the influ-
ence of radiation. Since the photoconductivity of graphene is
negative, the function δσ ‖

xx is larger than zero; the superscript
‖ reminds us that we are dealing with the parallel orientation
of the dc and ac fields.

Figure 4(a) shows the field dependence of the function δσ ‖
xx

defined by Eq. (35). When the field parameter Fω grows, the
function δσ ‖

xx first quickly increases and then saturates. The
saturation level of δσ ‖

xx can be larger than ∼0.95σ0 at low fre-
quencies ωτ � 0.1 and large ac electric fields Fω � 10. The
boundary between the strong-growth and saturation intervals
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FIG. 4. The photoconductivity change δσ ‖
xx , defined by Eq. (35), as a function of (a) the electric field parameter Fω at fixed values of ωτ

and (b) the frequency parameter ωτ at fixed values of Fω.

on the field axis lies at Fω � 1 at ωτ � 1 and at Fω � ωτ at
ωτ � 1. Figure 4(b) illustrates the frequency dependence of
δσ ‖

xx. It falls down quite quickly with ωτ and decreases by a
factor of order 2 at ωτ � Fω.

2. Linear polarization, orthogonal orientation of the dc and ac
fields: diagonal photoconductivity

Now we consider the case of perpendicular polarizations,
δ = π/2, θ = π/2, E0 ‖ ex ⊥ Eω ‖ ey. Then we get from
Eq. (25)

σ
ph
xx (Fω, ωτ, π/2)

σ0
= A(Fω, ωτ ) ≡ σ0 − δσ⊥

xx

σ0
. (36)

Figures 5(a) and 5(b) show the field and frequency depen-
dencies of the function δσ⊥

xx defined by Eq. (36). The general
trends of these dependencies is similar to those of the function
δσ ‖

xx, but quantitatively, the conductivity change is weaker.
The growth of δσ⊥

xx with the field is slower [Fig. 5(a)], and
its decrease with ωτ is faster [Fig. 5(b)] than for the parallel-
polarization function δσ ‖

xx (Fig. 4).

3. Linear polarization, 45◦-orientation of the dc and ac fields:
off-diagonal photoconductivity

The off-diagonal conductivity σ
ph
yx is determined by

Eq. (26). The maximum values of |σ ph
yx | are reached at θ =

π/2 ± π/4 (see Fig. 2) and are equal to

σ
ph
yx (Fω, ωτ, π/2 ± π/4)

σ0
= ±1

2
B(Fω, ωτ ). (37)

Figures 6(a) and 6(b) show the electric field and frequency
dependencies of the maximal off-diagonal photoconductivity
(37) at θ = 3π/4. These dependencies substantially differ
from those of the diagonal photoconductivity. Both the field
and frequency dependencies are nonmonotonic and have a
maximum. For any value of the frequency parameter, the
photoconductivity σ

ph
yx first grows with the electric field

[Fig. 6(a)], reaches a maximum, and then decreases. The
maximum is at Fω � 1 for small frequencies ωτ � 1 and then
approximately follows ∼2ωτ when the frequency increases.
The frequency dependence also demonstrates a maximum of
σ

ph
yx at ωτ � Fω/2 [Fig. 6(b)]. The absolute value of σ

ph
yx

FIG. 5. The photoconductivity change δσ⊥
xx , defined by Eq. (36), as a function of (a) the electric field parameter Fω at fixed values of ωτ

and (b) the frequency parameter ωτ at fixed values of Fω.
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FIG. 6. The photoconductivity σ ph
yx , defined by Eq. (37), at θ = 3π/4 as a function of (a) the electric field parameter Fω at fixed values of

ωτ and (b) the frequency parameter ωτ at fixed values of Fω.

in the maximum is about 0.16, in units of σ0. Thus, the
irradiation of graphene by a linearly polarized electromag-
netic wave at the angle π/4 to the direction of the dc current
may substantially influence the direction of the current flow.
For example, if ωτ = 0.1 and θ = 3π/4, the current deviates
from the x direction by 12◦ and 25◦ at Fω = 1 and 5, respec-
tively (see Figs. 1 and 2). At larger frequencies the deviations
are smaller: at ωτ = 3 the corresponding numbers are 9◦ and
15◦ (at Fω = 1 and 5).

Physically, nonmonotonic behavior of σ
ph
yx is explained by

the competition of two factors. At low ac electric fields, the
electron distribution function is isotropic [see Fig. 10(a) in
Appendix A], and close to the equilibrium one; as a result, the
current jy and the transverse photoconductivity σ

ph
yx are small.

When the field parameter Fω increases, the anisotropy degree
increases too [Figs. 10(b)–10(d)], and σ

ph
yx grows. However,

at large values Fω � 1 the occupation by electrons of the
high-energy states leads to the growth of their “effective mass”
E/v2

F , and σ
ph
yx slowly falls, similar to σ

ph
xx , as was discussed

in Sec. II B.

4. Circular polarization of the ac field: diagonal photoconductivity

Finally, we show results for the field and frequency depen-
dencies of the diagonal photoconductivity δσ©

xx at the circular
polarization of the incident radiation. In this case δ = π/4,
and we have from Eq. (29)

σ
ph
xx (Fω, ωτ, π/4)

σ0
= C(Fω, ωτ, π/4) − 1

2
D(Fω, ωτ, π/4)

≡ σ0 − δσ©
xx

σ0
. (38)

Figures 7(a) and 7(b) show the field and frequency depen-
dencies of the photoconductivity δσ©

xx defined by Eq. (38).
Qualitatively, the dependencies shown here are similar to
those obtained for δσ ‖

xx (Fig. 4) and δσ⊥
xx (Fig. 5), but there

is a quantitative difference. Altogether, Figs. 4–7 provide a
complete picture of the field and frequency dependencies of
the photoconductivity at different polarizations of the incident
electromagnetic waves.

E. Comparison with the perturbation theory

The perturbation theory results provide a correction
to the material conductivity proportional to the squared
electric field. As seen from Figs. 4(a)–7(a), the exact
result deviates from the F2

ω dependence at rather low val-
ues of the electric field parameter Fω. It makes sense
to compare quantitatively the results of the third-order
perturbation theory [11] with the exact results obtained
here.

In the limit of low electric fields we expand functions
A–D in Eqs. (22), (23), (30), and (31) in powers of Fω

up to the second order ∼F2
ω. Taking into account that the

first terms of Taylor’s expansion of the functions N (x) and
M(x) are N (x) = 1 − x2/8 + · · · and M(x) = 1/4 + · · · and
taking the integrals over dx and dξ analytically, we find that
functions C and D do not depend on δ in the considered limit;
all four functions are related to each other, A = C, B = D,
A = 1 − B/2, and

A(Fω, ωτ ) ≈ 1 − F2
ω

8

3 + (ωτ )2

[1 + (ωτ )2]2
+ O

(
F4

ω

)
. (39)

This gives the following results for the components of the
photoconductivity tensor in the second order in Fω:

σ
ph
xx (Fω, ωτ, θ )

σ0
= 1 − F2

ω

8

3 + (ωτ )2

[1 + (ωτ )2]2
(1 + 2 cos2 θ )

+ O
(
F4

ω

)
, (40)

σ
ph
yx (Fω, ωτ, θ )

σ0
= − F2

ω

8

3 + (ωτ )2

[1 + (ωτ )2]2
(2 sin θ cos θ )

+ O
(
F4

ω

)
; (41)

the asymptote of σ
ph
xx (Fω, ωτ, δ) has the same form as (40),

but with θ replaced by δ. The results (40) and (41) can also be
derived from the general formulas of the third-order perturba-
tion theory [11] (see Appendix B).

In Fig. 8 we compare exact, nonperturbative theory curves
with the low-field asymptotes (40) and (41). At low fields,
roughly corresponding to the interval 0 < Fω � ωτ/2, the
exact and approximate curves are close to each other. Then,
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FIG. 7. The photoconductivity change δσ©
xx , defined by Eq. (38), as a function of (a) the electric field parameter Fω at fixed values of ωτ

and (b) the frequency parameter ωτ at fixed values of Fω.

in the interval ωτ/2 � Fω � ωτ the photoconductivities δσ ‖
xx

and σ
ph
yx calculated from exact formulas grow faster than the

F2
ω approximations. Finally, at Fω � ωτ , the exact formulas

exhibit saturation of δσ ‖
xx and a tendency to the reduction

of σ
ph
yx , and the asymptotic formulas (40) and (41) become

fully unreliable. In the limit of low frequencies ωτ � 1 the
frequency ω should be replaced by 1/τ in these estimates.
The applicability of the third-order perturbation theory is thus
restricted by the condition

eEωτ

max{1, ωτ }pF
� 1

2
. (42)

If, for example, the relaxation time τ � 1 ps, the frequency
f � 1 THz, and the electron density is ns � 1011 cm−2, the
conditions ωτ � 1 and h̄ω � 2EF are satisfied, and formula
(42) restricts the value of the ac electric field by Eω � 2.2
kV/cm. At higher fields the nonperturbative theory should be
applied.

F. Influence of temperature

So far we have used the simplified expression for the
radiation-induced current (15), which is valid at T = 0. At
a finite temperature T > 0 any photoconductivity discussed
above can be calculated using the relation

σ (μ, T ) = 1

4T

∫ ∞

−∞

dEF

cosh2
(

μ−EF

2T

)σ (EF , 0) (43)

between the finite-T and zero-T response functions; here μ is
the chemical potential at T �= 0. As we mentioned in Sec. II A
our results should not be very sensitive to T since within the
quasiclassical theory the case of intrinsic graphene (EF ≈ 0)
is excluded. Figure 9 confirms this statement. It shows, as
a representative example, the temperature dependence of the
conductivity change δσ©

xx induced by circularly polarized ra-
diation as a function of T/μ at several values of the electric
field strength and frequency. One sees that δσ©

xx varies with
the temperature by only a few percent when the parameter
T/μ grows from zero up to T/μ = 0.3. At electron density
� 1012–1013 cm−2 the value of T ≈ 0.3μ corresponds to �
405–1280 K. Therefore, all our results in previous sections

FIG. 8. Comparison of exact (thick dashed and dot-dashed curves) and asymptotic (thin solid curves) formulas for the electric field
dependencies of the photoconductivities (a) δσ ‖

xx and (b) σ ph
yx at several values of ωτ .
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FIG. 9. Temperature dependence of δσ©
xx at several values of Fω

and ωτ . μ is the chemical potential.

give reliable estimates of the discussed physical effects both
at room temperature T0 and in the case when the electron gas
in graphene is heated by the radiation up to T � (2 − 4)T0.

III. SUMMARY AND CONCLUSIONS

To summarize, we have developed a nonperturbative the-
ory of graphene photoconductivity applicable at low (h̄ω �
2EF ) frequencies which, depending on the electron density
in the material, may cover the range from microwave up to
near-infrared frequencies. We have investigated the dependen-
cies of the photoconductivity tensor on all relevant physical
parameters (electric field strength, frequency, temperature,
material properties, etc.) and found the applicability bound-
aries of the third-order perturbation theory. We have shown
that the photoconductivity effect strongly depends on the ra-
diation frequency, being the largest at ωτ � 1, and that the
conductivity change caused by the irradiation can be as large
as 80%–90% in quite moderate electric fields of the order of
kilovolts per centimeter. We have also shown that the effect
is very sensitive to the direction and/or the ellipticity of the
electric field polarization of the incident electromagnetic ra-
diation. The predicted dependencies can be used for detection
of terahertz, far- and midinfrared radiation. Our findings may
be interesting for further fundamental experimental studies of
the nonlinear electrodynamic effects in graphene, as well as
for their applications in the field of nonlinear terahertz and
infrared photonics and optoelectronics.
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APPENDIX A: THE DISTRIBUTION FUNCTION
OF ELECTRONS UNDER STRONG

ELECTROMAGNETIC IRRADIATION

Figure 10 illustrates the time-averaged electron distribu-
tion function (8) in momentum space under the action of the
strong linearly polarized ac electric field (polarization angle
θ = 3π/4). The distribution function becomes strongly elon-
gated along the direction of the field at Fω � 1, which leads
to anisotropic transport properties of the system. In particular,
the average electron effective mass in the longitudinal direc-
tion (along the field) becomes heavier than in the transverse
direction.

APPENDIX B: THE PHOTOCONDUCTIVITY FROM THE
THIRD-ORDER PERTURBATION THEORY

Here we derive formulas for graphene photoconductivity
from the general results of the third-order perturbation the-
ory [11]. This allows us to find the relation between the
components of the photoconductivity tensor σ

ph
xx and σ

ph
yx ,

derived from the nonperturbative theory in this work, and the
third-order fourth-rank conductivity tensor σ

(3)
αβγ δ (ω1, ω2, ω3)

determined in the perturbation theory [10,11].
In the perturbation theory the third-order current is deter-

mined by Eq. (1). In the case of the photoconductivity effect
the Fourier component of the electric field Eω1 is written as

Eω1 = E0δ(ω1) + Eω

2
[Iδ(ω1 − ω) + I�δ(ω1 + ω)], (B1)

where Eω is the real amplitude of the ac field and the vec-
tor I is the unit vector (maybe complex) which describes
its polarization. For example, for the cases of linearly and
elliptically polarized fields considered in Secs. II B and II C
above the vectors I have the forms I = (cos θ, sin θ ) and
I = (cos δ, i sin δ), respectively. Substituting the Fourier com-
ponents (B1) in (1), we obtain, after some transformations, the
time-averaged third-order contribution to the current

j (3)
α = 6σ

(3)
αβγ δ (0, ω,−ω)Eβ

0

(Eω

2

)2

Iγ (Iδ )�. (B2)

According to Ref. [11], the main contribution to the third-
order conductivity at low frequencies, i.e., in the quasiclas-
sical limit where the interband transitions can be neglected, is
given by the contribution σ

(3/0)
αβγ δ (see Eq. (62) in [11]). Sym-

metrizing the expression for σ
(3)
αβγ δ (ω1, ω2, ω3) according to

Eqs. (59) and (65) in Ref. [11], we get the following formula
for the third-order conductivity in the quasiclassical limit:

σ
(3)
αβγ δ (ω1, ω2, ω3) ≈ σ

(3/0)
αβγ δ (ω1, ω2, ω3) = 1

3!
σ

(3)
0

i�αβγ δ

�1 + �2 + �3 + i�

[
1

�1 + �2 + i�

(
1

�1 + i�
+ 1

�2 + i�

)

+ 1

�1 + �3 + i�

(
1

�1 + i�
+ 1

�3 + i�

)
+ 1

�2 + �3 + i�

(
1

�2 + i�
+ 1

�3 + i�

)]
, (B3)
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FIG. 10. The time-averaged electron distribution function (8) under electromagnetic irradiation at Fω = 0.2, 1, 3, and 5. Other parameters
are ωτ = 1, T/μ = 0.1, polarization angle θ = 3π/4.

where �i = h̄ωi/EF , � = h̄/τEF , �αβγ δ = δαβδγ δ +
δαγ δβδ + δαδδβγ , and

σ
(3)
0 = e4gsgv h̄v2

F

16πE4
F

. (B4)

The asymptotic formula (82) in Ref. [11] follows from
(B3) under the conditions � � |�i| � 1 for i = 1, 2, 3.
For the photoconductivity case we need the function
σ

(3)
αβγ δ (ω1, ω2, ω3) with the arguments (ω1, ω2, ω3) =

(0, ω,−ω). Then Eq. (B3) gives

σ
(3)
αβγ δ (0, ω,−ω) = − 1

3!
σ

(3)
0

�αβγ δ

�

2(�2 + 3�2)

(�2 + �2)2

= −σ0
e2τ 2

12p2
F

�αβγ δ

3 + (ωτ )2

[1 + (ωτ )2]2
. (B5)

Substituting (B5) in the photocurrent (B2) and adding the first-
order contribution, we get

jα = σ0

{
δαβ − F2

ω

8

(3 + ω2τ 2)

(1 + ω2τ 2)2
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× [δαβ + Iα (Iβ )� + (Iα )�Iβ]

}
Eβ

0 . (B6)

The tensor Pαβ = δαβ + Iα (Iβ )� + (Iα )�Iβ determines the
polarization dependence of the photoconductivity. For the lin-
early and elliptically polarized lights considered in Secs. II B
and II C it equals

Plin
αβ =

(
1 + 2 cos2 θ 2 sin θ cos θ

2 sin θ cos θ 1 + 2 sin2 θ

)
(B7)

and

Pell
αβ =

(
1 + 2 cos2 δ 0

0 1 + 2 sin2 δ

)
, (B8)

respectively. Equation (B6), together with (B7) and (B8),
gives the result coinciding with Eqs. (40) and (41) obtained
by the Taylor expansion of the nonperturbative formulas in
Sec. II E.

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[2] P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622
(1947).

[3] S. A. Mikhailov, Non-linear electromagnetic response of
graphene, Europhys. Lett. 79, 27002 (2007).

[4] S. A. Mikhailov and K. Ziegler, Non-linear electromagnetic
response of graphene: Frequency multiplication and the self-
consistent field effects, J. Phys.: Condens. Matter 20, 384204
(2008).

[5] E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A.
Mikhailov, Coherent Nonlinear Optical Response of Graphene,
Phys. Rev. Lett. 105, 097401 (2010).

[6] A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova,
Second harmonic generation in multilayer graphene induced
by direct electric current, Phys. Rev. B 85, 121413(R)
(2012).

[7] S. A. Mikhailov, Theory of the giant plasmon-enhanced
second-harmonic generation in graphene and semiconductor
two-dimensional electron systems, Phys. Rev. B 84, 045432
(2011).

[8] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Third order
optical nonlinearity of graphene, New J. Phys. 16, 053014
(2014).

[9] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Dc current induced
second order optical nonlinearity in graphene, Opt. Express 22,
15868 (2014).

[10] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Third-order nonlin-
earity of graphene: Effects of phenomenological relaxation and
finite temperature, Phys. Rev. B 91, 235320 (2015).

[11] S. A. Mikhailov, Quantum theory of the third-order nonlinear
electrodynamic effects in graphene, Phys. Rev. B 93, 085403
(2016).

[12] Y. Wang, M. Tokman, and A. Belyanin, Second-order non-
linear optical response of graphene, Phys. Rev. B 94, 195442
(2016).

[13] S. A. Mikhailov, Nonperturbative quasiclassical theory of the
nonlinear electrodynamic response of graphene, Phys. Rev. B
95, 085432 (2017).

[14] N. A. Savostianova and S. A. Mikhailov, Third harmonic
generation from graphene lying on different substrates: Optical-
phonon resonances and interference effects, Opt. Express 25,
3268 (2017).

[15] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Second order optical
nonlinearity of graphene due to electric quadrupole and mag-
netic dipole effects, Sci. Rep. 7, 43843 (2017).

[16] K. Alexander, N. A. Savostianova, S. A. Mikhailov, B. Kuyken,
and D. Van Thourhout, Electrically tunable optical nonlin-
earities in graphene-covered SiN waveguides characterized by
four-wave mixing, ACS Photonics 4, 3039 (2017).

[17] A. Marini, J. D. Cox, and F. J. García de Abajo, Theory of
graphene saturable absorption, Phys. Rev. B 95, 125408 (2017).

[18] N. A. Savostianova and S. A. Mikhailov, Optical Kerr effect in
graphene: Theoretical analysis of the optical heterodyne detec-
tion technique, Phys. Rev. B 97, 165424 (2018).

[19] S. A. Mikhailov, Theory of the strongly nonlinear electrody-
namic response of graphene: A hot electron model, Phys. Rev.
B 100, 115416 (2019).

[20] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Anomalous
Absorption Line in the Magneto-optical Response of Graphene,
Phys. Rev. Lett. 98, 157402 (2007).

[21] L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of
graphene conductivity, Eur. Phys. J. B 56, 281 (2007).

[22] S. A. Mikhailov and K. Ziegler, New Electromagnetic Mode in
Graphene, Phys. Rev. Lett. 99, 016803 (2007).

[23] F. T. Vasko and V. Ryzhii, Photoconductivity of intrinsic
graphene, Phys. Rev. B 77, 195433 (2008).

[24] P. N. Romanets and F. T. Vasko, Transient response of intrinsic
graphene under ultrafast interband excitation, Phys. Rev. B 81,
085421 (2010).

[25] W. S. Bao, S. Y. Liu, and X. L. Lei, Hot-electron transport in
graphene driven by intense terahertz fields, Phys. Lett. A 374,
1266 (2010).

[26] M. Trushin and J. Schliemann, Anisotropic photoconductivity
in graphene, Europhys. Lett. 96, 37006 (2011).

[27] J. M. Shao and G. W. Yang, Photoconductivity in Dirac materi-
als, AIP Adv. 5, 117213 (2015).

[28] A. Singh, S. Ghosh, and A. Agarwal, Nonlinear, anisotropic,
and giant photoconductivity in intrinsic and doped graphene,
Phys. Rev. B 97, 045402 (2018).

[29] V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur,
and T. Otsuji, Negative and positive terahertz and infraredpho-
toconductivity in uncooled graphene, Opt. Mater. Express 9,
585 (2019).

[30] A. A. Ignatov and Y. A. Romanov, Nonlinear electromagnetic
properties of semiconductors with a superlattice, Phys. Status
Solidi B 78, 327 (1976).

245406-11

https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1088/0953-8984/20/38/384204
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevB.85.121413
https://doi.org/10.1103/PhysRevB.84.045432
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1364/OE.22.015868
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.94.195442
https://doi.org/10.1103/PhysRevB.95.085432
https://doi.org/10.1364/OE.25.003268
https://doi.org/10.1038/srep43843
https://doi.org/10.1021/acsphotonics.7b00559
https://doi.org/10.1103/PhysRevB.95.125408
https://doi.org/10.1103/PhysRevB.97.165424
https://doi.org/10.1103/PhysRevB.100.115416
https://doi.org/10.1103/PhysRevLett.98.157402
https://doi.org/10.1140/epjb/e2007-00142-3
https://doi.org/10.1103/PhysRevLett.99.016803
https://doi.org/10.1103/PhysRevB.77.195433
https://doi.org/10.1103/PhysRevB.81.085421
https://doi.org/10.1016/j.physleta.2009.12.076
https://doi.org/10.1209/0295-5075/96/37006
https://doi.org/10.1063/1.4935644
https://doi.org/10.1103/PhysRevB.97.045402
https://doi.org/10.1364/OME.9.000585
https://doi.org/10.1002/pssb.2220730132

