
PHYSICAL REVIEW B 103, 245402 (2021)

Impurity-band optical transitions in two-dimensional Dirac materials under strain-induced
synthetic magnetic field
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We develop a theory of optical transitions in Coulomb impurity-doped two-dimensional transition metal
dichalcogenide monolayers and study the transitions from the spin-resolved valence band to the (Coulomb)
donor and acceptor impurities under the influence of a synthetic valley-selective magnetic field produced by a
mechanical strain. It is shown that the optical properties of the system are determined by the strength of the
synthetic magnetic field, which uncovers an experimental tool which can be used to manipulate the properties of
two-dimensional materials in valley magneto-optoelectronics.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) belong to the
family of novel truly two-dimensional (2D) monomolecular-
layer materials, which have recently attracted exceptionally
large attention due to their unique properties [1]. A typical
example of a TMD, which is frequently discussed in the
literature and used in experiments, is molybdenum disulfide
(MoS2)—a 2D direct-band-gap semiconductor possessing a
hexagonal crystal lattice structure and the D3h point symmetry
group. The Brillouin zone of MoS2 contains two nonequiva-
lent valleys, K and K ′, coupled by the time-reversal symmetry,
which defines specific optical and transport properties of this
material and opens the possibility for applications in nano-
electronics, mesoscopic physics, and optoelectronics.

In particular, the interband optical transitions in MoS2 obey
the valley-dependent optical selection rules: if the external
electromagnetic (EM) field is circularly polarized, the inter-
band transitions dominantly occur in one of the valleys [2,3].
This feature of TMD monolayers, in general, defines their
photoinduced transport properties, especially the valley Hall
effect [4–9], and constitutes the concept of valleytronics [10].
Moreover, electrons in TMDs experience relatively strong
spin-orbit interaction (SOI) due to the occupied d orbitals.
This property (in addition to the presence of the gap in the
spectrum) makes transport properties of TMDs different from
graphene, in which the SOI is relatively weak. Moreover,
large SOI creates a sufficient spin-resolved splitting of TMDs’
valence band [11–13].

The optical selection rules for interband transitions usually
work well since the electron momentum is a good quantum
number. Indeed, even though each band consists of discrete
k states, the distance between them is very small, and thus,
the spectrum can always be treated as continuous. However,
the physical properties of semiconductors are often defined
by the properties of defects [14,15] and impurities residing in
them [16–20], in particular, the donor and acceptor centers,

which become ionized at finite temperatures and enhance
the conductivity. Their presence results in the emergence of
discrete quantum states in the band gap in the vicinity of the
conduction band or the valence band. If the frequency of the
external light is smaller than the band gap energy, optical tran-
sitions can occur from the impurity state to a band [21]. The
theoretical description of the properties of optical transitions
from bands to impurity states and back and the analysis of
the optical characteristics of these transitions (which depend
on the valley quantum number) are an important problem in
valley optoelectronics of two-dimensional semiconductors. In
particular, the selection rules here can be different from the
interband transitions since one deals with a set of discrete
states, characterized by the radial and angular momentum
quantum numbers [22], whereas the translational momentum
represents a bad quantum number due to the localization of
electrons on impurities.

In addition to fundamental interest and the modification
of generic optical properties of semiconductors, impurities
are important for other applications. For example, recently, it
was suggested that pointlike atomic defects in TMD mono-
layers can potentially be utilized as single-photon emitters
[14]. Special attention has been paid to artificially created
atomic vacancies, and the possibilities to implement them into
photonic and optoelectronic devices have been discussed. In
particular, it was shown that an external applied strain can
lead to a considerable modification of the optical properties
of the system due to vacancies and substitutional impurities
[23]. However, except the vacancies, defects (like F centers)
may serve as photoemitters and photodetectors. Furthermore,
the optical properties of pointlike defects (in particular, the
Coulomb impurities) in TMD monolayers under the influence
of strain have not been considered in the literature to the best
of our knowledge.

Producing a uniform artificial magnetic field requires ap-
plying a pure shear strain of a special kind [24]. This shear
deformation produces the azimuthal-conserving perturbation,
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and thus, the quantum states can be characterized by the angu-
lar momentum operator eigenstates. In the case of any other
types of deformations, it produces the nonuniform artificial
magnetic and scalar fields, thus strongly complicating the
theoretical analysis of the pseudomagneto-optics of impurity
states.

The theoretical analysis of these phenomena is the main
goal of this paper. We study the magneto-optical effect
originating from an artificial valley-selective magnetic field
emerging as a result of the strain applied to a TMD. The
general idea to use artificial gauge fields due to strain was
theoretically suggested in [25] and experimentally verified
in [26]. In the experiment, the artificial magnetic fields may
reach 300 T. It allows for strain-induced driving of mo-
bile charge carries in monomolecular semiconductors and
semimetals like graphene and transition metal dichalco-
genides, among other Dirac materials, and opens a direction
of research called strain engineering.

We demonstrate the possibility to monitor the optical prop-
erties of charge carriers localized on impurities by means of
strain-induced gauge fields, in particular, the pseudomagnetic
field. For that, we analyze the dependence of impurity-band
optical transition matrix elements and energy states on the
pseudomagnetic field strength at low temperatures. This opens
the way to controllable driving of the optical transitions from
the states corresponding to different impurity quantum num-
bers by means of the deformation. To calculate the matrix
elements and probabilities of the impurity-band transitions
from the spin-resolved valence band to both the donor and ac-
ceptor impurity states, we employ the model of the Coulomb
impurity and suggest a route to use these results in valley
strain-engineering optoelectronics.

II. SYSTEM HAMILTONIAN AND THE
EIGENVALUE PROBLEM

The Hamiltonian of a single electron in a Coulomb field
reads

Ĥ =
[
�

2
σz + vηp̂ + α

r
Î

]
⊗ Î + λ

2
η(1 − σz ) ⊗ ŝz, (1)

where � is the TMD band gap; α is the Coulomb potential
strength; vη = v(ησx, σy) is the velocity operator, with v =
at/h̄ being the Fermi velocity, a being the lattice parameter,
and t being the hopping integral; λ is the spin splitting of
valence band; η = ±1 is the valley index, which distinguishes
the K and K ′ valleys in reciprocal space; and σi are the
Pauli matrices describing the triangle sublattices constituting
the hexagonal lattice of the transition metal dichalcogenide
monolayer.

Using the explicit form of operators in Eq. (1), we can
rewrite the Hamiltonian for a given spin s as Ĥs = Ĥs0 + Ĥi,
where the bare Hamiltonian written in the polar coordinates
reads

Ĥs0 =
( �

2

−iveiηφ
[
η∂r + i

r ∂φ

] −ive−iηφ
[
η∂r − i

r ∂φ

]
−�

2 + ληs

)
, (2)

while the interaction terms describing the electron-impurity
interaction can be written in the universal form

Ĥi =
( α

r

0

0
α
r

)
. (3)

From here on we put h̄ = 1 for clarity of the expressions.
The Hamiltonian Ĥs, due to its term Ĥi, describes both

the donor and acceptor states depending on the sign of the
Coulomb strength parameter α. If α < 0, it corresponds to
the attracting Coulomb potential of the donor states, whereas
for α > 0, it describes the acceptor energy states. Note that
this Coulomb potential conserves the azimuthal symmetry. In
other words, since the potential of the Coulomb impurity does
not depend on the polar angle, we can write the eigenfunction
in the form

	(φ, x) = 1√
2π

(
eiη(−1/2+m)φψ1(x)

iηeiη(1/2+m)φψ2(x)

)
, (4)

where m = ±1/2,±3/2, . . . is the angular momentum quan-
tum number and we have introduced the shorthand notation
x = (s, η, m; r). Here, ψ1,2(x) are the radial components of
the spinor wave function 	(φ, x). Thus, ψ1,2(x) satisfy the
steady-state Schrödinger equation,(

�
2 + α

r − ε

−v
[
∂r + 1/2−m

r

] v
[
∂r + 1/2+m

r

]
−�

2 + α
r + ηsλ − ε

)(
ψ1(x)

ψ2(x)

)
= 0.

(5)

The energy spectrum ε defined by this equation contains both
the discrete and continuous energies [27]. The shear strain
produces an additional term in the Hamiltonian which can
be written in a way similar to an external pseudomagnetic
field, as theoretically predicted [25] and later experimentally
verified [26,28].

Such an artificial pseudomagnetic field influences both the
discrete and continuous domains of the electron energy spec-
trum. In particular, it produces a set of Landau levels with the
characteristic energy distance between them proportional to
the cyclotron frequency ωc (under the condition 4v

√
eBn �

�), in full analogy with the cyclotron effect. Its influence on
the continuous part of the electron spectrum (in the conduction
and valence bands) cannot be considered a weak perturbation,
and it has to be taken into account exactly. However, the region
of the electron spectrum corresponding to states on donor and
acceptor impurities is already discrete. Then, if the energy
quantization produced by the Coulomb impurity potential is
much stronger than the Landau quantization, the influence of
strain-induced magnetic field can be disregarded (or taken into
account perturbatively). In what follows, we will account ex-
actly for the pseudomagnetic field in the bands and neglect its
influence on the impurity states. To avoid confusion, we want
to underline that the influence of the pseudomagnetic field is
essential for the matrix elements describing the impurity-band
transitions. The assumptions mentioned above allow one to
deal with an arbitrary relation of the distance between pseudo-
Landau levels and the spin-orbit splitting in the valence band.

A. Electrons localized on impurities

Here, we find the wave functions and the energy spectrum
of an electron localized on the impurity using the Schrödinger
equation. For these states, the energies ε take discrete values
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in the band gap of the TMD material, i.e., −�/2 + ηsλ < ε <

�/2. To find the solution of the radial Schrödinger equation
Eq. (5), we use the following ansatz for spinor components of
the electron wave function:(

ψ1(x)

ψ2(x)

)
= r−1/2+γ e−μr/v

(√
�/2 + ε − ληs f1(x)√

�/2 − ε f2(x)

)
, (6)

where μ = √
(�/2 − ε)(�/2 + ε − ηsλ) and γ =√

m2 − (α/v)2. At this point, some clarification is necessary.

From the general sense, the correctness of the solution
requires the parameter γ to be real. Indeed, if γ was complex,
the ground-state energy would become undefined, ε0 → ∞.
In other words, the electron “falls” on the impurity center
but such behavior is unphysical and should be excluded from
the theory. This issue is known from the Coulomb problem
in systems of Dirac particles [27]. It imposes a restriction on
the possible values of α: |α|/v < 1/2. Under this condition,
the system remains in the so-called subcritical regime
[29,30].

Furthermore, the system of equations we are to solve reads⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
�/2 + ε − ηs

�/2 − ε

(
�

2
− ε + α

r

)
f1 +

[
v∂r − μ + v

γ + m

r

]
f2 = 0,

[
v∂r − μ + v

γ − m

r

]
f1 +

√
�/2 − ε

�/2 + ε − ηs

(
�

2
+ ε − α

r
− ηsλ

)
f2 = 0.

(7)

For convenience, we introduce functions g1 = ( f1 + f2)/2 and g2 = ( f1 − f2)/2 and variable ρ = 2μr/v, yielding⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
ρ∂2

ρ + (1 + 2γ − ρ)∂ρ −
(

γ + α(ε − ηsλ/2)

vμ

)]
g1 = 0,

[
ρ∂2

ρ + (1 + 2γ − ρ)∂ρ −
(

1 + γ + α(ε − ηsλ/2)

vμ

)]
g2 = 0.

(8)

The solutions of Eq. (8) represent Laguerre polynomials,

g1 = C1L2γ
n (ρ), (9)

g2 = C2L2γ

n−1(ρ), (10)

where

n = −
[
γ + α(ε − ηsλ/2)

vμ

]
. (11)

We can also rewrite (11) in the form

μ = α(ηsλ/2 − ε)

v(n + γ )
(12)

and immediately see that the electron energy ε must obey the
relation ηsλ/2 > ε for acceptor impurities, while ε > ηsλ/2

for donors. Then, the energy levels read

ε(i)
n,m,η,s = ηsλ

2
− sgn(α)�ηs

2
ζn,m, (13)

where �ηs = � − ηsλ and ζn,m = {1 + α2/[v2(n +
γ )2]}−1/2.

The coefficients C2 and C1 in Eqs. (9) and (10) are, in fact,
not mutually independent. To express C2 via C1, we can take
a particular point r = 0 and obtain

C2 = −
γ + α(ε−ηsλ/2)

vμ

α�ηs

2vμ
− m

C1. (14)

In the state with n = 0, we have γ = −α(ε − ηsλ/2)/vμ

and |α|�ηs/2vμ = |m|. Therefore, the finiteness of the wave
function of the electron on the acceptor (donor) requires
n = 0, 1, 2, . . . when m < 0 (m > 0) and n = 1, 2, . . . when
m > 0 (m < 0).

The wave function of the localized electron reads

	 = C1�
γ
ηsr−1/2+γ e−μr/v

√
2πvγ

⎛
⎜⎜⎝

[�ηs (1−sgn(α)ζnm )
2v

]1/2
eiη(−1/2+m)φ

{
L2γ

n (2μr/v) + nL2γ

n−1(2μr/v)

sgn(α)
√

α2/v2+(n+γ )2−m

}

iη
[�ηs (1+sgn(α)ζnm )

2v

]1/2
eiη(1/2+m)φ

{
L2γ

n (2μr/v) − nL2γ

n−1(2μr/v)

sgn(α)
√

α2/v2+(n+γ )2−m

}
⎞
⎟⎟⎠. (15)

To find C1, we use the normalization condition
∫ 2π

0 dφ
∫ ∞

0 rdr 	+	 = 1 and the relation
∫ ∞

0 dx Lα
m(x)Lα

n (x)xαe−x =
�(n+α+1)

n! δm,n, yielding

C1 =
( |α|√

α2 + v2(n + γ )2

)1/2+γ (
n!

�(n + 2γ + 1)

)1/2
[

1 + n3

(n + 2γ )
(
sgn(α)

√
α2/v2 + (n + γ )2 − m

)
]−1/2

. (16)
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B. Electrons in conduction and valence bands in
pseudo-magnetic field

In the previous section, we found the expressions for the
eigenenergies and eigenfunctions of electrons on the impu-
rity states. Here, let us consider electrons in the conduction
and valence bands accounting for both strain-induced pseu-
domagnetic field and the spin-orbit coupling. We start with
the Hamiltonian for the electron with spin s, Ĥ (B)

s = Ĥs0 +
Ĥstrain, where the superscript B stands for “band.” The regular
bare Hamiltonian is given by Eq. (2), while the second term
describes the strain-induced electron energy and has the fol-
lowing form:

Ĥstrain = vbr[− sin(φ)σx + η cos(φ)σy]. (17)

Here, b = 2β2tC/v = eB/2, with β2 being the tight-binding
model parameter; C characterizes the strength of the deforma-
tion; and B is the pseudomagnetic induction [24]. Thus, for
example, for B = 10 T, β2 = 3, and a = 3.193 Å we find C ≈
0.43 μm−1. In other words, the stress at the edge of the flake
takes the value σ ≈ 22 L, where we used the shear modulus
μ̄ = 50.4 N/m [31] and the flake size L is in micrometers.
To find the eigenfunctions and eigenstates, we separate the
polar angle and the radial variables as before. Thus, the wave
function is presented in the spinor form,

	 (B)(φ, y) = 1√
2π

(
eiη(−1+l )φψ

(B)
1 (y)

iηeiηlφψ
(B)
2 (y)

)
, (18)

where l is an integer and we used the short-hand notation y =
(s, η, m; r). The functions ψ

(B)
1,2 (y) describe the radial electron

motion and obey the system of equations(
ε − �

2

v
[
∂r − l−1

r − br
] −v

[
∂r + l

r + br
]

ε + �
2 − ηsλ

)(
ψ

(B)
1 (y)

ψ
(B)
2 (y)

)
= 0. (19)

Expressing ψ
(B)
1 (y) from the first line in Eq. (19) and substi-

tuting it in the second line, we find[
ξ∂2

ξ + ∂ξ − l2

4ξ
− l − 1

2
+ μ̃2

4v2b
− ξ

4

]
ψ

(B)
2 (y) = 0, (20)

where we changed the variable r → √
ξ/b and introduced

μ̃2 = (ε − �/2)(ε + �/2 − ηsλ). (21)

Furthermore, we take into account the asymptotic behavior
of electron radial wave function at long and short distances,
ψ2 ∼ e−ξ/2 and ∼ξ |l|/2, respectively, and find the solution of
Eq. (20) in the form

ψ
(B)
2 (y) = e−ξ/2ξ |l|/2 f (B)

2 (y), (22)

where the function f (B)
2 (y) obeys the equation[

ξ∂2
ξ + (1 + |l| − ξ )∂ξ + μ̃2/2v2b − l − |l|

2

]
f2 = 0. (23)

Equation (23) has a solution in the form of the Laguerre
polynomial, f (B)

2 (y) = A2L|l|
n2

(ξ ), where A2 is a normalization
constant and

n2 = μ̃2/2v2b − l − |l|
2

(24)

is an integer non-negative number. To find the electron energy
spectrum in a given band, we substitute Eq. (21) into (24) and
introduce the principal quantum number n = n2 + (l + |l|)/2,
yielding the expression for the electron energy in conduction
(c) and valence (v) bands,

ε(c/v)
n,η,s =

ηsλ ±
√

�2
ηs + 16v2bn

2
, (25)

where the sign + (−) corresponds to the energy of the con-
duction (valence) band.

The expression for the ψ
(B)
1 (y) component can be derived

in the same way as that for the ψ
(B)
2 (y) component. Repeating

all the steps above, we finally find the spinor components

ψ
(B)
1 (y) = A1e−ξ/2ξ |l−1|/2L|l−1|

n−1−(l−1+|l−1|)/2(ξ ), (26)

ψ
(B)
2 (y) = A2e−ξ/2ξ |l|/2L|l|

n−(l+|l|)/2(ξ ). (27)

To establish a link between coefficients A1 and A2, let us
substitute the solutions (26) and (27) in Eqs. (19) after the
change in variables r → √

ξ/b and ∂r → 2
√

bξ∂ξ . We find(
ε − �

2

)
ξ |l−1|/2

2v
√

b
L|l−1|

n1
(ξ )A1 (28)

= ξ (|l|−1)/2

(
l − |l|

2
L|l|

n2
(ξ ) + (n2 + |l|)L|l|−1

n2
(ξ )

)
A2,

ξ (|l−1|+1)/2

( |l − 1| − (l − 1)

2ξ
L|l−1|

n1
(ξ ) − L|l−1|+1

n1
(ξ )

)
A1

=
(

ε + �

2
− ηsλ

)
ξ |l|/2

2v
√

b
L|l|

n2
(ξ )A2. (29)

The structure of these equations suggests that we should con-
sider three possible cases.

First, let n 
= 0 and l > 0. In this case, the set of equations
simplifies to

�ηsζ̃
∓
nηs

4v
√

b
A1 + nA2 = 0, (30)

−A1 + �ηsζ̃
±
nηs

4v
√

b
A2 = 0, (31)

where ζ̃±
nηs = 1 ±

√
1 + 16v2bn/�2

ηs and the top (bottom)

sign stands for the conduction (valence) band. Thus, we find

A1 = 2nv
√

b

εn − �/2
A2 = − 4vn

√
b

�ηsζ̃∓
nηs

A2. (32)

Second, let n 
= 0 and l � 0. Then, the set (28) and (29)
takes the form

−�ηsζ̃
∓
nηs

4v
√

b
A1 + A2 = 0, (33)

nA1 + �ηsζ̃
±
nηs

4v
√

b
A2 = 0, (34)

and therefore, the relation between the coefficients is

A1 = 4v
√

b

�ηsζ̃∓
nηs

A2. (35)
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The third case corresponds to n = 0 and requires special
consideration. The solution (26) makes sense here only if
A1 = 0 because at n = 0, the lower index has a nonpositive
value, resulting in nonpolynomial solutions. Moreover, the
solution (27) is not divergent at infinity only if l � 0. It is easy
to show that Eq. (28) is satisfied for arbitrary A2 and for both
the bands when n = 0, l � 0, and A1 = 0. However, Eq. (29)
gives nonzero A2 only for the valence band. Thus, for a given
deformation, the state with n = 0 exists only in the valence
band.

Summing up, the wave function of the electron in a given
band for l > 0 and n 
= 0 reads

	 (B)(φ, y) =
[
2b(n − l )!

n!

]1/2
[
1 + 16v2bn

(�ηsζ̃∓
nηs)2

]−1/2
bl/2e−br2/2

√
2π

×
(−eiη(−1+l )φ 4vn

�ηs ζ̃∓
nηs

rl−1Ll−1
n−l (br2)

iηeiηlφrlLl
n−l (br2)

)
, (36)

and for l � 0 and n 
= 0 it is

	 (B)(φ, y) =
[

2bn!

(n + |l|)!
]1/2

[
1 + 16v2bn

(�ηsζ̃∓
nηs)2

]−1/2
bl/2e−br2/2

√
2π

×
(

e−iη(1+|l|)φ 4vb
�ηs ζ̃∓

nηs
r1+|l|L1+|l|

n−1 (br2)

iηe−iη|l|φr|l|L|l|
n (br2)

)
, (37)

while for l � 0 and n = 0 in the valence band it is given by
the expression

	 (v)(φ, y) = iηb(|l|+1)/2

√
π |l|! e−iη|l|φr|l|e−br2/2

(
0

1

)
. (38)

Having solved the eigenvalue problem for the electrons in
conduction and valence bands and localized on the donor
and acceptor impurity states, we can further study the optical
properties of the system exposed to light with the frequency
corresponding to impurity-band transitions.

Figure 1 shows the impurity energy spectrum from Eq. (13)
and the quasi-Landau levels in bands from Eq. (25). To build
the plot, we set the magnetic field strength equal to 100 T.
This magnitude corresponds to the boundary of the appli-
cability range of our model since the Landau level splitting
at this magnetic field becomes comparable with the energy
splitting between the highest-impurity states. At the same
time, the distance between the ground impurity level and other
impurity high-energy states greatly exceeds the Landau level
cyclotron energy, supporting the applicability of our model,
which neglects the direct influence of pseudomagnetic field
to the impurity states. Thus, our approach is applicable to the
lowest-impurity states, which usually play the most important
role in optical transitions (because the optical transitions from
the higher states are usually smeared out by the temperature
effects).

III. IMPURITY-BAND OPTICAL TRANSITIONS

Let us now expose the sample to a circularly polarized EM
field

E = E0( cos(ωt ), ν sin(ωt )), (39)

FIG. 1. Energy spectrum of acceptor (magenta squares) and
donor (cyan squares) centers in the K valley; quasi-Landau level
structure of the conduction and valence bands. Blue dashed lines
indicate the spin-up band states, while orange lines depict the spin-
down states. We used the parameters for MoS2: � = 1.66 eV, λ =
0.075 eV, B = 100 T, t = 1.1 eV, a = 3.193 Å, |α|/v = 0.45.

where ν = ±1 is polarization. In the Hamiltonian, the inter-
action of the charged particle with the EM field enters as the
term ĵ · A, where

A = −A0( sin(ωt ),−ν cos(ωt )) (40)

is the vector potential with A0 = −E0/ω and we use the gauge
divA = 0. Thus, the operator describing the interaction of
electrons with the EM field reads

V̂η,ν (t ) = −eνv · A = eνA0v

(
0

−ieiηνωt

ie−iηνωt

0

)
. (41)

For convenience, let us write the wave functions in a brief
form,

	 (i)
ni,m,η,s = 1√

2π

(
eiη(−1/2+m)φψ

(i)
1

iηeiη(1/2+m)φψ
(i)
2

)
, (42)

	
(B)
nb,l,η,s = 1√

2π

(
eiη(−1+l )φψ

(b)
1

iηeiηlφψ
(b)
2

)
, (43)
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FIG. 2. Transitions from the valence band to donor impurity
states: the dependence of the resonant frequency ω on the pseudo-
magnetic field B. We used the following quantum numbers: nb =
[0; 5], l = [−4; 4], ni = [0, 3], m = [−5/2, 5/2], ν = 1, (a) η = 1
and (b) η = −1, s = 1 (solid lines) and s = −1 (dashed lines).

where the sub- and superscripts b and i denote the states
in the bands and on impurities, respectively, and let us find
the matrix element describing the transition from the valence
band to an impurity state (v) → (i),

V(v)→(i)(t ) = 〈
	 (i)

ni,m,η,s(φ, r; t )
∣∣V̂η,ν (t )

∣∣	 (v)
nb, l,η,s(φ, r; t )

〉
(44)

= ei(ε(i)
ni ,m,η,s−ε(v)

nb,η,s )t 〈
	 (i)

ni,m,η,s(φ, r)
∣∣V̂η,ν (t )

∣∣	 (v)
nb, l,η,s(φ, r)

〉
. (45)

Substituting here Eq. (42) and integrating over the polar angle,
we find V(v)→(i)(t ) = V(v)→(i)e

i(ε(i)
ni ,m,η,s−ε(v)

nb,η,s−ω)t , where

V(v)→(i) = −νηeA0v

× [
δη,νδl,m−1/2I (v)→(i)

1 + δη,−νδl,m+3/2I (v)→(i)
2

]
(46)

and

I (v)→(i)
1 =

∫ ∞

0
rdr ψ

(i)
1 ψ

(v)
2 , I (v)→(i)

2 =
∫ ∞

0
rdr ψ

(i)
2 ψ

(v)
1

are the overlap integrals of the components of the electron
spinor wave functions in a band and on the impurity.

The absorption coefficient is determined by the probability
of optical transitions from a given band to impurity states.
This probability can be found from Fermi’s golden rule,

W(v)→(i) = 2π |V(v)→(i)|2δ
(
ε(i)

ni,m,η,s − ε(v)
nb,η,s − ω

)
. (47)

In the following section, we show the results of calculations
with Eq. (47) (and the preceding formulas).

IV. RESULTS AND DISCUSSION

Figures 2 and 3 show the dependence of the resonant transi-
tion frequency [which is defined by the δ function in Eq. (47)]
on the artificial magnetic field strength B. Following from the
formulas (and the figures), the resonant frequency behaves as

FIG. 3. Transitions from the valence band to acceptor impurity
states: the dependence of the resonant frequency ω on the pseudo-
magnetic field B. We used the following quantum numbers: nb =
[0; 5], l = [−4; 4], ni = [0, 3], m = [−5/2, 5/2], ν = 1, (a) η = 1
and (b) η = −1, s = 1 (solid lines) and s = −1 (dashed lines).

√
B, which is different from the conventional situation of ma-

terials with the parabolic energy band, where the dependence
of the distance between the Landau levels on the magnetic
field strength is linear. This square-root dependence origi-
nates from nonparabolicity of the particle spectrum typical for
TMD monolayers. It holds for both the valence-band–donor
and valence-band–acceptor transitions (with only quantitative

FIG. 4. Intensities of the optical transitions from valence band to
(a), (c), and (e) donor and (b), (d), and (f) acceptor states for different
B. The colors correspond to Figs. 2 and 3.
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FIG. 5. Intensities of optical transitions from the valence band to
impurity states as functions of pseudomagnetic field strength B [by
Eq. (47)]. (a) Transitions from the valence band states with l = 0
and nb = 0 (black) and nb = 1 (blue) to the donor states with the
angular quantum number m = 1/2 and the radial quantum num-
bers ni = 0 (solid lines), ni = 1 (dashed lines), and ni = 2 (dotted
lines). (b) Transitions from the valence band states with l = −1
and nb = 0 (black) and nb = 1 (blue) to the acceptor states with
the angular momentum quantum number m = −1/2 and the radial
quantum numbers ni = 0 (solid lines), ni = 1 (dashed lines), and
ni = 2 (dotted lines).

differences). We also conclude that the EM perturbation does
not produce any spin-flip processes conserving the spin quan-
tum number under optical band-impurity transitions.

Let us now consider the intensities of the optical tran-
sitions. They are proportional to the squares of the matrix
elements given in Eq. (44). Figure 4 demonstrates the de-
pendence of the probabilities defined by Eq. (47) on the EM
field frequency. We observe a set of resonances in the fre-
quency domain 0.4 eV < ω in Figs. 4(b), 4(d) and 4(f). They
correspond to the transitions from the Landau levels of the
valence band to the ground state of the acceptor, whereas the
domain 1.1 eV < ω in Figs. 4(a), 4(c) and 4(e) depicts the
transitions to the donor ground state. The height of each peak
is proportional to the probability of the corresponding band-
impurity transition. We conclude that, first, the probabilities of
the transitions to donor states are much larger than the ones to
the acceptor states. Second, the probabilities of impurity-band
transitions are very sensitive to the artificial magnetic field
strength B.

Figure 5 clearly demonstrates this dependence for transi-
tions from several of the highest (in electron representation)

quasi-Landau levels in the valence band to several of the
lowest states of donors and acceptors. Such transitions play
an important role at low temperatures. Their intensities can be
driven by the deformation of the TMD layer even at relatively
small values of the pseudomagnetic field (or the deformation
parameter b). This allows us to use strain as an auxiliary
degree of freedom utilized to monitor and control the optical
transitions in 2D materials.

Let us now discuss the limitations of our analytical the-
oretical model of impurity-band transitions. First, from the
general perspective, we study a two-band model based on the
Hamiltonians (2) and (3), which conserve the azimuthal sym-
metry. That is why the impurity eigenstates are characterized
by the angular momentum even in the presence of artificial
uniform magnetic field. The possible presence of the warping
terms [12] in the Hamiltonian would result in a mixing of the
states with different angular momenta, and thus, the impurity
states, strictly speaking, represent linear superpositions of
the states with given momenta. Second, we do not consider
the intervalley mixing of impurity states. However, because
the warping terms are usually small [12] and the intervalley
mixing is not sufficient due to the large distance between
nonequivalent valleys in the reciprocal space, we neglected
their influence on the optical transitions. Third, we have
disregarded the possible excitonic effects, the accounting of
which requires a many-body treatment of the problem based
on the Bethe-Salpeter equation [15,32]. A careful analysis of
excitonic and warping-dependent effects requires nonanalytic
methods, especially in the presence of the strain, which is
beyond the scope of the present paper.

V. CONCLUSIONS

We studied the magneto-optic effect on impurity-band
transitions in TMD monolayers under the action of artifi-
cial pseudomagnetic field produced by an elastic deformation
of the crystal. The system demonstrates high sensitivity of
both the resonant frequencies and the intensities of the cor-
responding impurity-band transition peaks in the spectrum to
the applied stress (pseudomagnetic field). Taking concrete,
low-lying impurity states typical of TMDs, we revealed the
possibility to manipulate the optical properties of the system
by the layer deformation, which opens opportunities for using
strain-dependent pseudomagnetic fields as an experimental
tool.
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