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Effective narrow ladder model for two quantum wires on a semiconducting substrate
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We present a theoretical study of two spinless fermion wires coupled to a three-dimensional semiconducting
substrate. We develop a mapping of wires and substrate onto a system of two coupled two-dimensional ladder
lattices using a block Lanczos algorithm. We then approximate the resulting system by narrow ladder models,
which can be investigated using the density-matrix renormalization group method. In the absence of any direct
wire-wire hopping we find that the substrate can mediate an effective wire-wire coupling so that the wires could
form an effective two-leg ladder with a Mott charge-density-wave insulating ground state for arbitrarily small
nearest-neighbor repulsion. In other cases the wires remain effectively uncoupled even for strong wire-substrate
hybridizations leading to the possible stabilization of the Luttinger liquid phase at finite nearest-neighbor
repulsion as found previously for single wires on substrates. These investigations show that it may be difficult to
determine under which conditions the physics of correlated one-dimensional electrons can be realized in arrays
of atomic wires on semiconducting substrates because they seem to depend on the model (and consequently
material) particulars.
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I. INTRODUCTION

Systems of metallic atomic wires deposited on semicon-
ducting substrates attracted lots of attention in the last two
decades. One of the main issues regarding these systems
is the existence of features related to one-dimensional (1D)
electrons, e.g., Luttinger liquid phases [1–5], Peierls metal-
insulator transitions, and charge-density-wave states [6–9].
For instance, there is an ongoing debate about the existence
of Luttinger liquid behavior in gold chains on the Ge(100)
substrate [1,2,10–14]. It is even disputed whether this material
is effectively a quasi-one-dimensional system of weakly cou-
pled chains [1,2] or an anisotropic two-dimensional system
[10–12]. Another system that reveals Luttinger liquid behav-
ior is Bi deposited on InSb(001) surfaces in angle-resolved
photoelectron spectroscopy [3]. However, this behavior is ob-
served for large coverage of Bi on the InSb substrate and thus
it is also unclear whether the system can be seen as made
of separate atomic wires. Thus a key question for all these
materials is whether there is a significant coupling between
atomic wires.

However, the theoretical framework of 1D correlated elec-
trons is derived primarily from purely 1D models [15–19],
which are then extended to anisotropic two- (2D) and
three-dimensional (3D) systems. These extensions are not
applicable for metallic atomic wires on semiconducting sub-
strates due to their strong asymmetric nature, i.e., they
represent arrays of 1D wires coupled to a 3D reservoir. There-
fore, even if we assume that the atomic wires themselves are
systems of 1D correlated electrons, it is necessary to investi-
gate two aspects: firstly, the influence of the coupling to the 3D
bulk semiconducting substrate on the 1D features; secondly,
the possibility of substrate-mediated coupling between the
wires.

In a series of previous publications [20–22], we addressed
the first issue. We established that, indeed, the coupling of a
single metallic atomic wire to a 3D semiconducting substrate
can stabilize the 1D nature of the wire and, in particular,
can support the occurrence of Luttinger liquid phases. In the
current paper we would like to address the second issue.
We develop a method to map multiwires coupled to semi-
conducting substrates onto a system of coupled 2D ladders
(one ladder per wire). This method is based on the block
Lanczos algorithm [23]. Then we approximate the original
systems by keeping only a few legs of each 2D ladder, i.e.,
by constructing a narrow ladder model (NLM) that can be
investigated using well-established methods for quasi-one-
dimensional correlated quantum systems. The original system
and the resulting NLM are depicted in Fig. 1.

Using exact diagonalizations of noninteracting wires and
the density-matrix renormalization group (DMRG) method
[24,25], we investigate in details two wires on a semicon-
ducting substrate (TWSS) for spinless fermions without direct
wire-wire coupling and compare to the known results for a
single wire on a substrate [22] and for two-leg ladders with-
out substrate [26]. We find that the substrate can mediate an
effective wire-wire coupling so that the atomic wires form
an effective two-leg ladder that is known to have a Mott
charge-density-wave insulating ground state for arbitrarily
small nearest-neighbor repulsion. In other cases the wires
remain effectively uncoupled even for strong wire-substrate
hybridizations, which should result in a Luttinger liquid phase
at finite nearest-neighbor repulsion as found previously for
single wires on substrates.

The paper is organized as follows. In the second section
we introduce the TWSS model, the mapping of multi-wire-
substrate models onto systems of coupled multi-2D ladders
and the approximation by few-leg NLM. In the third section
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FIG. 1. The upper panel display sketch of two atomic wires (red
spheres) on a 3D substrate with four numbered shells. The lower
panel ladder representation of the same system with the uppermost
legs corresponding to the atomic wires (red circles) and the other legs
(in green and light blue) representing the shells one to four.

we discuss noninteracting wires while in the fourth section
we present our results for correlated wires. We conclude in
the fifth section.

II. MODELING TWO WIRES ON SEMICONDUCTING
SUBSTRATES AND THE APPROXIMATION

BY NARROW LADDER MODELS

In this section we construct a model for TWSS and approx-
imate it by NLM. This procedure can be easily generalized to
more than two wires on a semiconducting substrate. Through-
out our paper we use different letters (c, d, f , and g) for
the fermion operators corresponding to different one-electron
bases (representations) and indices to distinguish the various
one-electron states in a given basis.

A. The model of two wires on semiconducting substrate

The substrate is described as explained in Ref. [20] but
since we focus on spinless fermion wires, we omit spin
degrees of freedoms. We restrict ourselves to insulating or

semiconducting substrates, hence each substrate site has two
orbitals, one contributing to the formation of the conduction
bands and one to the valence bands. Thus, the substrate Hamil-
tonian in real space takes the form

Hs = Hc + Hv

=
∑
s=v,c

(
εs

∑
r

nsr − ts
∑
〈rq〉

(c†
srcsq + H.c.)

)
. (1)

The first sum runs over conduction (s=c) and valence (s=v)
bands. The second sum runs over all sites of a cubic lattice
and the third one over all pairs 〈rq〉 of nearest-neighbor lattice
sites. The operator c†

sr creates a spinless fermion on the orbital
s localized on the site with coordinates r = (x, y, z), and the
fermion density operator on each orbital is nsr = c†

srcsr. The
transformation to the momentum space is done only in the x
direction which is the alignment direction of the two wires.
The other two dimensions are irrelevant for the two wires
and they can remain in the real-space representation for the
substrate. This allows a mixed real-space momentum-space
representation rkx = (kx, y, z) where kx is the wave vector
component in the x direction. This representation is more con-
venient for the purpose of ladder mapping. The Hamiltonian
(1) takes the form

Hs =
∑
s=v,c

⎡
⎣∑

kx,y,z

εs(kx )d†
srkx

dsrkx
− ts

∑
kx,〈(y ,z ),(y′,z′ )〉

d†
srkx

dsr′
kx

⎤
⎦
(2)

with two single-electron dispersions

εs=v,c(kx ) = εs=v,c − 2ts=v,c cos(kx ), (3)

the sum over nearest-neighbor site pairs 〈(y , z ), (y′, z′)〉 in
the yz layer for a given kx, and r′

kx
= (kx, y′, z′). The (possibly

indirect) gap between the bottom of the conduction band
and the top of the valence band is given by �s = εc − εv −
6(|tv| + |tc|), and the condition �s � 0 restricts the range of
allowed model parameters.

A simple representation of the wires is achieved using two
1D chains, possibly coupled by a single particle-hopping tab

between adjacent sites in the two wires. The two wires are
described by the Hamiltonian

Hw =
∑

w=a,b

(
εw

∑
x

nxyw − tw
∑

x

(c†
xyw

cx+1,yw
+ H.c.)

+ V
∑

x

nxyw nx+1yw

)
− tab

∑
x

(c†
xya

cxyb
+ H.c.). (4)

The wires w ≡ a and b of length Lx are aligned in the x
direction at positions r = (x, ya, 0) and r = (x, yb, 0) where
ya and yb ∈ {1, . . . , Ly}. The sums over x run over all wire
sites. The operator c†

xya
creates an electron on the wire site

r = (x, ya, 0) for w ≡ a and the operator c†
xyb

creates an elec-
tron on the wire site r = (x, yb, 0) for w ≡ b. Every site in the
wires is exactly on top of the corresponding substrate site. ta
and tb are the usual hopping terms between nearest-neighbor
sites in the corresponding wire. εa and εb are onsite potentials
of the corresponding wires and V is the interaction between
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fermions on nearest-neighbor sites. The single-particle hop-
ping tab determines the direct coupling between the two wires.
The Hamiltonian of the two spinless-fermion wires can be
written in the mixed representation

Hw =
∑

w=a,b

∑
kx

εw(kx )d†
kxyw

dkxyw

+ V

Lx

∑
w=a,b

∑
kx,k′

x,k
′′
x ,k′′′

x

[
d†

kxyw
dk′

xyw
d†

k′′
x yw

dk′′′
x yw

× δ(kx + k′′
x − k′

x − k′′′
x )

]
− tab

∑
kx

(
d†

kxya
dkxyb

+ H.c.
)

(5)

with two wire single-electron dispersions

εw=a,b(k) = εw=a,b − 2tw=a,b cos(k). (6)

Here kx, k′
x, k′′

x , and k′′′
x denote momenta in the x direction.

δ(k) = 1 if k mod 2π = 0 and δ(k) = 0 otherwise.
The hybridization between each wire and the substrate is

modeled by

Hws = Hwa + Hwb =
∑

w=a,b;s=v,c

(−tws)
∑

x

(
c†

srw
cxyw

+ H.c.
)
(7)

which represents a hopping between each wire site and the
nearest valence and conduction band sites at rw = (x, yw, 1),
w=a,b. In the mixed representation the wire-substrate hy-
bridization becomes

Hws = Hwa + Hwb

=
∑

w=a,b;s=v,c

(−tws)
∑

kx

(
d†

skw
dkxyw

+ H.c.
)

(8)

with kw = (kx, yw, 1), w=a,b. Thus the full TWSS Hamilto-
nian is given by

H = Hw + Hs + Hws. (9)

B. Two-impurity subsystems

In this section we reformulate the Hamiltonian (9) as a set
of two-impurity-host subsystems. This is first done for the
noninteracting case (V = 0). In the mixed representation, the
Hamiltonian takes the form

H =
∑

kx

Hkx , (10)

where Hkx are independent subsystem Hamiltonians such that
[Hkx , Hk′

x
] = 0 ∀kx, k′

x. Each subsystem Hamiltonian repre-
sents a two-impurity subsystem that takes the form

Hkx = εa(kx ) d†
kxya

dkxya
+ εb(kx ) d†

kxyb
dkxyb

− tab
(
d†

kxya
dkxyb

+ H.c.
)

+
∑
s=v,c

[∑
y,z

εs(kx )d†
srkx

dsrkx
− ts

∑
〈(y ,z ),(y′,z′ )〉

d†
srkx

dsr′
kx

]

−
∑

s=v,c;w=a,b

(
twsd

†
skw

dkxyw
+ H.c.

)
. (11)

Hkx represents two nonmagnetic impurities with the energy
levels εa(kx ) and εb(kx ) corresponding to the two wires. These
energy levels are coupled to a 2D host determined by a sub-
strate (y, z) slice through the hybridization parameter tws. Each
(y, z) slice corresponds only to the given wave vector kx. For a
noninteracting wire, each Hkx is a single-particle problem and
it is amenable to exact diagonalization. Each single-particle
Hamiltonian has the dimension Nimp = 2LyLz + 2.

C. Ladder representation

The two-impurity subsystem can be mapped onto a two-leg
ladder system using the Block-Lanczos (BL) algorithm. This
method has been used to investigate multiple quantum im-
purities embedded in multidimensional noninteracting hosts
[23,27,28] and, very recently, a single wire coupled to two
multidimensional noninteracting leads [29]. The BL algo-
rithm is an extension of the Lanczos algorithm to formulate
block tridiagonal matrix starting from more than one basis
state. The number of basis states chosen to start the iterations
determines the size of each single block within the resulting
block tridiagonal matrix.

The BL procedure starts with a matrix P1 with Nrow = Nimp

rows and Ncol columns. The row index numbers the single-
electron basis states (srkx ) in the mixed representation for a
given kx while the column index numbers the impurities (the
wires). Here we have Ncol = 2 but if we had more than two
wires, the multi-impurity subsystem would have more than
two impurities and Ncol > 2 would be correspondingly larger.
The first column of P1 is (1, 0, 0, . . . , 0) and corresponds to
the single-electron state d†

kxya
|�〉 representing the first impu-

rity site while the second column of P1 is (0, 1, 0, . . . , 0) and
corresponds to the single-electron state d†

kxyb
|�〉 representing

the second impurity site (|�〉 is the vacuum state). The BL
iteration is defined as

Pl+1T †
l = Hkx Pl − PlEl − Pl−1Tl−1, (12)

where El = P†
l Hkx Pl , P0 = 0, and T0 = 0. The decomposition

of the left-hand side of (12) into two matrices Pl+1 and T †
l can

be obtained using the QR decomposition [30]. Thus Pl is a
column-orthogonal matrix and Tl is a lower-triangular matrix,
i.e., with matrix elements [τl ]n,n′ = 0 for n < n′. We denote
the matrix elements of El as [el ]n,n′ . The BL basis Pl spans the
Krylov subspace of Hkx . The full implementation of the BL
method generates a matrix

P = [P1 P2 P3 ...], (13)

which has the dimensions Nrow = Ncol = Nimp. The matrix P
can be used to block-tridiagonalize the Hamiltonian HBL

kx
in

the form

HBL
kx

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E1 T1 0 0 · · ·
T †

1 E2 T2 0 · · ·
0 T †

2 E3 T3 · · ·
0 0 T †

3 E4
. . .

...
...

...
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

Since the number of impurities is two, each block in (14) is a
2 × 2 matrix. Thus, HBL

kx
represents a two-leg ladder which is
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written in the form

HBL
kx

=
Nimp/2∑

l=1

2∑
n,n′=1

[el (kx )]n,n′ f †
kxln fkxln′

+
[Nimp/2]−1∑

l=1

2∑
n,n′=1

[
[τl (kx )]n,n′ f †

kxln fkx,l+1,n′ + H.c.
]
,

(15)

where the new fermion operators fkx,l,n are given by the
columns of the matrices Pl . More precisely,

fkx,1,1 = dkxya (16)

fkx,1,2 = dkxyb (17)

and

fkx,l>1,n =
∑

m

[Pl ]m,ndsrkx
, (18)

where the row index m numbers the Nimp basis states (srkx )
in the mixed representation for a given kx. In practice, we
never calculate the operators fkx,l,n

as only the Hamiltonian
matrix elements [el (kx )]n,n′ and [τl (kx )]n,n′ are required for our
method.

We distinguish two kinds of wire-substrate hybridizations.
The first kind is the hybridization of the two wires with
two substrate sites belonging to different sublattices in the
substrate bipartite lattice, e.g., the wires are nearest neighbor
(NN) with |ya − yb| = 1. In this case the system is particle-
hole symmetric, i.e., the Hamiltonian is invariant under the
transformation fkxln → (−1)l (−1)n f †

kxln, and thus half filling
corresponds to the Fermi energy εF = 0. The second kind is
the hybridization of the two wires with two substrate sites
belonging to the same sublattice in the substrate bipartite
lattice, e.g., the wires are next nearest neighbor (NNN) with
|ya − yb| = 2. In this case the system is not particle-hole sym-
metric as long as tab 	= 0 and the full wire-substrate lattice is
not bipartite. However, for tab = 0 the system is again bipartite
and particle-hole symmetric.

To illustrate the procedure, we calculate the parameters
[el (kx )]n,n′ and [τl (kx )]n,n′ for NN impurities coupled to an
insulating substrate with the wire-substrate model parame-
ters tw = 3, tab = 0, ts = 1, and tws = 8, i.e., without direct
coupling between the two impurities. The diagonal terms
[el (kx )]n,n depend on the dispersion in the wire direction and
the onsite chemical potentials. For n 	= n′ the interleg hopping
terms [el (kx )]n,n′ vary as l increases as shown in Fig. 2(a).
Since the initial vectors are associated with sites belong-
ing to different sublattices, the inter-rung hopping terms are
[τl (kx )]n,n′ = 0 for n 	= n′ (the BL algorithm always enforces
[τl ]n,n′ = 0 for n < n′). For n = n′ we found [τl (kx )]1,1 =
[τl (kx )]2,2 which is shown in Fig. 2(b).

We also calculate the parameters [el (kx )]n,n′ and [τl (kx )]n,n′

for 2D hosts coupled to NNN impurities. We use similar
parameters as those used for NN wires without any direct
coupling between the two impurities. Similar to the NN im-
purities case, the diagonal terms [el (kx )]n,n depend of the
dispersion in the wire direction and the onsite chemical po-
tentials. For n 	= n′ the interleg hopping terms must vanish,

 0
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[el(kx)]n,n´
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(c)n=1,n´=2
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[τl(kx)]n,n′

l

(d) n=1
n=2

n=2,n′=1

FIG. 2. Hopping parameters of the two-impurity subsystem after
the Block-Lanczos transformation. The parameters are given in the
text. (a) Intrarung hopping terms [el (kx )]n,n′ for the system with NN
impurities. (b) Intraleg hopping terms [τl (kx )]n,n as well as interleg
diagonal hoppings [τl (kx )]1,2 for the system with NN impurities.
(c) Intrarung hopping terms [el (kx )]n,n′ for the system with NNN
impurities. (d) Intraleg hopping terms [τl (kx )]n,n as well as interleg
diagonal hoppings [τl (kx )]1,2 for the system with NNN impurities.
The horizontal axis represents the number of Bloc-Lanczos shell.
Note that the results are indistinguishable for n = 1 and n = 2
(square symbols) in (a), (b), and (c) but not in (d).

i.e., [el (kx )]n,n′ = 0, since they connect sites between similar
sublattices. Nevertheless, we observe finite values for these
parameters after a few BL iterations as shown in Fig. 2(c).
This is due to the loss of orthogonality in the BL calculation
when we initiate from NNN impurities. However, we have
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observed that the accuracy is better when the separation |ya −
yb| between the two impurities is larger. As we mentioned
before, the inter-rung hopping terms [τl (kx )]1,2 = 0 while the
other values of [τl (kx )]n,n′ are shown in Fig. 2(d).

We observe that the BL iterations produce accurate results
for 2D hosts coupled to NN impurities for a relatively large
number of iterations. Despite the less accurate results for a
large number of BL iterations in the case of NNN impurities
we observe that at least for the minimal number of iterations
(with l = 3 corresponding to six-leg ladders) the results are
accurate enough. This will allow us to construct a minimal
approximation of the full TWSS. We emphasize that this
minimal approximation includes an overlap between the BL
vectors generated from the two impurities and thus possibly
an indirect substrate mediated coupling between wires.

D. Real-space representation

We now transform the Hamiltonian (15) back to the real-
space representation in the x direction. As the wire states have
not been modified by the mapping of the multi-impurity sub-
system to the ladder representation, the two-wire Hamiltonian
Hw remains unchanged. By defining new fermion operators

g†
xln = 1√

Lx

∑
kx

e−ikxx f †
kxln (19)

that create electrons at position x in the lth shell and the nth 2D
sheet, we get a new representation of the full wire-substrate
Hamiltonian

H =
(Nimp/2)∑

l=1

∑
xx′

∑
nn′

[el (x − x′)]nn′g†
xlngx′ln′

+
(Nimp/2)−1∑

l=1

∑
xx′

∑
nn′

[[τl (x − x′)]nn′g†
xlngx′,l+1,n′

+ H.c], (20)

where

[el (x)]nn′ = 1

Lx

∑
kx

[el (kx )]nn′ exp(ikxx) (21)

are the hopping amplitudes in the wire direction within the
same shell l (or the onsite potential for x = 0) whereas

[τl (x)]nn′ = 1

Lx

∑
kx

[τl (kx )]nn′ exp(ikxx) (22)

are the hopping amplitudes between sites in shells l and
l + 1. Therefore, we have obtained a new representation of
the Hamiltonian H with long-range hoppings on two sheets of
2D lattices of size Lx × Nimp/2.

The ladder representations of the substrate are identical for
all wave vectors kx up to energy shifts. It follows that the
hopping terms between nearest-neighbor shells are

[τl (x)]nn′ = −[
t rung
l

]
nn′δx,0 (23)

with [t rung
l ]nn′ = −[τl (kx )]nn′ . In addition, one finds that

[el (x)]nn′ = −[
t leg
x

]
nn′ + [μl ]nn′δx,0 (24)

with

[
t leg
x

]
nn′ = − 1

Lx

∑
kx

[ν(kx )]nn′ exp(ikxx) (25)

and [μl ]nn′ = [el (kx )]nn′ − [ν(kx )]nn′ .
At this point, we have obtained a representation of the

wire-substrate Hamiltonian H in the form of two ladderlike
sheets, such that each sheet has Lx rungs and Nimp/2 legs,
as sketched in Fig. 1. The first two legs with l = 1 are
the two wires, in particular g†

x,l=1,n=1 = c†
ax and g†

x,l=1,n=2 =
c†

bx, while legs with l = 2, . . . , Nimp/2 correspond to the
successive shells and represent the substrate. The full Hamil-
tonian is made of the unchanged wire Hamiltonian Hw, the
direct wire-wire coupling Hab, the hopping terms [	]nn′ (hy-
bridization) between wire sites and sites in the first two legs
(l = 2) representing the substrate, the nearest-neighbor and
next-nearest-neighbor rung hoppings [t rung

l ]nn′ between sub-
strate legs with indices l − 1 and l , the onsite potentials and
leg-leg couplings [μl ]nn′δx,0 − [t leg

0 ]nn′ within each substrate
shell, and the same intraleg hopping terms [t leg

x ]nn′ in every
substrate leg. The latter are identical to the hopping terms in
the original substrate Hamiltonian Hs.

For substrates with dispersions of the form

εs(k) = εs − 2ts[cos(kx ) + cos(ky) + cos(kz )] (26)

we have ν(kx ) = −2ts cos(kx ), so that the hopping within sub-
strate legs takes place between nearest neighbors only,

[
t leg
x

]
nn′ =

{
ts if |x| = 1 and n = n′,
0 otherwise.

(27)

The explicit form of the full Hamiltonian is then

H = Hw + Hab +
∑
x,n,n′

[[	]nn′ g†
x,l=2,ngx,l=1,n′ + H.c.]

+
Nimp/2∑

l=2

∑
x,n

[μl ]nn g†
xlngxln

+
Nimp/2∑

l=2

∑
x,n 	=n′

[[μl ]nn′ g†
xlngxln′ + H.c.]

− ts

Nimp/2∑
l=2

∑
x,n

[g†
xlngx+1,l,n + H.c.]

−
Nimp/2−1∑

l=2

∑
x,n,n′

[[
t rung
l

]
nn′ g†

xlngx,l+1,n′ + H.c.
]
. (28)

For the TWSS model, a narrow ladder approximation
(NLM) with Nleg = 2Nshell legs is obtained by projecting the
full Hamiltonian (28) onto the subspace given by the first Nshell

blocks of BL vectors, i.e., by substituting Nshell � Nimp/2 for
Nimp/2 (or equivalently Nleg � Nimp for Nimp) in Eq. (28). As
the intrawire Hamiltonian Hw is not affected by the mapping
or the projection, we can apply this procedure to systems of
interacting wires (V 	= 0) to obtain interacting NLM.
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III. NONINTERACTING WIRES

To compute spectral properties of the full TWSS model in
the mixed representation, we use the Hamiltonian (10) with
(11). The spectral function in this representation is given by

A(ω, kx ) =
2LyLz+2∑

λ=1

δ
(
ω − ελkx

)
, (29)

where ελkx (λ = 1, . . . , Nimp = 2LyLz + 2) denote the eigen-
values of the Hamiltonians (11). Similarly, to compute
spectral properties of the effective NLM, we use the Hamil-
tonian (10) with Hkx in the BL representations (15) with
Nshell � Nimp/2 substituted for Nimp/2. The spectral function
in this chain representation is given by

A(ω, kx ) =
Nleg∑
λ=1

δ
(
ω − ελkx

)
, (30)

where ελkx (λ = 1, . . . , Nleg) denote the eigenvalues of these
Hamiltonians. This spectral function can be easily calculated
for any 1 � Nleg � Nimp.

We compare spectral functions of the full system with
those of the NLM with various numbers of legs. Unless
otherwise stated, we use symmetric intrawire hopping ta =
tb = tw = 3 and wire-substrate hybridization tac = tav = tbc =
tbv = tws. The substrate parameters are tc = tv = 1 and εc =
−εv = 7. The system sizes are Lx = 1000, Ly = 32, and
Lz = 8. These model parameters correspond to an indirect
gap �s = 2 and a constant direct gap �s(kx ) = 6 for all kx

in the substrate single-particle band structure [in the absence
of wires or for a vanishing wire-substrate coupling (tws = 0)].
Our main aim in this investigation is to understand the influ-
ence of the substrate on the one-dimensional physics of the
wires. Therefore, we focus on systems with two wires but
without direct wire-wire coupling, i.e., we set tab = 0.

Figure 3(a) displays the spectral function of the full TWSS
model with NN wires and a relatively strong wire-substrate
hybridization tws = 8. Despite the absence of any direct wire-
wire coupling, we clearly see two separated bands crossing
the Fermi level at ω = εF = 0 (for half filling) in the middle
of the substrate band gap. This structure corresponds to the
dispersions found in a two-leg ladder with the separation
between the (bonding and antibonding) bands given by twice
the rung hopping term t⊥ [16]. Therefore, this observation
demonstrates the existence of an effective, substrate mediated
coupling between both wires even when the model does not
include the bare hopping term tab.

Moreover, in Fig. 3 we see two bands above the substrate
conduction band continuum and two other bands below the
substrate valence band continuum. These four bands are due
to the strong wire-substrate hybridization which forms en-
ergy levels like in a hexamer structure in first approximation
tws � tw, ts. Each hexamer is made of two wire sites and the
four substrate orbitals that are strongly hybridized to these
sites by the Hamiltonian term (7). A single hexamer has six
distinct energy levels and the separation increases with tws.
Finite values of the hoppings tw and ts hybridize the energy
levels of the Lx hexamers in the full system and form the six
bands separated from the continuum.
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FIG. 3. Spectral functions of two NN wires on a semiconducting
substrate with tw = 3, tws = 8, and ts = 1. (a) Full TWSS model.
(b) NLM with Nleg = 2Nshell = 54. (c) NLM with Nleg = 2Nshell = 6.

We see a similar behavior when we use the BL represen-
tation projected onto the subspace for Nleg = 2Nshell = 54 as
displayed in Fig. 3(b). The two bands crossing the Fermi level
resemble those seen in the full system while two other pairs of
bands lie above and below the approximate representation of
the substrate continua, respectively. However, the distribution
of spectral weights in the conduction and valence bands are
different from those of the full system due to the reduction of
the number of bands.

We observe in Figs. 3(a) and 3(b) that the substrate energy
gap is well approximated despite the restriction to Nleg <

Nimp. However, by investigating different numbers of legs we
find that the substrate gap increases with decreasing Nleg. This
is clearly seen in Fig. 3(c) for Nleg = 6. In this case, we see
only six bands. Again two bands cross the Fermi level and are
similar to the two central bands observed in the full system
while two other pairs of bands lie well above and below
the Fermi level, respectively. These six bands were explained
using the hexamer limit above but it should be noticed that in
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FIG. 4. Spectral functions for two NNN wires on a semiconduct-
ing substrate with tw = 3, tws = 8, and ts = 1. (a) Full TWSS model.
(b) NLM with Nleg = 6.

the NLM with Nleg = 6 the four bands away from the Fermi
energy are the remains of the two substrate continua. Thus
these results confirm that a six-leg NLM (i.e., with Nshell = 3)
can be a good approximation of the full system for a pair
of NN wires as long as we are concerned with the physics
occurring close to the Fermi energy εF = 0 on or around the
wires. This agrees with and generalizes our previous findings
for a single wire on a semiconducting substrate [20].

The full TWSS system with NNN wires reveals interesting
differences in the substrate role depending on the wire posi-
tions. In Fig. 4(a) we see three isolated dispersive features,
one crossing the Fermi level inside the substrate band gap,
one over the top of the conduction band continuum, and one
below the bottom of the valence band continuum. Examining
the central structure more closely, as shown in Fig. 5(a), we
distinguish two bands crossing the Fermi level at kx = ±π

2
with small differences in their bandwidths. These dispersions
resemble those that would be found in a pair of uncoupled
one-dimensional wires with small difference in their intrahop-
ping terms. Thus for NNN wires we do not find any evidence
for a substrate induced hybridization of the two wires resulting
in an effective two-leg ladder.

As we mentioned before, the BL method suffers from a fast
loss of orthogonality in systems with NNN wires although it
becomes more accurate for larger separations between wires.
Moreover, the NLM representation generated with the BL
method for Nshell = 3 does not suffer from this loss of or-
thogonality. We can see in Figs. 4(b) and 5(b) that the bands
crossing the Fermi level are reproduced even if they are some-
what smeared out. Therefore, we think that the six-leg NLM
(Nshell = 3) could be a useful approximation of the full TWSS
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FIG. 5. Enlarged view of the spectral functions in Fig. 4. (a) Full
TWSS model. (b) NLM with Nleg = 6.

systems with NNN wires as in the case of NN wires. Contrary
to the NN wires, however, the substrate does not seem to
mediate an effective wire-wire coupling between NNN wires.
Thus we will investigate the effects of interaction induced
correlations for these two cases.

IV. INTERACTING WIRES

In this section we investigate the six-leg NLM approximat-
ing the TWSS model for interacting spinless fermions using
the density matrix renormalization group (DMRG) method
[24,25]. Additionally, we compare with DMRG results for
a two-leg ladder without substrate as well as for a three-leg
NLM approximating a single wire on a substrate [22]. DMRG
is a well established method for quasi-one-dimensional corre-
lated quantum lattice models [24,25,31,32]. Recently, we have
shown that DMRG can be applied to NLM with relatively
large widths [20–22]. In this work we compute the ground-
state properties of the six-leg NLM with open boundary
conditions in the leg direction as well as in the rung direction.
We always simulate an even number of rungs up to Lx = 200.
The finite-size DMRG algorithm is used with up to m = 1024
density-matrix eigenstates yielding discarded weights smaller
than 10−5. We vary m and extrapolate the ground-state energy
to the limit of vanishing discarded weights in order to estimate
the DMRG truncation error. DMRG can sometimes get stuck
in metastable states in such inhomogeneous systems, hin-
dering the convergence toward the global energy minimum.
This issue cannot always be solved by increasing the number
of sweeps through the lattice until convergence is reached.
We have resolved this problem by targeting the lowest two
eigenstates of the Hamiltonian using a single reduced density

245405-7



ANAS ABDELWAHAB AND ERIC JECKELMANN PHYSICAL REVIEW B 103, 245405 (2021)

matrix for each block. We focus on half-filled systems, i.e.,
the number of spinless fermions is N = Nleg × Lx/2.

Our main goal is to verify if the physics of correlated
fermions in one dimension, in particular a Luttinger liquid,
can occur in atomic wires on a semiconducting substrate. In a
previous work [22] we showed that the hybridization with the
substrate does not preclude the formation of a Luttinger liquid
phase in a single wire. Atomic wires build regularly spaced
2D arrays of chains, however. It is known that a single-particle
interchain hopping gives rise to ordered states but this direct
hopping (the parameter tab = 0 in our model) is expected to
be negligibly small in atomic wire systems while a Luttinger
liquid can occur in the presence of interchain two-particle
interactions [16]. Thus we restricted our investigation to the
six-leg NLM without direct wire-wire coupling, i.e., tab = 0,
and focus on two questions: (i) whether the substrate can me-
diate an effective coupling between two wires and (ii) whether
1D physics, in particular a Luttinger liquid, can occur in this
system.

The physics of the half-filled spinless fermion model on a
two-leg ladder (i.e., our TWSS model without the substrate)
was thoroughly investigated a few decades ago using field
theoretical methods, renormalization group, and bosonization
[16,26,33,34] as well as exact diagonalizations [35]. When
the interaction is restricted to a nearest-neighbor repulsion
(i.e., V > 0) between fermions on the same leg and the only
interleg coupling is a single-particle rung hopping t⊥ > 0,
the system does not have any gapless phase but is a Mott
insulator with a charge density wave, even for arbitrarily small
parameters V and t⊥. In contrast, an uncoupled chain (t⊥ = 0)
remains a gapless Luttinger liquid for 0 � V � 2t‖, where
t‖ > 0 is the intraleg hopping, while it is an insulating CDW
for V > 2t‖. The introduction of an infinitely small interchain
hopping t⊥ is sufficient to generate the Mott gap and the
long-range CDW order in analytical studies [16,26]. For small
t⊥ and V , however, gap and CDW amplitudes can be too small
to be identified with certitude using DMRG due to finite-size
effects.

In a previous work [22] we investigated a single spin-
less fermion wire on a substrate thoroughly. We found three
phases for varying couplings V > 0: a Luttinger liquid phase
with gapless excitations localized in the wire for V < VCDW,
a CDW insulating phase with excitations still localized in
the wire for intermediate couplings VCDW < V < VBI, and a
band insulator with excitations delocalized in the substrate
for V > VBI. An important observation is that VCDW increases
significantly with increasing wire-substrate hybridization tws

above the value VCDW = 2tw for the isolated wire (i.e., in
the limit tws → 0). Therefore, the presence of the substrate
hinders the formation of the insulating CDW ground state and
stabilizes the Luttinger liquid phase.

A. Single-particle gap

In the light of these previous results for related systems,
we now discuss the gap, the CDW order parameter, and the
density distribution of excitations in the six-leg NLM rep-
resentation for TWSS using DMRG. We first investigate the

single-particle gap which is defined as

Ep = E (N + 1) + E (N − 1) − 2E (N ), (31)

where E (N ) is the ground-state energy for a system with N
fermions. Figure 6 displays this single-particle gap as function
of the interaction V . We compare the gaps for the 6-leg NLM
with those for a 3-leg NLM describing a single wire on a
substrate using tw = 3 and the same substrate parameters as
for the noninteracting system in the previous section. Addi-
tionally, we show results for a two-leg ladder without substrate
with a leg hopping t‖ = 3 and a rung hopping t⊥ = 0.5.

We first discussed the results for NN wires shown in
Fig. 6(a). The two wires should be coupled by a substrate-
mediated effective hopping t⊥ as found for noninteracting
systems in the previous section. According to the analytical
findings for two-leg ladders [16,26], we thus expect to observe
a Mott insulator with long-range CDW order in the six-leg
NLM for V > 0. For a weak wire-substrate hybridization
tws = 0.5, however, the effective coupling is weak and the ex-
pected small single-particle gap cannot be distinguished from
finite-size effects for small V � 2tw = 6 in the six-leg NLM,
see Fig. 6(c). This is similar to the finite-size gaps found in
both the three-leg NLM for a single wire and the two-leg
ladder without substrate, which are a Luttinger liquid and
a Mott/CDW insulator in the thermodynamic limit for that
parameter regime, respectively. Similarly, the single-particle
gap of the six-leg NLM matches the Mott gap seen in the
Mott/CDW phase of the six-leg NLM for a single wire and
the two-leg ladder without substrate for stronger coupling
V � 2tw and V > 2t‖, respectively. This agreement persists
up to the points where the gaps of the six-leg and three-leg
NLM saturate (i.e., V = VBI ≈ 20 for the three-leg NLM with
tws = 0.5). This saturation marks the transition to the band
insulator regime as already observed for single wires [22]. The
correlation gap for quasi-one-dimensional excitations in the
wire increases monotonically with V for all V > VCDW. For
V > VBI, however, it becomes larger than the NLM effective
band gap for excitations delocalized in the substrate. Thus the
gaps Ep to the lowest single-particle excitations correspond to
the effective band gaps for V > VBI and thus become indepen-
dent from V .

Varying the wire-substrate hybridization up to tws = 8, we
observe that the single-particle gaps of the six-leg NLM and
three-leg NLM remain very similar up to the saturation in-
teraction, as shown in Fig. 6(a) for tws = 8. For the three-leg
NLM representing a single wire on a substrate we know that a
stronger hybridization tws results in a smaller effective interac-
tion and thus in a larger critical coupling VCDW [22]. Thus, the
single-particle gaps of the three-leg NLM seen in Figs. 6(c) for
tws = 8 and V < VCDW ≈ 19 are finite-size effects while they
correspond to a finite Mott gap above this critical interaction.
The single-particle gaps of the six-leg NLM are not signif-
icantly larger than those for the three-leg NLM. Therefore,
we cannot determine whether the single-particle gap of two
NN wires is finite in the thermodynamic limit for all V > 0,
as expected for two-leg ladders from the above discussion, or
whether a Luttinger liquid phase occurs at weak coupling V
as in a single wire on a substrate (3-leg NLM).

Figures 6(b) and 6(d) display Ep for NNN wires in the
six-leg NLM. Again we observe a close agreement with the
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FIG. 6. Single-particle gap Ep in a six-leg NLM as a function of
the intrawire interaction V . The upper plots (a) and (b) show results
for two NN wires and two NNN wires, respectively. The lower fig-
ures (c) and (d) show an enlarged view of the same results. The upper
and lower triangles are results for a three-leg NLM representing a
single wire on a substrate. The diamonds show results for the two-leg
ladder model with a rung hopping t⊥ = 0.5 and a leg hopping t‖ = 3
but no substrate. The ladder length is Lx = 128.

results for a single wire represented by the three-leg NLM
for all couplings V and tws. For a weak wire-substrate hy-
bridization, these single-particle gaps are also close to the
Mott gap of the two-leg ladder without substrate. Thus, as
for NN wires, we cannot determine whether two NNN wires
have a gapless Luttinger liquid phase at weak coupling or are
insulating for all V > 0. In summary, in the regime 0 < V <

VBI, where a single wire on a substrate exhibits 1D physics
(i.e., Luttinger liquid or Mott/CDW insulator), the analysis
of the single-particle gap does not allow us to demonstrate
distinct behaviors between NN and NNN wire pairs (e.g.,
like two uncoupled wires or like an effective two-leg ladder)
because of finite-size effects. Thus the existence and the role
of an effective substrate-mediated wire-wire coupling remains
unclear in that regime.

Remarkably, the 3D band insulator phase reveals a striking
difference between NN and NNN wires. For NN wires the
effective band gap Ep in the band insulator regime (the value
of Ep at saturation) is significantly lower than the band gap
of the three-leg NLM for a single wire, as seen in Fig. 6(a).
For NNN wires the band gap differs only slightly from the
value found in a single-wire represented by the 3-leg NLM
as seen in Fig. 6(b). These results demonstrate that two in-
teracting NN wires in the six-leg NLM are coupled through
the substrate while the two interacting NNN wires do not feel
that they share the same substrate. Therefore, the effective
substrate-mediated coupling between NN wires that we have
found for noninteracting wires (V = 0) in the previous section
is confirmed at least in the band insulator regime for strong
interactions (V > VBI). Finally, we note that the value of Ep

does not change significantly with tws in interacting NLM
although it increases with tws in noninteracting NLM.

B. CDW order parameter

The existence of the long-range CDW order offers another
way to distinguish the Mott/CDW phase from the Luttinger
liquid phase. In the NLM the CDW order manifests itself as
oscillations in the ground-state local density in the form

〈g†
x,l,ngx,l,n〉 = 1

2 + (−1)xδxln, (32)

where δxln varies slowly with x. These oscillations break the
particle-hole symmetry and, in principle, they can only occur
in the thermodynamic limit. However, in DMRG calculations
they become directly observable for finite systems due to
symmetry-breaking truncation errors. The CDW order param-
eter in each leg is thus given by

δl,n = 1

Lx

∑
x

(−1)x〈g†
x,l,ngx,l,n〉. (33)

We have calculated this CDW order parameter for each
leg in the six-leg NLM using the same parameters as in
the previous subsection. We again compare these results to
DMRG results obtained for the three-leg NLM representing a
single wire on the substrate and for a two-leg ladder without
substrate with t‖ = 3 and t⊥ = 0.5. Figure 7 displays δl,n as a
function of the interaction V .

In Fig. 7(a) we compare the results for the two NN or
NNN wires of the six-leg NLM (n = 1, 2, l = 1) and the
single wire of the three-leg NLM with a weak wire-substrate
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FIG. 7. Charge-density-wave order parameters δl,n for various
legs (l, n) (see the text) in the six-leg NLM for a pair of NN and NNN
wires on a substrate. The parameters for the original TWSS models
are tw = 3, tab = 0, ts = 1 and (a) tws = 0.5 (b) tws = 8. The CDW
order parameters are also shown for the first leg of a three-leg NLM
representing a single wire on a substrate as well as for the two-leg
ladder model with a rung hopping t⊥ = 0.5 and a leg hopping t‖ = 3
but no substrate. The ladder length is Lx = 128.

hybridization tws = 0.5 as well as for the two-leg ladder with-
out substrate. The order parameters for the NN and NNN
wires behave similarly for all interactions V . Moreover, they
are close to the order parameter found in the three-leg NLM
for a single wire (up to the arbitrary sign of δl in the single
wire). A small difference is visible around V = 10 where the
order parameters become finite. More importantly, however,
we have previously established that the transition to the CDW
phase already takes place around VCDW ≈ 6 in the three-leg
NLM with these parameters [22]. Thus, although an order
parameter δl,n 	= 0 definitively indicates a CDW ground state,
we cannot exclude the occurrence of this CDW state when
δl,n ≈ 0. The CDW order parameter can be too small to be
detected with our approach. This can be seen also in the order
parameters of the two-leg ladder without substrate. The order
parameters in both legs are clearly finite for V > 2t‖ = 6 but
appears to be vanishing below this coupling, exactly as for a
single spinless fermion chain. According to analytical results
[16,26] the ground state has a CDW long-range order for all
V > 0, however. Due to the weak rung coupling t⊥ = 0.5 the
CDW order parameters are too small to be seen numerically
for small interactions V with our method. We do not ob-
serve qualitative changes when increasing the wire-substrate
hybridization up to tws = 8, at least for the regime V < VBI,
as seen in Fig. 7(b). Therefore, like for the single-particle

gap, the analysis of the CDW order does not allow us to
demonstrate distinct 1D behaviors for NN and NNN wires
or to draw a conclusion about the existence of an effective
substrate-mediated coupling between wires in this parameter
regime.

Again a significant difference between NN and NNN wires
becomes apparent in the band insulator phase of the six-leg
NLM. As seen in Figs. 7(a) and 7(b), the CDW order in
the two wires is out of phase, i.e., δ1,1 = −δ1,2, for V < VBI,
that is before the saturation of the single-particle gap. In the
two-leg ladder (without substrate), it is known exactly that the
ground state has this out-of-phase configuration for all V > 0.
In contrast, we mostly observe in-phase CDW ordering
(δ1,1 = δ1,2) for NN wires in the band insulator regime (e.g.,
V > VBI ≈ 19 for tws = 0.5 and V > VBI ≈ 50 for tws = 8).
This stable relation between their CDW ordering indicates
strongly that each wire feels the presence of the other one in
all the above cases. However, for NNN wires in the band insu-
lator regime (e.g. V > VBI ≈ 21 for tws = 0.5 and V > VBI ≈
70 for tws = 8), we observe both types of relative ordering in-
differently. This is seen as apparently random sign fluctuations
of δl,n for large V in Fig. 7(b). This observation suggests a
degeneracy of the in-phase and out-of-phase CDW ordering in
the NNN wires like in two uncoupled chains with CDW order
(i.e., in the ground state of the two-leg ladder with V > 2t‖
and t⊥ = 0). Therefore, the analysis of the single-particle gap
and the CDW order parameter yields a qualitatively consistent
picture for the band insulator regime only.

C. Excitation density

The single-particle gap and the CDW order parameters are
obvious quantities to be examined in a system that could have
Luttinger liquid and Mott/CDW insulating phases. We have
seen in the previous two subsections, however, that they do
not allow us to draw a conclusion for intermediate interactions
0 < V < VBI. Thus we now turn to the density distribution
of low-energy excitations to gain more information. Similar
quantities have already proven to be useful to understand the
ground state of inhomogeneous ladder systems [21,22,36,37].

The distribution of single-particle excitations in the legs
provides the clearest evidence for the difference between NN
and NNN wires in the 6-leg NLM. This distribution is defined
as the variation of the total density in each leg of the NLM
when a fermion is added to the half-filled system

Nl,n =
∑

x

〈g†
x,l,ngx,l,n〉 − Lx

2
, (34)

where the expectation value is calculated for the ground state
with N = (Nleg × Lx/2) + 1 particles. The evolution of Nl,n in
the wires (i.e., for l = 1) is displayed in Fig. 8 for increasing
interaction strength V . Note that N1,n vanishes in the band in-
sulating regime (V > VBI) because low-energy excitations are
delocalized in (the wires representing) the substrate. Actually,
this is how we can determine VBI accurately.

For V < VBI and a weak hybridization tws = 0.5 we ob-
serve in Fig. 8(a) that the excitation density distribution in the
NN wires of the six-leg NLM is very similar to the distribution
found in the two-leg ladder without substrate. Excitations are
distributed equally in both wires for weak interactions V but
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FIG. 8. Distribution of the single-particle excitation density Nl,n

defined in Eq. (34) between the two wires of a six-leg NLM with
tws = 3, tab = 0, and ts = 1: (a) NN wires with tws = 0.5, (b) NNN
wires with tws = 0.5, (c) NN wires with tws = 8, and (d) NNN wires
with tws = 8. The upper and lower triangles show results for the two-
leg ladder with rung hopping t⊥ = 0.5 and a leg hopping t‖ = 3 but
no substrate. The ladder length is Lx = 128.

become localized in one wire for stronger interactions. A
different behavior is found in the 6-leg NLM for NNN wires
with the same parameters, as shown in Fig. 8(b). In that case
the single-particle excitations are entirely localized in one
wire starting from the smallest value of V . The difference
between NN and NNN wires remains qualitatively similar in
systems with stronger wire-substrate hybridization tws. This is
illustrated in Figs. 8(c) and 8(d) for tws = 8. The main change
for stronger tws is that an increasing fraction of the density is
distributed in the substrate shells. Thus the difference between
both types of excitations becomes less striking for N1,n alone.

A localization of excitations in the wires (for weak tws or
in the shells around each wire for strong tws) is similar to
our findings for a single wire on a substrate [22]. It confirms
the 1D nature of the wires in the TWSS model represented
by the six-leg NLM for V < VBI. In addition, the behavior
of low-energy excitations is similar in the NN wires and in
the two-leg ladder with a finite rung hopping t⊥ and thus
shows that the NN wires are effectively coupled. In contrast,
low-energy excitations of NNN wires behave like in two un-
coupled chains, e.g., in the two-leg ladder with t⊥ → 0.

Therefore, the analysis of the excitation density shows that
NN wires in the six-leg NLM are coupled by an effective
substrate-mediated hybridization while NNN wires remain
uncoupled when the interaction V is finite but not too strong.
This complements our findings for noninteracting systems
(V = 0) in the previous section and for the band insulator
regime (V > VBI) in the previous two subsections.

V. CONCLUSION

In previous works we showed how to map models for a
single correlated quantum wire deposited on an insulating
substrate onto narrow ladder models (NLM) that can be stud-
ied with the DMRG method [20]. We used this approach to
show that the 1D Luttinger liquid and CDW insulating phases
found in isolated spinless fermion chains can survive the cou-
pling to a substrate [22]. In this work we have extended this
mapping to multi wires on a substrate using a block Lanczos
algorithm. A minimal six-leg NLM has been used successfully
to approximate a system made of two wires on a semiconduct-
ing substrate (TWSS) but numerical errors originating from
the loss of orthogonality of block Lanczos vectors could be an
issue for broader ladders.

We have applied this approach to an interacting spinless
fermion model for two wires on a substrate. Studying the re-
sulting six-leg NLM without a direct coupling between wires,
we have found that low-energy single-particle excitations are
localized in or around the wires for weak to intermediate
interactions V . Thus the TWSS realizes an effectively 1D
correlated system in agreement with the previous detailed
study of a single wire on a substrate [22].

The main result of the present study is the discovery of the
nonuniversal influence of the substrate on the effective ladder
system built by the two wires in the six-leg NLM. We have
found that the two wires are coupled by an effective substrate-
mediated hybridization when both wires are deposited on top
of nearest-neighbor (NN) sites of the substrate lattice but
not when they are positioned on top of next-nearest-neighbor
(NNN) sites. More generally, for noninteracting wires we

245405-11



ANAS ABDELWAHAB AND ERIC JECKELMANN PHYSICAL REVIEW B 103, 245405 (2021)

observe a substrate-mediated coupling when adjacent wire
sites belong to different sublattices of the bipartite lattice but
not when they belong to the same sublattice.

In the absence of a direct wire-wire coupling (as expected
in real atomic wire systems), the substrate-mediated effective
coupling could then have a decisive influence on the wire
properties. According to analytical results for a two-leg spin-
less fermion ladder (without substrate), the six-leg NLM with
NN wires should be a Mott insulator with long-range CDW
order for any coupling V > 0 while for NNN wires it should
be Luttinger liquid for weak interactions up to a finite critical
value VCDW like for uncoupled wires. Unfortunately, we could
not verify directly that the single-particle gap or the CDW
ordering are different for the NN and NNN wires. Both gaps
and CDW amplitudes are very small for weak interactions
V and weak wire-wire coupling. Due to the high cost of
DMRG computations for the six-leg NLM, we have not been
able to distinguish them from finite-size effects. Nevertheless,
the density distributions of single-particle excitations between
the two wires indicate clearly an effective coupling between
NN wires but effectively decoupled NNN wires. Therefore,
we cannot determine whether the Luttinger liquid phase of
isolated wires can exist when more than one wire is deposited
on a substrate or the substrate-mediated coupling leads sys-
tematically to insulating ground states like the Mott/CDW
phase.

We think that this question could be resolved in the fu-
ture for the six-leg NLM model constructed in this work

using other methods for 1D correlated systems. For instance
bosonization and renormalization group methods can prob-
ably access parameter regimes that are out of reach using
DMRG. A question that we could not address in the present
work is whether broader ladder approximations of the wire-
substrate systems could lead to different conclusions. The
previous systematic studies of single wires on substrates sug-
gest that the results found in the minimal NLM (six legs)
should remain at least qualitatively valid for broader NLM.
Other numerical approaches such as quantum Monte Carlo
can treat not only broader NLM but also the three-dimensional
wire-substrate model directly and thus can be used to comple-
ment the NLM approach [20,21]. Finally, our investigations
show that it may be difficult to determine under which con-
ditions the physics of correlated one-dimensional electrons
can be realized in arrays of atomic wires on semiconducting
substrates because they seem to depend on the model (and
consequently material) particulars.

ACKNOWLEDGMENTS

We would like to thank T. Shirakawa for fruitful discus-
sions on the BL algorithm. This work was done as part of
the Research Units Metallic nanowires on the atomic scale:
Electronic and vibrational coupling in real world systems
(FOR1700) of the German Research Foundation (DFG) and
was supported by Grant No. JE 261/1-2. The DMRG calcu-
lations were carried out on the cluster system at the Leibniz
University of Hannover.

[1] C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger,
M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and R.
Claessen, Nat. Phys. 7, 776 (2011).

[2] C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger,
M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and R.
Claessen, Nat. Phys. 8, 174 (2012).

[3] Y. Ohtsubo, J.-i. Kishi, K. Hagiwara, P. Le Fèvre, F. Bertran,
A. Taleb-Ibrahimi, H. Yamane, S. I. Ideta, M. Matsunami, K.
Tanaka, and S. I. Kimura, Phys. Rev. Lett. 115, 256404 (2015).

[4] K. Yaji, I. Mochizuki, S. Kim, Y. Takeichi, A. Harasawa,
Y. Ohtsubo, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi, A.
Kakizaki, and F. Komori, Phys. Rev. B 87, 241413(R) (2013).

[5] K. Yaji, S. Kim, I. Mochizuki, Y. Takeichi, Y. Ohtsubo, P. Le
Fèvre, F. Bertran, A. Taleb-Ibrahimi, S. Shin, and F. Komori,
J. Phys.: Condens. Matter 28, 284001 (2016).

[6] H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi,
J. Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, and S.
Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

[7] S. Cheon, T.-H. Kim, S.-H. Lee, and H. W. Yeom, Science 350,
182 (2015).

[8] J. S. Shin, K.-D. Ryang, and H. W. Yeom, Phys. Rev. B 85,
073401 (2012).

[9] J. Aulbach, J. Schäfer, S. C. Erwin, S. Meyer, C. Loho, J.
Settelein, and R. Claessen, Phys. Rev. Lett. 111, 137203 (2013).

[10] K. Nakatsuji, Y. Motomura, R. Niikura, and F. Komori, Phys.
Rev. B 84, 115411 (2011).

[11] J. Park, K. Nakatsuji, T.-H. Kim, S. K. Song, F. Komori, and
H. W. Yeom, Phys. Rev. B 90, 165410 (2014).

[12] N. de Jong, R. Heimbuch, S. Eliëns, S. Smit, E. Frantzeskakis,
J.-S. Caux, H. J. W. Zandvliet, and M. S. Golden, Phys. Rev. B
93, 235444 (2016).

[13] K. Seino and F. Bechstedt, Phys. Rev. B 93, 125406 (2016).
[14] K. Seino, S. Sanna and W Gero Schmidt, Surf. Sci. 667, 101

(2018).
[15] K. Schönhammer, Luttinger Liquids: The Basic Concepts in

Strong Interactions in Low Dimensions, edited by D. Baeriswyl
and L. Degiorgi (Kluwer Academic Publishers, Dordrecht,
2004).

[16] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2007).

[17] J. Sólyom, Fundamentals of the Physics of Solids, Volume 3 -
Normal, Broken-Symmetry, and Correlated Systems (Springer,
Berlin, 2010).

[18] G. Grüner, Density waves in Solids (Perseus Publishing, Cam-
bridge, 2000).

[19] C.-W. Chen, J. Choe, and E. Morosan, Rep. Prog. Phys. 79,
084505 (2016).

[20] A. Abdelwahab, E. Jeckelmann, and M. Hohenadler, Phys. Rev.
B 96, 035445 (2017).

[21] A. Abdelwahab, E. Jeckelmann, and M. Hohenadler, Phys. Rev.
B 96, 035446 (2017).

[22] A. Abdelwahab and E. Jeckelmann, Phys. Rev. B 98, 235138
(2018).

[23] T. Shirakawa and S. Yunoki, Phys. Rev. B 90, 195109
(2014).

[24] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

245405-12

https://doi.org/10.1038/nphys2051
https://doi.org/10.1038/nphys2241
https://doi.org/10.1103/PhysRevLett.115.256404
https://doi.org/10.1103/PhysRevB.87.241413
https://doi.org/10.1088/0953-8984/28/28/284001
https://doi.org/10.1103/PhysRevLett.82.4898
https://doi.org/10.1126/science.aaa7055
https://doi.org/10.1103/PhysRevB.85.073401
https://doi.org/10.1103/PhysRevLett.111.137203
https://doi.org/10.1103/PhysRevB.84.115411
https://doi.org/10.1103/PhysRevB.90.165410
https://doi.org/10.1103/PhysRevB.93.235444
https://doi.org/10.1103/PhysRevB.93.125406
https://doi.org/10.1016/j.susc.2017.10.005
https://doi.org/10.1088/0034-4885/79/8/084505
https://doi.org/10.1103/PhysRevB.96.035445
https://doi.org/10.1103/PhysRevB.96.035446
https://doi.org/10.1103/PhysRevB.98.235138
https://doi.org/10.1103/PhysRevB.90.195109
https://doi.org/10.1103/PhysRevLett.69.2863


EFFECTIVE NARROW LADDER MODEL FOR TWO … PHYSICAL REVIEW B 103, 245405 (2021)

[25] S. R. White, Phys. Rev. B 48, 10345 (1993).
[26] P. Donohue, M. Tsuchiizu, T. Giamarchi, and Y. Suzumura,

Phys. Rev. B 63, 045121 (2001).
[27] A. Allerdt, C. A. Büsser, G. B. Martins, and A. E. Feiguin, Phys.

Rev. B 91, 085101 (2015).
[28] A. Allerdt, A. E. Feiguin, and S. Das Sarma, Phys. Rev. B 95,

104402 (2017).
[29] F. Lange, S. Ejima, T. Shirakawa, S. Yunoki, and H. Fehske,

J. Phys. Soc. Jpn. 89, 044601 (2020).
[30] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numeri-

cal Recipes in C++. The Art of Scientific Computing (Cambridge
University Press, Cambridge, 2002).

[31] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[32] E. Jeckelmann, in Computational Many Particle Physics (Lec-
ture Notes in Physics 739), edited by H. Fehske, R. Schneider,
and A. Weiße (Springer-Verlag, Berlin, Heidelberg, 2008),
p. 597.

[33] M. Fabrizio, Phys. Rev. B 48, 15838 (1993).
[34] H. Yoshioka and Y. Suzumura, J. Phys. Soc. Jpn. 64, 3811

(1995).
[35] S. Capponi, D. Poilblanc, and E. Arrigoni, Phys. Rev. B 57,

6360 (1998).
[36] A. Abdelwahab, E. Jeckelmann, and M. Hohenadler, Phys. Rev.

B 91, 155119 (2015).
[37] K. Essalah, Ali Benali, Anas Abdelwahab, Eric Jeckelmann and

Richard T. Scalettar, Phys. Rev. B 103, 165127 (2021).

245405-13

https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.63.045121
https://doi.org/10.1103/PhysRevB.91.085101
https://doi.org/10.1103/PhysRevB.95.104402
https://doi.org/10.7566/JPSJ.89.044601
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.48.15838
https://doi.org/10.1143/JPSJ.64.3811
https://doi.org/10.1103/PhysRevB.57.6360
https://doi.org/10.1103/PhysRevB.91.155119
https://doi.org/10.1103/PhysRevB.103.165127

