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Theory of the nonreciprocal Josephson effect
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The heterojunction between different materials often exhibits a rectifying effect; e.g., pn junction is used
for diode. On the other hand, the Josephson junction between two different superconductors is assumed to
show symmetric response between two directions of the current, i.e., the voltage drop V is antisymmetric with
respect to the sign change of the current I . However, there should be an asymmetry between the states of charge
accumulation on the right and left sides of the Josephson junction, which can lead to the nonreciprocal responses.
Here we demonstrate theoretically that nonreciprocal I-V characteristic appears due to this charging energy
difference both in the classical and quantum regimes.

DOI: 10.1103/PhysRevB.103.245302

I. INTRODUCTION

Nonreciprocal responses in noncentrosymmetric materials
in general have been actively studied both from theoretical and
experimental viewpoints [1]. It is often the case that broken T ,
the time-reversal symmetry, is needed in addition to broken P ,
the inversion symmetry, to obtain the nonreciprocal responses,
but there are cases where only P breaking is enough. The pn
junction is a representative example, where the heterojunction
of n-type and p-type semiconductors acts as a rectifier without
a magnetic field or magnetization. On the other hand, the
direction of the arrow of time is determined by the dissipation
associated with the resistivity, i.e., irreversibility. In the case
of pn junction, the existence of the depletion layer due to the
Coulomb interaction is essential for its rectification function.
Another example of the nonreciprocal response without T
breaking is the Zener tunneling [2]. In this case, the interband
tunneling probability across the band gap differs between right
and left directions due to the shift vector originating from
the Berry connection [3], even without the broken T . This
shift vector is also relevant to the shift current for the inter-
band photoexcitation [4]. Therefore, the quantum geometry,
which encodes the information of the microscopic inversion
asymmetry inside a unit cell, plays an important role. The
nonreciprocity in optical systems has been widely studied
[5], and in particular, the quantum diode of light has been
theoretically studied [6] and experimentally realized [7]. Here
the two isolated two level systems act as nonlinear mirrors
and lead to a left-right asymmetric Fabry-Perot interferometer.
Also, as for the Josephson junctions, there are studies on the
Josephson diode [8–15], but the nonreciprocity of the voltage
drop of the single Josephson junction has not been studied.

Other works on the nonreciprocity include Ref. [16], where
the nonreciprocal property of the microwave reflection of the
resistively shunted Josephson junction in the finite voltage
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state is investigated. In Ref. [16], the inversion symmetry is
explicitly broken by the external current bias, and the nonre-
ciprocity in the AC regime, characterized by the asymmetry
of the scattering matrix, is discussed. In contrast, our work
focuses on the nonreciprocity of the structurally inversion
asymmetric Josephson junction in the DC regime, which is
characterized by the I-V characteristic as

V (I ) �= −V (−I ) ⇔ R(I ) �= R(−I ), (1)

where I is the DC external current bias, V is the DC voltage
response, and R(I ) = V (I )/I is the I-dependent nonlinear re-
sistance, i.e., the nonreciprocity is quantified by the difference
of the nonlinear resistance between positive and negative bi-
ases with fixed amplitudes of the biases.

The nonreciprocity of the I-V characteristic defined by
Eq. (1) in the I → 0 limit can be calculated from the pertur-
bative expansion of R(I ) as R(I ) = R1 + R2I + O(I2), where
nonzero R2 indicates the nonreciprocity. This characterization
of the nonreciprocity by R2 is inappropriate for the case with
large current bias I where the system is in the nonlinear regime
so that the perturbative expansion is invalid. For example, in
pn junctions, the nonreciprocity is particularly large when the
voltage bias is larger than the forward threshold voltage, i.e.,
in the nonlinear regime. The large nonreciprocity persists up
to the critical voltage of the electric breakdown for the back-
ward bias. Therefore, in this case, the difference of the critical
voltage for positive and negative biases leads to the nonrecip-
rocal I-V characteristic. As for the Josephson junction, it is
known [17] that the I-V characteristic exhibits the finite crit-
ical current between finite and zero voltage state. The differ-
ence of this critical current between positive and negative bi-
ases in a single Josephson heterojunction has not been studied.
In this work, we discuss the difference of the critical current
between positive and negative biases, and the resultant nonre-
ciprocity of the structurally asymmetric Josephson junctions.

Before discussing the nonreciprocity, here we review the
physics of the Josephson junction to introduce our model.
Josephson effect is a representative macroscopic quantum
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FIG. 1. The Josephson circuit, where C, J , and R represent the
capacitor, Josephson junction, and resistive shunt, respectively. I1, I2,
and I3 denote the currents flowing through the capacitive, inductive,
and resistive channels of the junction, respectively, and Ix is the total
current through the junction.

phenomenon where the superconducting current depends on
the phase difference ϕ of the order parameters of the two
superconductors separated by the insulating barrier. The dy-
namics of ϕ in the dissipationless case is characterized by the
following Hamiltonian:

H = Q2

2C
+ EJ

(
1 − cos

2eφ

h̄

)
− Ixφ, (2)

where φ = h̄ϕ/(2e), C is the capacitance of the Josephson
circuit, Q is the charge accumulated at the capacitance, EJ

is the Josephson coupling energy, −e < 0 is the charge of
an electron, [φ, Q] = ih̄, and Ix is the external current bias,
which is assumed to be constant. In this section, for the
purpose of illustration, we assume the symmetric charging
energy: Q2/(2C), i.e., Q and −Q are equivalent. We will
discuss the consequences of the asymmetric charging energy
in the following sections. Equation (2) can be regarded as the
Hamiltonian of a particle under the tilted cosine potential with
the period δφ = π h̄/e, where Q and φ can be regarded as the
momentum and position of the particle, respectively. When Ix

is small, near the local minimum of the potential, the potential
energy can be approximated by the one of the harmonic oscil-
lator where the mass m = C and the characteristic frequency
ω = (2e/h̄)

√
EJ/C. Then, the width of the wave function

around the potential minima is given by �φ = √
h̄/(mω), and

the overlap of the wave functions between the adjacent min-
ima is negligible when �φ � δφ ⇔ EJ/EQ � 1 [case (I)]
and large when �φ � δφ ⇔ EJ/EQ � 1 [case (II)], where
EQ = e2/(2C). We also include the resistive shunt, and the
Josephson circuit we will discuss is schematically shown in
Fig. 1.

In the case (I), ϕ is well localized inside the minima, and
including the resistive shunt, the dynamics is described by the
semiclassical Josephson equation given as [18]

h̄ϕ̇ = 2eV, (3)

Q̇ + Ic sin ϕ + V

R
= Ix, (4)

where Ic = 2eEJ/h̄, V is the chemical potential (voltage) drop
across the junction, and R is the shunt resistance. In this paper,
we consider the junctions where the tunneling conductance is

negligible compared to the shunt conductance. In this case, R
is determined by the intrinsic resistance of the normal layer, so
that R is symmetric under the voltage inversion and does not
contribute to the nonreciprocity. Therefore, we assume that R
is constant throughout this paper. We note that Q̇ is different
from Ix, since Q̇ is the time evolution of the charge accumu-
lated on the capacitance and different from the total current
across the junction Ix. Here we neglected the quantum decay
probability from the metastable solution where ϕ is localized
around the local minima, which is known [19] to be expressed
as P ∝ exp[−AEJ/(h̄ω)] = exp[−A

√
EJ/(8EQ)] � 1 at zero

temperature in the dissipationless case, where A is the constant
factor. We note that the dissipation further suppresses the
quantum decay probability [19].

In the absence of the capacitance, i.e., Q̇ = 0, the Ix-V char-
acteristic is solved easily to give V = 0 for |Ix| < Ic = 2eEJ/h̄
and the time-averaged voltage V̄ = sign(Ix )R

√
I2
x − I2

c for
|Ix| > Ic = 2eEJ/h̄. Therefore, in this case, the response is
reciprocal, as shown in Fig. 2(a), blue curve. In the presence
of the capacitance C, i.e., Q = CV , the differential equation
becomes second order, i.e., the inertia term of ϕ appears: It
results in the coexistence of the two solutions for a range of
Ix and hysteretic behavior of Ix-V characteristic, see Fig. 2(b),
blue curve. We will numerically show that, in this case, the
nonreciprocal Ix-V characteristic is realized if we include the
effect of the inversion asymmetry coming from the charging
energy [see Fig. 2(c)]. To understand why Q̇ term in Eq. (4)
is necessary for the nonreciprocal effect, here we discuss the
inversion symmetry P and the time reversal symmetry T , of
Eqs. (3) and (4), in the absence of Q̇ term. T transforms Ix →
−Ix, ϕ → −ϕ, while V → V as we can see from Eq. (3). Note
here that the last term on the left hand side of Eq. (4) changes
sign when T is applied, although V is even with respect
to T . This is usual since 1/R represents the dissipation and
irreversibility, and introduces the asymmetry between the two
directions of time. As for the inversion symmetry P , on the
other hand, the transformation gives Ix → −Ix, ϕ → −ϕ, and
V → −V since the two bulk superconductors are exchanged.
Therefore, the nonreciprocal response, if it exists, comes from
the term Q̇ in Eq. (4) when the spatial inversion symmetry P
is broken.

In the case (II), since the cosine potential is small, Q is
the good quantum number. In the same spirit as the nearly
free electron approximation, EJ (1 − cos[2eφ/h̄]) term in the
Hamiltonian, Eq. (2), can be treated perturbatively, and it
leads to the Bragg reflection and opens up a gap at the “mo-
mentum” Q = ±h̄π/δφ = ±e [20]. The size of the gap is
proportional to EJ , and the energy at Brillouin zone edge is
EQ, so the dimensionless quantity EJ/EQ is roughly the ratio
of the band gap to the bandwidth. The last term in Eq. (2) can
be regarded as the potential coming from the external electric
field E = Ix, and, including the dissipation term, the dynamics
of Q is described by the following equation:

Q̇ = Ix − 1

R

∂Ẽch(Q)

∂Q
, (5)

where Ẽch(Q) is the band energy with the gap at Q = ±e. To
discuss the nonreciprocal I-V characteristic, we will show that
the Bloch oscillation and the Zener tunneling for the dynamics
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FIG. 2. Ix-V characteristic for case (I) at T = 0 and T > 0. Ix-V
characteristic, numerically calculated from Eqs. (8) and (9), for
the system (a) without Q̇ term and (b), (c) with Q̇ term [for the
definition of r−1, see Eq. (8)], where ix = Ix/Ic and V0 = RIc with
Ic = 2eEJ/h̄. In (c), we show Vasym(ix ) = [V (ix ) + V (−ix )]/[V (ix ) −
V (−ix )] which quantifies the degree of nonreciprocity calculated
from the Ix-V characteristic (b). We note that Vasym = 0 identically
for the Ix-V characteristic (a), i.e., when Q̇ = 0. The arrows on blue
curves in (b) and (c) represent the directions of the sweep of ix . ic1

and ic3 are the critical currents at T = 0, and ic2 is the critical current
at T > 0 [27]. To obtain the orange curves (T > 0 data), we numer-
ically solved the Langevin equation, Eqs. (8) and (9) with stochastic
Heun’s scheme [28], with the parameters T̃ = 0.25, A = 0.6, and
A′ = 0.3.

of Q are asymmetric. The asymmetry of the Zener tunneling
in the presence of the nonlinear interaction was discussed in
Ref. [21], but in their case, the asymmetry is between the
tunneling processes from the ground state to the excited state
and from the excited state to the ground state. In our case,
the tunneling process from the lowest band to the next lowest
band for the positive and negative biases are asymmetric.

In the present paper, we study theoretically the nonrecipro-
cal nature of Ix-V characteristic of the asymmetric Josephson
junction, which is modeled by the asymmetric charging en-

ergy Ech(Q)( �= Ech(−Q)). We will show that, both for case
(I) and case (II), the asymmetry of Ech(Q) leads to the nonre-
ciprocity.

Before getting into the detailed analysis, here we discuss
the origin of the asymmetric charging energy. The capacitance
of the junction system originates from two contributions: One
is the classical capacitance, determined by the electrostatic
energy inside the thin film, and the other is the quantum ca-
pacitance, which depends on the charge response properties of
two sandwiching bulk superconductors [22–26]. Among these
two contributions, the latter one is in general nonlinear and
asymmetric when the bulk superconductors exhibit different
charge response properties. In Sec. III, we will estimate the
order of the quantum capacitance in real systems and discuss
how to experimentally measure the nonreciprocity.

II. RESULTS

A. Model for case (I)

The DC Josephson effect is described by constant ϕ

and Q = V = 0, where ϕ is determined by Ix = 2eEJ
h̄ sin ϕ =

Ic sin ϕ. For |Ix| > Ic, there is no solution of the Josephson
equation with constant ϕ, and because of the Josephson re-
lation, Eq. (3), the voltage V appears. In this picture, Ic is
identical for both directions, while one needs to solve the
dynamics, i.e., the time dependence, of Q and ϕ when finite
voltage appears. In this case, the functional form of Ech(Q),
which is related to the voltage V by V = ∂Ech

∂Q , is important.

Often the form Ech(Q) = Q2/(2C) − VgQ is taken with C be-
ing the capacitance and Vg the gate voltage, which induces the
chemical potential bias across the junction. The gate voltage
term seems to break the symmetry between right and left,
i.e., Q and −Q, but the shift in the origin of Q recovers that
symmetry. Therefore, the essential asymmetry between right
and left comes from the higher order terms in Q such as

Ech = Q2

2C
+ αQ3 + α′Q4, (6)

where α �= 0 for junctions where bulk superconductors exhibit
different charge response properties [25,26] (see Sec. III A for
details). αQ3 term breaks the inversion symmetry P and leads
to the nonreciprocal response. Here, the term Q2

2C comes from
the classical charging energy, while the term αQ3 + α′Q4

originates from the charging energy of the electromagnetic
field penetrating into the bulk superconductors and is known
as “quantum capacitance” [22–26]. Then we consider the gen-
eralized Josephson equation given as

h̄

2e
ϕ̇ = ∂Ech

∂Q
, Q̇ = Ix + Ĩ (t ) − Ic sin ϕ − 1

R

∂Ech

∂Q
, (7)

where we added the fluctuating current Ĩ (t ) satisfying
〈Ĩ (t )Ĩ (t ′)〉 = 2(βR)−1δ(t − t ′), to include the finite tempera-
ture effect.

It is useful to rewrite Eqs. (6) and (7) with the dimension-
less parameters ĩ = Ĩ/Ic, ix = Ix/Ic, r−1 = R−1√h̄/(2eCIc),
A = αC3/2

√
EJ , A′ = α′C2EJ , and T̃ −1 = EJβ. Also, we

rescale t and Q as τ = t
√

2eIc/(h̄C) and q = √
2e/(h̄CIc)Q.
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Then, Eqs. (6) and (7) can be transformed as

dϕ

dτ
= ∂εch

∂q
,

dq

dτ
= ix + ĩ(t ) − sin ϕ − r−1 ∂εch

∂q
, (8)

where

εch = q2

2
+ Aq3 + A′q4. (9)

Here we note the relationship of the dimensionless param-
eters defined above to the parameters used in the literature
[17]: r2 = βc, where βc is the Stewart-McCumber parameter;
τ = ωpt and q = I−1

c ωpQ, where ωp is the plasma frequency
of the Josephson circuit. Here, let us discuss the analogy
of the dynamical system described by Eqs. (8) and (9) with
the particle motion under the periodic potential. The Joseph-
son phase ϕ corresponds to the position x, while the charge
transfer q corresponds to the momentum p. In this particle
picture, the potential energy is − cos x and the kinetic energy
is εch(q → p). In this sense, one can define the “time-reversal
symmetry” T ′ and “inversion symmetry” P ′ as

T ′ : x → x, p → −p,

P ′ : x → −x, p → −p. (10)

Then, our system breaks both P ′ and T ′, while it preserves
P ′T ′ except the dissipative term r−1 ∂εch

∂q in Eq. (7). Namely,
the periodic potential is inversion symmetric, while the kinetic
energy is asymmetric with respect to p and −p. In the quan-
tum mechanical case, this leads to the asymmetric dispersion
ε(k) �= ε(−k).

We will discuss the nonreciprocity of Eq. (8) with Eq. (9)
for two cases: First, we will discuss the system with no ther-
mal fluctuation, at T = 0. For |ix| > 1, where the bias is so
strong that the potential barrier disappears, the dynamics is
characterized by the limit cycle in (ϕ, q) space. For |ix| < 1
and sufficiently small r−1, there coexists the stable fixed point
and the limit cycle, which represents the metastable steady
state [29,30]. Secondly, we will discuss the system with ther-
mal fluctuation at finite temperature T > 0, where the phase
slip is caused by the thermal fluctuation [31,32]. In both cases,
we will show that the asymmetry of the charging energy leads
to the nonreciprocity.

Here we note that, since the voltage drop V in the
presence of A satisfies V (A,−ix ) = −V (−A, ix ), the
nonreciprocity characterized by Vasym = [V (A, ix ) +

V (A,−ix )]/[V (A, ix ) − V (A,−ix )] can be rewritten as
[V (A, ix ) − V (−A, ix )]/[V (A, ix ) + V (−A, ix )], so we
calculate the voltage drop V (A, ix ) for positive ix and
change the sign of A. For the same reason, iR

c1(−A) = iL
c1(A).

From now on, we fix the parameters A = ±0.6 and A′ = 0.3
for the purpose of demonstration of the asymmetry. We will
discuss the estimation of these parameters in real materials in
Sec. III A.

B. Nonreciprocal Ix-V characteristic at T = 0 for case (I)

In Fig. 2 (blue curves), we show the Ix-V characteris-
tic, numerically calculated from Eqs. (6) and (7) without
the Q̇ term (panel a) and with P breaking Q̇ term (panel
b) at T = 0. As we mentioned in the introduction, the
nonreciprocity is realized only for the latter system, see
panel c.

An important feature of Ix-V characteristic at T = 0 with
finite Q̇ [Fig. 2(b), blue curve] is the hysteresis for iR

c1 <

ix < ic3 and −ic3 < ix < −iL
c1. This hysteresis comes from the

coexistence of the limit cycle and stable fixed point [29,30].
As can be seen from Figs. 3(b) and 3(c), because of the
presence of the limit cycle, for the initial condition inside the
dark blue region, the longtime dynamics is governed by the
limit cycle so that the voltage drop is finite. On the contrary,
for the initial condition inside the green region, the particle
is attracted to the stable fixed point and the voltage drop is
zero. Sweeping ix from the large value to the small value
corresponds to the former case, while sweeping ix from the
small value to the large value corresponds to the latter case.
Namely, the hysteresis behavior occurs. On the contrary, there
is no hysteresis for Ix-V characteristic at T = 0 without Q̇
term [Fig. 2(a), blue curve].

Here we review the qualitative aspect of the bifurcation of
the limit cycle in the system with T = 0 [29,30] for ix > 0.
The system shows qualitatively different behavior depending
on the value of the dimensionless dissipation strength r, de-
fined above Eq. (8).

For r−1 � 1 [Fig. 2(a)], we can neglect the inertia term
(the capacitance term, dq/dτ ) and Eq. (8) becomes

r−1 dϕ

dτ
= ix − sin ϕ. (11)

For ix > 1, dϕ/dτ > 0 and there is only a limit cycle
[Fig. 4(c)]. As we decrease ix, at ix = ic3 = 1, the saddle-node

FIG. 3. The bifurcations of the system with finite capacitance, Eqs. (8) and (9). We set A = 0.6, A′ = 0.3, r−1 = 0.1 and (a) ix = 0.1,
(b) ix = 0.288 ∼= iR

c1, (c) ix = 0.5, (d) ix = 1 = ic3, and (e) ix = 1.1. The blue and red dots represent the stable fixed point and saddle point,
respectively. Black curves represent the (meta)stable limit cycles, and the green and dark blue regions are the basins of attraction of the stable
fixed point (blue dot) and limit cycle (black curve), respectively. We present the case of positive ix . While the behavior is similar also for ix < 0,
the critical iL

c1 is different from iR
c1.
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FIG. 4. The bifurcation of the system with Q̇ = 0, i.e., Eq. (11),
for (a) ix = 0.5, (b) ix = 0.8, and (c) ix = 1.2. The blue curve rep-
resents the value of dϕ/dτ at each ϕ, and the arrow on the black
curve represents the direction of the velocity. The blue and red dots
represent the stable fixed point and saddle point, respectively. We can
see that there is no limit cycle for ix < 1.

(blue-sky) bifurcation leads to the vanishing of the limit cycle
and the birth of the stable and unstable fixed points at ϕ =
sin−1 ix and π − sin−1 ix, respectively, see Figs. 4(b) and 4(c).

For ix < 1, the longtime dynamics is governed by the stable
fixed point, see Figs. 4(a) and 4(b). Therefore, for r−1 � 1,
the disappearance of the limit cycle and the birth of the stable
fixed point occur simultaneously, i.e., iR

c1 = ic3 = 1. Above
ic3, the flow of ϕ occurs, and we get the finite time-averaged
voltage drop V̄ = sign(Ix )R

√
I2
x − I2

c as we mentioned in the
introduction.

For r−1 � 1 [Fig. 2(b)], we cannot neglect the inertia term
in Eq. (8), and, although the longtime dynamics for ix > ic3 =
1 is governed by the limit cycle just as in the r−1 � 1 case,
the system exhibits two bifurcations as we decrease ix. One is
at ix = ic3 = 1, where the saddle-node bifurcation leads to the
birth of the stable fixed point and the saddle point at (ϕ, q) =
(sin−1 ix, 0) and (π − sin−1 ix, 0), as is shown in Figs. 3(c),
3(d) and 3(e). The other one is the homoclinic bifurcation at
ix = iR

c1, where the limit cycle collides with the saddle point
at (ϕ, q) = (π − sin−1 ix, 0) to become the homoclinic orbit
and then disappears, as is shown in Figs. 3(a) and 3(b). We
will review what a homoclinic orbit is and discuss its role

FIG. 5. Nonreciprocity for various ix and r−1 for case (I) at T = 0. (a) Vasym(ix ) = [V (ix ) + V (−ix )]/[V (ix ) − V (−ix )] as a function of
ix and r−1, numerically calculated from Eqs. (8) and (9) with T̃ = 0. (b) The voltage drop V/V0 where V0 = RIc for A > 0 and A < 0 with
r−1 = 1 and T̃ = 0 in Eqs. (8) and (9). (c) The phase diagram in (ix, r−1) space for the dynamical system governed by Eqs. (8) and (9) with
T̃ = 0. St., Mst. and LC. represent the phase with the stable fixed point only, stable fixed point coexisting with the limit cycle, and limit cycle
only, respectively. The black curves are the phase boundaries calculated from Eq. (12). (d) Vasym(ix ) near the phase boundary, where V (ix ) is
calculated for the metastable limit cycle of Eqs. (8) and (9) with T̃ = 0, i.e., the plot corresponds to the sweeping of ix from the large value
in Fig. 2(b). In the white region, V = 0 for both A > 0 and A < 0 cases, while in the region where |Vasym| = 1, V �= 0 for A > 0 and V = 0
for A < 0. Therefore, the step of |Vasym| comes from the difference of the critical current for A > 0 and A < 0. We note that Vasym < 0 for the
parameter region shown in (a) and (d).
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FIG. 6. (a),(b) The limit cycles for ix > 1 and (c),(d) the homo-
clinic orbits for ix = r−1 = 0. (a),(b) The limit cycles, shown by
black curves, for Eqs. (8) and (9) with ix = 1.2, r−1 = 1, where
(a) A > 0 and (b) A < 0. (c),(d) The homoclinic orbits, shown by
black curves, for Eqs. (8) and (9) with r−1 = ix = 0 where (c) A > 0
and (d) A < 0. The red dots represent the fixed points. Note that
(ϕ, q) = (π, 0) and (−π, 0) are equivalent.

in the phase diagram later. As for the bifurcations for ix < 0,
the qualitative nature of the bifurcations is the same, but im-
portantly, iL

c1 �= iR
c1 because of the asymmetry of the charging

energy. It leads to the enhancement of Vasym near −iL
c1 and iR

c1
as can be seen in Fig. 2(c).

C. Nonreciprocity for various ix and r−1 at T = 0 for case (I)

For |ix| > 1, Vasym as a function of ix and r−1 is shown
in Fig. 5(a). We can see that the nonreciprocity is enhanced
for small ix and r−1. Since |ix| > 1, the longtime dynamics
is governed by the limit cycle traversing from ϕ = −π to π

at finite q as is shown in Figs. 6(a) and 6(b). As we can see
from these figures, the limit cycles for A > 0 and A < 0 are
different, so that Vasym is finite.

For |ix| < 1, the homoclinic bifurcation occurs at iR
c1 and

−iL
c1. As we explained, at this bifurcation point the limit cycle

becomes the homoclinic orbit. In short, a homoclinic orbit is
a variant of a limit cycle. However, in contrast to a limit cycle,
there is a fixed point on it, so its time period is infinite, since
it takes infinite time to reach and depart from the fixed point.
For example, the black curves in Figs. 3(b) and 6(c) and 6(d)
are homoclinic orbits where the fixed point is shown by the
red dots. Since the presence of the homoclinic orbit indicates
the homoclinic bifurcation, by identifying the one-parameter
family of the homoclinic orbit on the (ix, r−1) plane, we can
calculate iR/L

c1 as a function of r−1.
For small ix and r−1, we can perturbatively calculate

iR/L
c1 from the parameter ix = r−1 = 0, where we can ana-

lytically calculate the homoclinic orbit, see Figs. 6(c) and
6(d). iR/L

c1 (r−1) can be calculated from the simple zero of the

following Melnikov function [33]:∫ ∞

−∞
dt ϕ̇0(t )(ix − r−1ϕ̇0(t ))

= 2π ix − 2r−1
∫ qmax

0
dq

(
dεch(q)

dq

)2 1√
εch(q)[2 − εch(q)]

,

(12)

where ϕ0(t ) is the homoclinic orbit for ix = r−1 = 0 shown
in Figs. 6(c) and 6(d), and qmax is the maximum of q along
that orbit. As we can see, the homoclinic orbits for A > 0
[Fig. 6(c), black curve] and A < 0 [Fig. 6(d), black curve] are
very different and that leads to the difference of the Melnikov
functions in two cases, so that iL

c1(r−1) �= iR
c1(r−1). In Fig. 5(c),

we show the phase boundary [i.e., iR/L
c1 (r−1)] obtained from

the direct numerical calculation (red dotted and green dot-
dashed curves) and the one obtained from the condition that
Eq. (12) should be zero (black solid curve). We can see that
the prediction of Eq. (12) agrees well with the numerically
obtained boundary for small ix and r−1. For (ix, r−1) such
that metastable limit cycle does exist for A < 0 but not for
A > 0, we observe |Vasym| = 1, i.e., the perfect nonreciprocity,
as is shown in Fig. 5(d), since the time-averaged velocity
dϕ/dτ ∝ V̄ = 0 for A > 0, while dϕ/dτ ∝ V̄ �= 0 for A < 0.
We also note that the large |Vasym| for ix � 1 [Fig. 5(a)] can be
understood as a consequence of the difference of iR

c1 and iL
c1:

As we can see from Fig. 5(b), the voltage drop V is larger for
ix � 1 for A < 0, because ic1 is smaller for A < 0.

D. Nonreciprocal Ix-V characteristic at finite temperature
T > 0 for case (I)

For the finite temperature T > 0 case, we numerically
solved the Langiven equation, Eq. (8), with stochastic Heun’s
scheme [28] to calculate the physical quantities and then took
an ensemble average. Numerically calculated Ix-V charac-
teristic is shown in Fig. 2 (orange curves). As is shown in
Fig. 2(b), we can see that the voltage drop V suddenly in-
creases around iR

c2 and −iL
c2 and merges to the curve V/V0 = ix.

This behavior can be understood as the dynamical transition,
from the state where the dominant probabilistic weight is on
the stable fixed point so that the voltage drop is around zero,
to the one where the limit cycle is primarily realized and the
finite voltage drop results [27,34]. Since the system is at the
finite temperature, the transition is not sharp, but as T → +0
this transition becomes sharper and the jump of V from 0 to
finite value occurs at ix = iR

c2 and −iL
c2 when T = +0. At the

same time, the relaxation time between the two configurations
diverges as T → +0, and when the experimental measure-
ment time is smaller than the relaxation time, we observe the
hysteresis behavior as we discussed above for the T = 0 case.
In a similar manner to the T = 0 case, the large Vasym near iR

c2
and −iL

c2 is realized, since iR
c2 �= iL

c2.

E. Nonreciprocity for various ix and r−1 at T > 0 for case (I)

Just as in the T = 0 case, we numerically solved Eq. (8)
to calculate the nonreciprocity for various ix and r−1 with
T > 0, and the result of the numerical calculation is shown
in Fig. 7. As we can see, the nonreciprocity is enhanced for
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FIG. 7. Nonreciprocity for various ix and r−1 for case (I) at T >

0. Vasym(ix ) = [V (ix ) + V (−ix )]/[V (ix ) − V (−ix )] at T > 0. For the
parameter region shown in the plot, Vasym < 0. We numerically
solved Eqs. (8) and (9) with T̃ = 0.25. The jaggy result of |Vasym| for
the small |Vasym| region (|Vasym| � 10−3) comes from the numerical
error of the Langevin equation. We note that the relative error of
|Vasym| is small for large |Vasym| region (|Vasym| � 10−2), and we focus
only on this region in the present paper.

small r−1, i.e., small dissipation, region. This is consistent
with the fact that, for r−1 � 1, we can neglect the inertia term
in Eq. (8) to obtain the usual inversion-symmetric overdamped
Langevin equation. In addition, we can see the peak structure
at finite value of ix for fixed r−1. To understand this behavior,
it is useful to plot the normalized mobility r−1μ = V/(V0ix ),
where V0 = RIc, as a function of ix [34], see Fig. 8(a). We can
see that for small ix, the mobility is almost zero, but at some
finite ix the mobility jumps to μ = r and saturates. This kind
of behavior can be understood from W±(E ), which is defined
from the distribution function of the energy as

P(E ) =
{
N e−W+(E )/T̃ (q � 0)
N e−W−(E )/T̃ (q < 0)

, E = εch(q) − cos ϕ, (13)

where P(E ) is the distribution function of E , and we intro-
duced two functions W+ and W−, corresponding to the two
branches of momentum q as a function of the energy E [34].
Numerically calculated W+(E ) for A > 0 and A < 0 is shown
in Figs. 8(b) and 8(c). We can see that, as we increase the
bias ix, W+(E ) at large E becomes small and eventually the
local minimum at E > 1 drops below the value at E = −1.
This corresponds to the dynamical transition of the typical

FIG. 9. Variance of JT for case (I) at T > 0. The blue dotted
and orange dashed curves are the lower bound predicted by the ther-
modynamic uncertainty relation, Var(JT ) � 2〈JT 〉2/(T σ ), where σ

is the entropy production rate and is calculated as σ = ix〈JT 〉/T̃
[35]. We numerically solved the Langevin equation (8) and (9) for
100 ensembles with time τ = 107 and �τ = 10−2 by the stochastic
Heun’s scheme [28] and set T = 1000. The parameters are set to be
r−1 = 0.1 and T̃ = 1.

trajectory from the static one at E = −1 to the running one
at E > 1. We can see that the critical value of ix which we
denote ic2, where this transition occurs, is different for the
A > 0 case (ic2 ∼ 0.6) and A < 0 case (ic2 ∼ 0.5). The fact
that ic2 is larger for A > 0 is consistent with the larger ic1

where the limit cycle emerges, as is shown by blue dot-dashed
and orange dashed lines in Fig. 8(a).

Because of the presence of the thermal fluctuation, we
can discuss not only the average value of the velocity, but
also the whole distribution of the time-averaged current JT =∫ T

0 dτ
dϕ

dτ
[35]. The numerically calculated variance of JT is

shown in Fig. 9. Since the system does not have T ′ symmetry,
we might have a violation of the lower bound of the variance
known as thermodynamic uncertainty relation [35–37], as is
observed in the underdamped Langevin system with magnetic
field [38], but we did not observe any violation for the param-
eter region we have calculated. As we can see, the fluctuation
of JT becomes large for intermediate ix. This reflects the fact
that there coexists the stationary trajectory and the running tra-
jectory, and these two trajectories, which have quite different
average velocities, are probabilistically realized, leading to the
large fluctuation of the current. For larger ix the fluctuation de-

FIG. 8. Normalized mobility and the distribution function of energy for case (I) at T > 0. (a) Normalized mobility r−1μ, where r−1μ =
V/(V0ix ) and V0 = RIc, as a function of ix for r−1 = 0.1. The value where the limit cycle appears is shown by the dot-dashed blue and the
dashed orange curves, and the value where the stable fixed point vanishes is shown by black dotted curve. (b),(c) W+(E ), defined in Eq. (13) at
r−1 = 0.1, from ix = 0.1 (blue curve) to ix = 0.6 (brown curve), where (b) A > 0 and (c) A < 0. We set T̃ = 0.25 in Eqs. (8) and (9).
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FIG. 10. Ix-V characteristic, energy dispersion, and nonrecip-
rocal Zener tunneling for case (II). (a) Ix-V characteristic and
(b) Vasym(ĩx ) = [V (ĩx ) + V (−ĩx )]/[V (ĩx ) − V (−ĩx )], calculated from
Eqs. (18) and (19), where V0 = e/C. (c) Energy dispersion of the
two lowest energy bands with the asymmetric changing energy
E ′

ch(q̃) = q̃2/2 + Ãq̃3 + Ã′q̃4 with Ã = 0.6 and Ã′ = 0.3, and we set
EJ/EQ = 0.2, where EQ = e2/(2C), to open up a gap in the spectrum.
Dotted curve represents the energy dispersion without the Josephson
coupling term EJ cos ϕ in the Hamiltonian. (d) The LZ rate calculated
from Eq. (20) with EJ/EQ = 0.1 (EQ = e2/(2C)) and R/Rq = 100,
where Rq = e2/(2π h̄).

creases, since the stationary fixed point disappears. Reflecting
the difference of the critical current ic2, the region where the
current fluctuation enhances is different for A > 0 and A < 0
cases, and that leads to quite different current fluctuation as
we can see in Fig. 9.

F. Model for case (II)

As we mentioned in the introduction, the dynamics in this
case is governed by Eq. (5), and EJ/EQ characterizes the ratio
of the band gap to the bandwidth, see Fig. 10(c). In this case,
because of the periodicity of the Brillouin zone, the system
exhibits the Bloch oscillation, which affects the Ix-V char-
acteristic in a substantial way [20,39]. Physically, the Bloch
oscillation in Q space corresponds to the cooper pair tunnel-
ing through the Josephson junction [20], and it reduces the
current flowing through the resistive channel of the junction,
so the voltage drop V is suppressed. The Bloch oscillation
is hindered by the Zener tunneling process where the state
is excited to higher energy bands, and Ix-V characteristic is
determined by the competition between the Bloch oscillation
and the Zener tunneling [39–41].

For the discussion of the Bloch oscillation, for simplicity,
we work in the lowest order approximation in EJ , i.e., we
neglect the gap at the Brillouin zone boundary but assume the
periodic structure of the energy dispersion, Ẽch, i.e.,

Ẽch(Q) = min
n∈Z

Ech(Q − 2ne). (14)

Setting Q = eq̃, t = RCτ̃ , Ix = ĩxe/(RC), Eq. (5) becomes

dq̃

d τ̃
= ĩx − ∂ε̃

∂ q̃
, (15)

where

ε̃(q̃) = min
n∈Z

E ′
ch(q̃ − 2n), E ′

ch(q̃) = q̃2

2
+ Ãq̃3 + Ã′q̃4,

(16)
where Ã = αCe, Ã′ = α′Ce2. We set Ã = 0.6 and Ã′ = 0.3 for
the purpose of illustration. See Sec. III A for the estimation of
these parameters in real systems.

G. Nonreciprocal Bloch oscillation for case (II)

First, we will discuss the nonreciprocity of the Bloch os-
cillation in the Josephson junction. For the energy dispersion
(16), denoting the left and right Brillouin zone boundary by
q̃L,R, the conditions for the Bloch oscillation to occur for
ĩx > 0 and ĩx < 0 cases can be calculated as

ĩx �
∂ε̃(q̃R)

∂ q̃
=: ĩR

c,bl , ĩx �
∂ε̃(q̃L )

∂ q̃
=: −ĩL

c,bl , (17)

respectively. The periods of the Bloch oscillation for ĩx > 0
and ĩx < 0 cases are

τ̃R =
∫ q̃R

q̃L

dq̃

ĩx − ∂ε̃
∂ q̃

, τ̃L =
∫ q̃L

q̃R

dq̃

ĩx − ∂ε̃
∂ q̃

. (18)

Then, the voltage drop can be derived from Eq. (15) as [20]

VL,R = e

C

〈
∂ε̃

∂ q̃

〉
= e

C

(
ĩx − 2

τ̃L,R

)
. (19)

We show the voltage drop calculated from Eqs. (18) and (19)
in Figs. 10(a) and 10(b). As we can see, since the critical
currents where the Bloch oscillation sets in are different for
ĩx > 0 and ĩx < 0, i.e., ĩR

c,bl �= ĩL
c,bl , Ix-V characteristic exhibits

nonreciprocity.

H. Nonreciprocal Zener tunneling for case (II)

Next, we discuss the nonreciprocity in the Zener tunneling
rate. The general expression of the Zener tunneling rate is de-
rived in Ref. [40], where the argument is only for the quadratic
charging energy. Generalizing their argument to include the
asymmetry of the charging energy, we obtain

P± = exp

[
−

(
πEJ

2EQ

)2 R

Rq

1

|VC,±||v±|
]
,

(
Rq = e2

2π h̄

)
,

(20)

where we neglected the effect of the fluctuation of the charge.
Here

VC,± = d

dq̃
(E ′

ch(q̃) − E ′
ch(q̃ ∓ 2))

∣∣∣∣
q̃=q̃R/q̃L

,

and, as we can easily see, |VC,+| = |VC,−|. v± is the velocity
of the charge at q̃R,L given by the solution of Eq. (15), i.e.,

v± = ĩx − ∂ε̃

∂ q̃

∣∣∣∣
q̃=q̃R/q̃L

= ĩx ∓ ĩR/L
c,bl , (21)

where ĩR/L
c,bl are defined in Eq. (17). As we noted ĩR

c,bl �= ĩL
c,bl ,

so |v+(ĩx )| �= |v−(−ĩx )| and P+ �= P−. The Landau-Zener tun-
neling probability P± obtained from Eq. (20) is shown in
Fig. 10(d). We can see the threshold behavior coming from
the dissipation [42].
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Here we note the importance of the effect of dissipation
in obtaining the nonreciprocal Zener tunneling rate. In the
present semiclassical approximation, there occurs no quan-
tum tunneling when the classical solution does not reach the
band crossing point due to the dissipation. Then the asym-
metric threshold current is the origin of the nonreciprocal
tunneling rate, and hence the dissipation is required for the
nonreciprocity. On the other hand, it is shown in Ref. [2]
that the nonreciprocal Landau-Zener tunneling occurs if we
have nonzero shift vector even without the dissipation. Here,
as we noted before, we are considering the system where P ′
and T ′ is broken by the asymmetry of the dispersion rela-
tion, but the system still has P ′T ′ symmetry. Then, from the
general transformation rule [4], the shift vector is identically
zero. Furthermore, we can show that, in the absence of the
shift vector, there is no nonreciprocity in the LZ rate even
in the presence of the asymmetry in the band energy for the
dissipationless system. To show this, we observe that, in the
absence of shift vector, the amplitude for the tunneling process
during one cycle of Bloch oscillation under the electric field
E = −Ex < 0 is given as [2],

a(−Ex )
+ = iei arg A+−(−π )

∫ π

−π

dk1|A+−|(k1)e−i
∫ k1
−π

dk2
�(k2 )
−eEx , (22)

where A+− = 〈u+|∂k|u−〉, |u±〉 is the wave function for
upper/lower band, and �(k) is the k dependent difference
of the upper and lower band energy. Although the standard
estimation utilizes the integration path in the complex k plane,
here we only consider the integration path on the real k line.
From Cauchy’s theorem, this does not spoil any generality of
our result. Then, the expression for the reverse process with
the electric field E = Ex > 0 is given as

a(Ex )
+ = iei arg A+−(π )

∫ −π

π

dk1|A+−|(k1)e−i
∫ k1
π

dk2
�(k2 )
eEx .

Then, by taking the complex conjugate of Eq. (22), we can
show that (a(−Ex )

+ )∗ = eiχ a(Ex )
+ , where

χ = − arg A+−(−π ) − arg A+−(π ) −
∫ π

−π

dk2
�(k2)

eEx
.

Therefore, we conclude that |a(−Ex )
+ | = |a(Ex )

+ | in the absence of
shift vector, even if the system breaks P ′ symmetry. The situa-
tion is different if we include the dissipation to the system, as
we can see from Eq. (20). Since the semiclassical dynamics
of Q reflects the asymmetry of the dispersion through the
dissipative term, the nonreciprocal LZ effect is realized.

III. DISCUSSION

A. Nonlinear capacitance

Here, we estimate the nonlinear capacitance α [22–26]
defined in Eq. (6) using the scaling form derived by the
Thomas-Fermi approximation [25,26]:

α ∝
[

(4π )2

εF,2

(
Sλ2λ

−2
2 e−2

)−2 − (4π )2

εF,1

(
Sλ1λ

−2
1 e−2

)−2
]

1

e3
,

∝
[

1

n2
− 1

n1

]
4π

eS2
(23)

where S is the area of the cross section of the Josephson junc-
tion, λ1,2 and n1,2 are the Thomas-Fermi screening lengths and
carrier density of the bulk superconductors, and we replaced
the derivative operator d/dε with 1/εF (εF is the Fermi en-
ergy) for the order estimation. From this expression, we can
see that α is enhanced for the junctions with largely different
values of n1 and n2. From now on, we consider the junc-
tions consisting of a superconductor with small n1, e.g., FeSe,
where the carrier density is of the order of |n1| ∼ 1020 cm−3

[43], and one with larger n2, e.g., a conventional supercon-
ductor, where |n2| ∼ 1022 cm−3. Now, the linear capacitance
in the Thomas-Fermi approximation can be written as

C = εr

4π

S

a + λ1 + λ2
, (24)

where εr and a are the relative dielectric constant and thick-
ness of the thin film, respectively.

First we consider the case (I), where the dynamics is gov-
erned by Eqs. (8) and (9). Then, in the dimensionless unit, we
get

A = αC3/2√EJ

∝
[

εr

n2S(a + λ1 + λ2)
− εr

n1S(a + λ1 + λ2)

]√
EJ

2EQ
. (25)

Now, we set the typical values εr ∼ 10, S ∼ 0.1 μm2, a =
1 nm, EQ/EJ ∼ 10−1 and assume a � λ1,2. Then, A ∼ 10−3.

If we consider the case (II), where the dynamics is gov-
erned by Eqs. (15) and (16), in dimensionless unit,

Ã = αCe ∼
[

εr

n2S(a + λ1 + λ2)
− εr

n1S(a + λ1 + λ2)

]
.

(26)

Since EJ ∝ S and EQ ∝ 1/S, EJ/EQ � 1 is satisfied for the
system with small S. Therefore, we assume small Josephson
junction and set S = 0.01 μm2, εr ∼ 10, a = 1 nm and as-
sume a � λ1,2. Then, Ã ∼ 10−2.

B. Experimental measurement

From the above estimate, A ∼ 10−3 for case (I) and Ã ∼
10−2 for case (II), so the asymmetry is rather small in the
experimental settings, but we can measure the 2ω response
V2ω to the AC driving current Ix(t ) = Ia cos ωt with small ω

with a high precision. Assuming ω is small compared to the
characteristic frequency of the dynamics, we can calculate
the 2ω component of the response voltage by the adiabatic
approximation:

V2ω = ω

2π

∫ 2π/ω

0
dt cos(2ωt )V (Ia cos ωt )

= 1

4π

∫ 2π

0
dτ cos τ

[
V

(
Ia cos

τ

2

)
+ V

(
−Ia cos

τ

2

)]
.

(27)

Now, we estimate V2ω for three cases: (A): case (I) with
T = 0, (B): case (I) with T > 0, and (C): case (II). As we
discussed, the asymmetry of V is pronounced near the critical
value of ix or ĩx, so to obtain large V2ω we set the amplitude of
the external voltage Ia near these critical currents, i.e., (A) Ic,
(B) ic2Ic, and (C) ĩL/R

c,bl e/(RC).

245302-9



KOU MISAKI AND NAOTO NAGAOSA PHYSICAL REVIEW B 103, 245302 (2021)

For the case (A), i.e., case (I) with T = 0, if we set
I0 > IC , the above measurement of 2ω component reflects
the difference of iR

c1 and iL
c1. We set the critical current den-

sity Ic/S = 100 A/cm2 and the resistance times area RS =
10−5 � cm2, and the capacitance C/S ∼ 10−5 F/cm2, where
we used Eq. (24) with a = 1 nm and εr = 10. Then we get
r−1 ∼ 0.1, and for A ∼ 10−3, A′ = 0.5A, the numerical calcu-
lation yields V2ω ∼ 10−3RIc ∼ 1 μV.

Next, we consider case (B), i.e., case (I) with T > 0. We
use the same parameters as case (A) and set T = 50 K. Then,
the numerical calculation yields V2ω ∼ 10−3RIc ∼ 1 μV. For
case (C), i.e., case (II), for Ã = 10−2 and Ã′ = 0.5Ã, the nu-
merical calculation yields V2ω ∼ 10−2e/C ∼ 1 μV, where we
used the parameters C/S ∼ 10−5 F/cm2 and S = 0.01 μm2.
In summary, V2ω is about 1 μV for junctions with low carrier
density, e.g., FeSe, on one side of the junction, and a conven-
tional superconductor with higher carrier density on the other

side of the junction, and it can be measured by the current
experimental technology.

C. Conclusion

We have shown that, in inversion asymmetric Josephson
junctions, the nonreciprocal Ix-V characteristic is realized if
we include the asymmetry of the charging energy both for the
system with EJ/EQ � 1 and EJ/EQ � 1. As we discussed,
the nonreciprocity induced by the nonlinear capacitance can
be experimentally measured.
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