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Confined Friedel oscillations on Au(111) terraces probed by thermovoltage
scanning tunneling microscopy
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The spatial dependence of the local density of states at the Fermi level of a stepped Au(111) surface is studied
by thermovoltage scanning tunneling microscopy. The periodicity of the standing waves is not given by λF/2 =
1.8 nm, as expected based on the band diagram of Au(111), but rather varies between 1.5 and 2.1 nm depending
on the exact width of the terraces. This counterintuitive result can be understood by considering the superposition
of incident and reflected electron waves, which have a periodicity of λF/2. The change in periodicity is a direct
consequence of the decaying nature of the Friedel oscillations.
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I. INTRODUCTION

Standing waves are ubiquitous in optical, electronic, and
mechanical experiments. On the nanoscale, electron standing
wave patterns have been extensively studied by scanning tun-
neling microscopy (STM) since the seminal work of Crommie
et al. [1,2]. These authors used the STM to drag individual
iron atoms on a copper substrate to a predefined position. One
of the nanostructures they assembled via atomic manipulation
was a circle consisting of 48 iron atoms. This circle of iron
atoms, also referred to as a quantum corral, acts as a barrier for
the surface state electrons at the Fermi level. As the incoming
and outgoing electron waves interfere with each other, a circu-
lar standing wave pattern develops inside the quantum corral.
This electron density modulation of the surface is referred to
as a Friedel oscillation and is given by

ρs(r, E ) = ρb + C
cos(2kF|r| + δ)

|r|D , (1)

where kF is the Fermi wave vector, ρb the bulk contribution to
the electron density, δ a phase factor, D the dimensionality of
the electron system, and |r| the distance from the scattering
center.

There are various ways to measure Friedel oscillations with
STM. For metals it is usually sufficient to make a topographic
map at a small sample bias, as in this case only the electrons
in the vicinity of the Fermi level contribute to the tunnel cur-
rent [1–3]. In order to measure the dispersion relation of the
surface state electrons, the differential conductivity (dI/dV ),
which is proportional to the local density of states (LDOS),
is measured as a function of the bias voltage (V ) [4–9]. Al-
ternatively, one can make a spatial map of the thermovoltage
(Vth) that arises if a temperature gradient is applied across the
scanning tunneling microscopy junction. The thermovoltage,
which is proportional to the derivative of the LDOS to the
energy, provides direct information on the spatial variation of
the Friedel oscillations [10–13].
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To date the vast majority of scanning tunneling microscopy
studies have been focused on electron standing wave patterns
near defects or steps on noble metal surfaces that possess a
two-dimensional surface state, such as Au(111), Ag(111), and
Cu(111) [1–6,12,14–18]. During the last few years, however,
the technique has also been applied to more diverse materials,
such as semiconductors [19], topological insulators [20], two-
dimensional materials [21], and ferroelectric materials [9].

The confinement of surface state electrons on terraces
owing to the presence of step edges has been studied in
quite some detail [4,6–8,22]. The standing wave patterns are
well described by the Fabry-Pérot resonator model for terrace
widths L in the range of λF/2 to 3λF/2, where λF is the Fermi
wavelength [4,6]. λF can be determined from the dispersion
of the Au(111) surface state and is equal to λF = 3.6 nm. For
terrace widths smaller than λF/2, the confinement changes
from terrace modulation to step modulation [7,22].

So far, for terrace widths exceeding λF/2, a systematic
study of the interference pattern as a function of the terrace
width is still lacking. In this paper, we probe the interference
pattern for electrons confined on terraces with L > 3λF/2
using thermovoltage STM. Surprisingly, the measured wave-
length of the standing waves is altered and no longer equal
to λF/2. The confinement influences the observed oscillations
for terrace widths L > 3λF/2. We will show that at these
length scales the decaying nature of the Friedel oscillations
plays a pivotal role. The oscillations in this regime are formed
by the interference of several waves formed by the superposi-
tion of incident and reflected electron waves at the step edges
of the Au(111) surface. The waves have a wave vector equal
to kF, similar as for an infinitely large terrace, but the wave
vector of the resulting interference pattern varies depending
on the exact terrace width.

II. EXPERIMENTAL DETAILS

The experiments are performed with a RHK Technology
UHV3000 variable temperature STM equipped with R9 hard-
ware and a home-built thermovoltage module [13]. The tip is
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kept at room temperature (TT = 293 K), while the sample is
cooled down to TS = 220 K. During the thermovoltage mea-
surement, the tip-sample distance (�z) is reduced by 0.3 nm
with respect to the set point used in the topographic mea-
surement. The sample used in these experiments consists of
a 200-nm-thick Au(111) layer on mica purchased from Phasis
(Geneva, Switzerland).

III. RESULTS AND DISCUSSION

A thermovoltage arises between the tip and surface if a
temperature gradient is applied across the STM tunnel junc-
tion. Vth is the voltage needed to compensate for the thermally
generated tunneling current. The thermally generated tun-
neling current is caused by inequalities in the Fermi-Dirac
distributions, as well as differences in the LDOS at the Fermi
levels of tip and sample, and has two opposite contributions
with energies above and below the Fermi level. Støvneng and
Lipavský [23] derived the following expression for Vth within
the Tersoff-Hamann [24] approximation:

Vth = π2k2
BTm�T

3e

[
1

ρt

∂ρt

∂E
+ 1

ρs

∂ρs

∂E
+ z

h̄

√
2m0

φ

]
, (2)

where kB is the Boltzmann constant, h̄ is the reduced Planck
constant, m0 is the electron mass, e is the electron charge,
φ is the work function, z is the tip-sample distance, and ρt

and ρs are the local density of states of the tip and sample,
respectively. Tm = 1

2 (Tt + Ts) is the mean temperature with
the tip (Tt) and sample (Ts) temperature and �T = Tt − Ts

the temperature difference. Since ρt and z are assumed to be
constant, the dominant term for the spatial variation of Vth is
given by 1

ρs

∂ρs

∂E . The latter results in a high sensitivity in the
LDOS modulations around EF.

The LDOS ρs(r, E ) of electrons with wave vector k(E )
scattered at a monatomic step can be calculated by summing
up all states (surface and bulk states) at energy E [1],

ρs(x, E ) = ρb(E ) + L0{1 − RJ0[2k(E )x]}, (3)

where L0 = m∗/(π h̄2), x the distance from the step, ρb(E ) the
bulk LDOS (assumed to be independent of x and y), R the
reflectivity of the step [R = 0.4 for Au(111)] [12,25], k2 =
2m∗E/h̄2, and J0 the zero-order Bessel function. Note here,
that for the thermovoltage measurements, the energy is equal
to the Fermi energy and therefore constant and hence ρb(E ) is
a constant and k(E ) is equal to kF.

Equation (3) is only valid in the regime where the LDOS
is linear at the Fermi level, which is only in the direct vicinity
of the step edge. Therefore Eq. (2) is no longer applicable be-
cause the LDOS is no longer linear around EF [26]. A spatial
dependent expression is derived in Ref. [26] for Vth(x) based
on the following approximations [26,27]: (i) eVth � kBTt,s, (ii)
4kBTt,s∂ρs/∂E � ρs, and (iii) 4kBTt,s � ε0 and is given by

Vth(x) = CJ1(2kFx)hZ(x)

1 − CJ0(2kFx)hN(x)
, (4)

hZ(x) = ε0

ekF

(
ss

sinh(ssx)
− st

sinh(stx)

)
;

hN(x) = 1

2

(
ssx

sinh(ssx)
+ stx

sinh(stx)

)
(5)
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FIG. 1. (a) Topography image (75 × 21 nm2, scale bar is 13 nm)
of Au(111) showing a stepped Au(111) surface. The tunneling
parameters are 300 mV and 300 pA. (b) The corresponding ther-
movoltage map for TT = 293 K, TS = 220 K, and �z = 0.3 nm,
showing surface electron interference patterns. (c) The height (left,
black) and Vth (right, blue) profile measured simultaneously along the
dashed line in (a) and (b). The red dashed line is the model described
by Eq. (4), using kF = 1.74 nm−1.

with C = PR = 0.2. P is the surface state contribution with
respect to the bulk and is experimentally determined to be
P = 0.5 [1,28]. ss = πkBTskF/ε0 and st = πkBTtkF/ε0 with
ε0 the energy minimum of the surface state (−0.41 eV for
Au(111) [29,30]).

Figure 1 shows the topography and the simultaneously
obtained thermovoltage map of the Au(111) surface. In the
thermovoltage map [see Fig. 1(b)] the step edges show up as
200 μV high peaks with respect to the average thermovoltage
value of the terrace. The increase in the thermovoltage at the
step is a result of the enhanced coupling of the tunneling
electrons with the bulk states [10,11]. In the vicinity of step
edges, the thermovoltage shows a spatially decaying oscillat-
ing behavior, which can be attributed to electronic standing
waves. These Friedel oscillations have a periodicity of 1.8 nm
[see Fig. 1(c)]. Since no bias is applied, we are dealing with
Fermi electrons. Using the dispersion relation of the surface
state of Au(111) [29,30],

E = ε0 + h̄2k2

2m∗ (6)

with ε0 = −0.41 eV and m∗ = 0.28, we find a corresponding
wave vector of 1.74 nm−1 (λF = 3.6 nm). In good agreement
with the experimental observations and previous studies [3],
this leads to a periodicity of 1.8 nm (λF/2) in the LDOS at EF.

The red line in Fig. 1(c) is the model as described by Eq. (4)
and qualitatively fits the measured Friedel oscillations. In or-
der to fit the model, the effective boundary location is taken
close to the midpoint of the rise in the topological scan and
at the maximum of the thermovoltage measurement [5]. The
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FIG. 2. (a) Topography image (30 × 12 nm2, scale bar 3 nm)
of Au(111) showing a stepped Au(111) surface. The tunneling pa-
rameters are 300 mV and 300 pA. (b) The simultaneously recorded
thermovoltage map for TT = 293 K, TS = 220 K, and �z = 0.3 nm,
showing surface electron interference patterns confined between the
steps. (c) Simulated thermovoltage image based on the interference
between two Friedel oscillations. The oscillations are simulated us-
ing Eq. (7).

first oscillation is completely covered by the signal originating
from the step.

Figure 2(a) shows the topography of a stepped Au(111)
surface. The terrace width varies between 3.5 and 10 nm,
which is in the range of λF to 3λF. In the corresponding ther-
movoltage map [Fig. 2(b)], the electron standing waves are
clearly visible. The number of observed oscillations depends
on the terrace width. In Fig. 3(a) the number of peaks (PN)
and the periodicity (̃λin = 2λin/λF, where λin is the measured
periodicity) are plotted as a function of the terrace width (L).
PN increases stepwise as a function of L. In contrast to the
particle-in-a-box model, oscillations exist for every terrace
width, except for L < 4 nm. For L < λF no oscillations are
observed in agreement with previous studies due to the con-
version from terrace modulation to step modulation [7,22].
The width of the plateaus is approximately equal to the λF/2.
The measured wavelength of the oscillations (λin) decreases
from 2.1 to 1.5 nm (̃λin varies between 1.2 and 0.8) as L
increases and is centered around 1.8 nm, which is equal to
λF/2. When PN increases, the wavelength first rapidly in-
creases to decrease again with increasing terrace width. This
is unexpected as k (and thus λ) is determined by the band di-
agram and the energy at which the measurement is performed
[see Eq. (6)]. Similar to a large terrace (as in Fig. 1), the
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FIG. 3. (a) The number of interference peaks (PN, left, black) and
the peak periodicity (̃λin = [2λin/λF ], right, blue) as a function of the
terrace width (L). The orange (PN) and red (̃λin) lines are fits based
on the model described by Eq. (7). (b) Simulated thermovoltage map
[based on Eq. (7)] for an increasing terrace width L. L is varied be-
tween 3 and 10 nm. The dashed black lines coincide with the steps in
(a). (c) The left (blue line) and right (red line) Friedel oscillation and
the resulting interference wave (black line) based on Eq. (7) for (top)
L = 5.9 nm (L/λF = 1.64) and (bottom) L = 6.5 nm (L/λF = 1.8),
corresponding to position of the blue dotted line in (b).

wavelength is expected to be equal to λF/2 = 1.8 nm with
a deviation for terrace widths close to 1.5λF [7].

The observed interference pattern and the relation between
L, PN, and λin cannot be properly described by the Fabry-Pérot
resonator model [4] as oscillations exist for all terrace widths.
Therefore, a model is proposed that relies on the interference
of decaying standing waves in the LDOS. For electrons in
confinement, two steps are involved and therefore several
(depending on the number of reflections that are taken into ac-
count) wave functions should be considered compared to the
two for the single step model [26]. This leads to the following
spatial dependent expression for Vth(x) (see the Appendix for
the complete derivation):

Vth(x) = CJ1(2kFx)hz1(x) + CJ1[2kF(L − x)]hz2(x)

1 − CJ0(2kFx)hn1(x) − CJ0[2kF(L − x)]hn2(x)
(7)

with

hz1(x) = εF

ekF

[
ss

sinh(ssx)
− st

sinh(stx)

]
; hn1(x) = 1

2

[
stx

sinh(stx)
+ ssx

sinh(ssx)

]
, (8)

hz2(x) = εF

ekF

[
ss

sinh [ss(L − x)]
− st

sinh [st(L − x)]

]
; hn2(x) = 1

2

[
st(L − x)

sinh [st(L − x)]
+ ss(L − x)

sinh [ss(L − x)]

]
(9)
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with ss = πkBTskF/ε0 and st = πkBTtkF/ε0. Note here that the
influence of the step is not taken into account in this model.
Although the density of states is given by a linear combina-
tion of a single step LDOS starting at x = 0 [Eq. (3)] and a
mirrored step LDOS at x = L (similar to an interference of the
LDOS waves), this is not the case for the quantity measured
here, i.e., Vth. As a result, Eq. (7) deviates from Eq. (4) by the
addition of an additional Bessel function in the numerator and
denominator.

Figure 2(c) shows the result of the simulation based on the
boundaries extracted from Fig. 2(a) and Eq. (7). The waves
are generated from point sources located on the boundary [in
this case 300, equal to the number of scan lines in Figs. 2(a)
and 2(b)] and simulate the Friedel oscillations. The origin of
the waves is taken in the midpoint of the rise in the topo-
graphical scan [4,5], similar as shown in Fig. 1. The resulting
interference pattern is shown in Fig. 2(c). A good agreement
is observed between the experiment and the simulation. The
influence of the step is added to the existing interference wave
in order to fully reproduce the experiment in Fig. 2(b) [31].

In order to explain the observed behavior between PN and
L (as well as λin and L), Eq. (7) is used for 3 nm < L < 10 nm.
The result of the model depicted in Fig. 3(b) is plotted in or-
ange (PN) and in red (̃λin) in Fig. 3(a). A similar steplike trend
is observed in PN. The plateaus are λF/2 wide, equivalent
to the wavelength of the Friedel oscillations. A visualization
of the interference wave as a function of L reveals that the
increase in PN [(Fig. 3(a)] coincides with the appearance of an
additional peak [dashed black lines in Fig. 3(b)]. In addition,
the observed trend in the apparent wavelength (λin) is fully
reproduced by the simulation [blue (experimental) and red
(theory) lines in Fig. 3(a)]. The general trend is caused by
constructive and destructive interference between the decay-
ing waves originating from the two steps. In Fig. 3(c) two
interference patterns for different terrace widths are shown.
For a terrace width of 5.9 nm [L/λF = 1.64, close to a transi-
tion point, top panel of Fig. 3(c)] the incoming and outgoing
waves are almost fully out of phase resulting in a wave with

a relatively large apparent wavelength. The wavelength of the
incoming and outgoing waves remains of course equal to λF,
as predicted by the band diagram of the Au(111) surface state,
while the wave vector of the interference wave is altered (λin).
For L = 6.5 nm [L/λF = 1.8, bottom panel of Fig. 3(c)] the
incoming and outgoing waves are in phase resulting in a wave
with a wavelength close to λF.

The observed behavior can only be explained by the
superposition of several wave functions. This leads to the
interference of decaying standing waves in the LDOS. If
nondecaying waves are considered, only energies are al-
lowed in which the wave vector fits the box size, as in the
particle-in-a-box model. Therefore, the decaying nature of
these oscillations is key for the observed oscillating behavior.
The thermovoltage STM provides the possibility to detect the
subtle changes in the LDOS due to the strong dependence
between Vth and 1

ρs

∂ρs

∂E .

IV. CONCLUSION

In conclusion, the LDOS of the surface state electrons of
Au(111) is measured between two steps for terrace widths
ranging from λF to 3λF . Wave patterns with wavelengths
ranging from 1.5 to 2.1 nm are observed, which deviates from
the expected λF /2 based on the Au(111) band diagram. A
model is derived based on the interaction between decaying
standing waves in the local density of states with a wavelength
equal to half of the Fermi wavelength (λF /2 = 1.8 nm) within
a potential well. The resulting wave pattern exhibits a similar
modification in the wavelength as in the experiment. This is
a direct result of the decaying nature of the quantum interfer-
ence waves.
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APPENDIX

The surface LDOS for a terrace confined by two step edges can be modeled by considering four wave functions: two incoming
waves towards both step edges, and two reflected waves. A random phase φR is introduced for the right waves, which describes
the random phase of the right waves with respect to the left waves.

ψli = ψ (z)√
Sxy

exp [−ikx(x − x1) + ikyy + iωt],

ψlr = ψ (z)√
Sxy

R exp [ikx(x − x1) + ikyy + iωt + iφW ],

ψri = ψ (z)√
Sxy

exp [ikx(x − x2) + ikyy + iωt + iφR],

ψrr = ψ (z)√
Sxy

R exp [−ikx(x − x2) + ikyy + iωt + iφR + iφW ].

Resulting in a total wave function of

ψ (�r, �k‖) = ψli + ψlr + ψri + ψrr = ψ (z)√
Sxy

exp(ikyy + iωt ){exp [−ikx(x − x1)] + R exp [ikx(x − x1) + iφW ]

+ exp [ikx(x − x2) + iφR] + R exp [−ikx(x − x2) + iφR + iφW ]}, (A1)
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such that the LDOS ρ�k‖ becomes

ρ�k‖ = |ψ (�r, �k‖)|2 = |ψ (z)|2
Sxy

[2(1 + R2) + 2R cos [2kx(x − x1) + φW ] + 2R cos [2kx(x2 − x) − iφW ]+ ∼ cos(C ± φR)]. (A2)

To include all existing wave functions on this terrace, the function should first be integrated over all random phase possibilities:

ρ�k‖ = 2
|ψ (z)|2

Sxy
{1 + R2 + 2R cos [2kx(x − x1) + φW ] + 2R cos [2kx(x2 − x) − iφW ]}+ ∼ 1

2π

∫ 2π

0
cos(C ± φR)dφR

= 2
|ψ (z)|2

Sxy
{1 + R2 + R cos [2kx(x − x1) + φW ] + R cos [2kx(x2 − x) − iφW ]}. (A3)

The term ∼ 1
2π

∫ 2π

0 cos(C ± φR)dφR describes multiple cosine functions. Their arguments consist of a variable (independent
of φR) ±φR. All of these integrals will result in 0 after evaluation.

To obtain the net electron density, we assume φW = π and correct for the inflow of electrons at the steps:

|ψinflow(�r, �k‖)|2 = 2
|ψ (z)|2

Sxy
(1 − R2), (A4)

ρ�k±‖ = |ψ (�r, �k‖)|2 + |ψinflow(�r, �k‖)|2 = 2
|ψ (z)|2

Sxy
{2 − R cos [2kx(x − x1)] − R cos [2kx(x2 − x)]}. (A5)

Similarly as for a single step (see Ref. [26]), we must integrate over all possible surface states with a wave vector k‖:

ρsurf(�r, E ) = m∗

π h̄2 Sxy

∫ π

0
ρ�k‖ (�r, E )

dα

2π
,

ρsurf(�r, E ) = m∗

π h̄2 |ψ (z)|2 1

π

∫ π

0
{2 − R cos [2k‖(E )(x − x1) ∗ sin(α)] − R cos [2k‖(E )(x2 − x) ∗ sin(α)]}dα,

ρsurf(�r, E ) = ρsurf(z){2 − RJ0[2k‖(E )(x − x1)] − RJ0[2k‖(E )(x2 − x)]}, (A6)

where the definition of the zeroth-order Bessel function J0 is used,

J0[2k‖(E )x] = 1

π

∫ π

0
cos [2k‖(E )x sin(α)]dα. (A7)

Setting x1 = 0 and x2 = L we obtain the surface LDOS dependent on the terrace width L:

ρsurf(�r, E ) = ρsurf(z){2 − RJ0[2k‖(E )x] − RJ0[2k‖(E )(L − x)]}, (A8)

which is the same as the linear combination of a single step LDOS at x = 0 and a mirrored single step LDOS at x = L. The
derivation for the total thermovoltage signal is then obtained by following the same procedure as in Ref. [26], but replacing the
surface electrons LDOS ρsurf(�r, E ) with Eq. (A8). The result is then

Vth(x) = CJ1(2kFx)hz1(x) + CJ1[2kF(L − x)]hz2(x)

1 − CJ0(2kFx)hn1(x) − CJ0[2kF(L − x)]hn2(x)
(A9)

with

hz1(x) = εF

ekF

[
ss

sinh(ssx)
− st

sinh(stx)

]
; hn1(x) = 1

2

[
stx

sinh(stx)
+ ssx

sinh(ssx)

]
, (A10)

hz2(x) = εF

ekF

[
ss

sinh [ss(L − x)]
− st

sinh [st(L − x)]

]
; hn2(x) = 1

2

[
st(L − x)

sinh [st(L − x)]
+ ss(L − x)

sinh [ss(L − x)]

]
. (A11)
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