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The interplay of interactions and disorder in low-dimensional superconductors supports the formation of
multiple quantum phases as possible instabilities of the superconductor-insulator transition (SIT) at a singular
quantum critical point. We explore a one-dimensional model which exhibits such a variety of phases in the
strongly quantum fluctuations regime. Specifically, we study the effect of weak disorder on a two-leg Josephson
ladder with comparable Josephson and charging energies (EJ ∼ EC). An additional key feature of our model is
the requirement of perfect Z2 symmetry, respected by all parameters including the disorder. Using a perturbative
renormalization-group (RG) analysis, we derive the phase diagram and identify at least one intermediate phase
between a full-fledged superconductor and a disorder-dominated insulator. Most prominently, for repulsive
interactions on the rungs we identify two distinct mixed phases: In both of them the longitudinal charge mode is a
gapless superconductor, however one phase exhibits a dipolar charge density order on the rungs, while the other is
disordered. This latter phase is characterized by coexisting superconducting (phase-locked) and charge-ordered
rungs, and encompasses the potential of evolving into a Griffith’s phase characteristic of the random-field Ising
model in the strong disorder limit.
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I. INTRODUCTION AND PRINCIPAL RESULTS

The superconductor-insulator transition (SIT) observed in
thin layers or wires of superconducting (SC) materials is a
dramatic manifestation of quantum fluctuations enhanced by
the low dimensionality [1–3]. Its most prominent signature is
a drastic change in the electric resistance at low temperatures
T → 0, which switches from zero to infinity upon tuning
of a nonthermal parameter (e.g., a magnetic field, a reduced
layer thickness, gating, etc.) beyond a critical value. This
phenomenon exemplifies a quantum phase transition (QPT)
[4]: a fundamental change in the nature of the ground state
across a T = 0 critical point.

The onset of a SIT does not necessarily involve the break-
ing of Cooper pairs: It has been seen in Josephson arrays,
granular systems, and disordered metals where superconduc-
tivity persists locally even in the insulating phase. In such
systems, the underlying mechanism is rather dominated by the
combined effects of repulsive interactions and disorder, which
tend to impede long-range phase coherence between SC is-
lands in favor of a charge-localized phase. This mechanism
is well captured by interacting Bosons models or equiva-
lently Josephson arrays [1,5–12]. In the latter, the competition
between a repulsive interaction and the superconducting stiff-
ness is tunable by the ratio of two energy scales—the charging
energy Ec and Josephson energy EJ . The SIT occurs at a
critical value where Ec/EJ ∼ 1, corresponding to maximal
phase-charge uncertainty.

Disorder is an additional ingredient, associated with the
presence of random charge impurities and/or spatial fluc-
tuations in Ec/EJ . Its interplay with the interactions may

introduce a richer set of quantum phases, separated by more
than one critical point. Indeed, extensive studies have sug-
gested a variety of distinct insulating phases including, e.g.,
a “Bose/Mott glass” [5,6]. A more intriguing possibility is
the emergence of an intermediate metallic phase [13–16] near
the putative SIT critical point. Alternatively, a mixed phase
with coexisting SC and charge density correlations may form
in this strongly fluctuating regime.

In the present paper, we show that several mixed phases are
supported in a relatively simple model for a strongly fluctuat-
ing SC device. We consider a weakly-disordered two-legged
Josephson ladder, focusing on the quantum fluctuations
regime where both intra- and interleg charge interactions are
comparable to the Josephson coupling on the same links
(Ec ∼ EJ ). A crucial property of our model is a perfect Z2

symmetry, respected by all parameters including the disorder;
notably, this is easier to achieve when the leg index represents
a discrete degree of freedom other than real-space separa-
tion. Contrary to earlier studies of bosonic ladders [17–20],
a natural description of the system under these conditions
involves a weak coupling between fermionic and bosonic
sectors. Utilizing a perturbative renormalization-group (RG)
analysis to explore the T = 0 phase diagram, we find evidence
for a variety of intermediate phases between a full-fledged su-
perconductor and a disorder-dominated insulator (see Fig. 1).
Most prominently, we identify two distinct mixed phases
where SC correlations coexist with charge ordering: One ex-
hibits long-range CDW order, and one (marked Dis I in the
figure) is disordered. We conjecture that in the strong disorder
limit, this latter phase evolves into a Griffith’s phase charac-
teristic of the random-field Ising model [21].
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FIG. 1. Left panel: Illustration of the charge configuration on the ladder in the ordered phases; the top panel depicts the CDW-ordered
phase and the bottom panel the SC phase. Right panel: Phase diagram as a function of the Luttinger parameter K = √

K+ K− and disorder Dη,
for V > 0 (see text); here K+/K− = 1.02, u+ = u− = 1, Dg,− = 0.003, gθ = 0.3, gφ = 0.03, DU,s = 0; the color scale denotes �(� f ) obtained
from the RG flow up to � f = 20. The gray region (Dis I) corresponds to the intermediate disordered phase where D− is relevant, but the
symmetric mode maintains a LL behavior; the black region (Dis II) corresponds to the disordered insulator where Dg is relevant.

A key feature of the bosonic ladder in the clean limit is
the separability of the low-energy degrees of freedom into
two independent sectors: the symmetric (longitudinal) and
antisymmetric (transverse) modes. Each of the sectors may
undergo a QPT of distinct type, associated with the breaking
of U (1) and Z2 symmetries, respectively. In the quantum
fluctuations regime, the antisymmetric mode (best repre-
sented in terms of nearly-free fermions) exhibits an Ising-type
QPT [22,23]. Under the extra assumption of commensurate
boson density on the lattice, the symmetric mode exhibits
a Berezinskii-Kosterlitz-Thouless (BKT) transition [24,25]
from a Luttinger liquid (LL) to a Mott insulator. Consequently,
as a common parameter is tuned (e.g., Ec/EJ on the legs),
an intermediate phase can emerge between the two separate
critical points, with coexisting charge density wave (CDW)
order of the global charge and a SC order with interleg phase
locking.

What is the fate of this intermediate phase in the presence
of disorder? One possible scenario is the shrinking of this
phase and recovery of a singular SIT critical point. On the
other hand, disorder supports the formation of inhomogeneity
and thus stabilizes the coexistence of spatially separate re-
gions with distinct local order parameters [26]. Specifically
in our case, two different types of disorder effects should
be considered. The first type, resulting mainly from inhomo-
geneities in the charging and Josephson energies, maintains
the fermionic and bosonic sectors independently, but possi-
bly alters the nature and position of the respective critical
points. The other type of disorder may introduce coupling
terms between the two sectors which may profoundly change
the critical behavior of the combined boson-fermion system,
e.g., turning the continuous Ising transition into first order or

generating a novel multicritical point [27–29]. A dominant
effect of the latter type stems from the presence of random
impurities which induce spatial fluctuations in the chemical
potential along the ladder. As detailed below, we analyze
the interplay between both types of disorder and derive their
combined effect on the phase diagram.

The rest of this paper is organized as follows: In Sec. II we
introduce the model; in Sec. III we present the RG analysis
and main results; our concluding remarks are summarized
in Sec. IV. Finally, Appendices A through D are devoted to
technical details of our analysis.

II. THE MODEL

As a starting point, we consider the clean limit of a two-leg
bosonic ladder described by the Hamiltonian

H0 =
∫

dx[H1 + H2 + Hint], (1)

where x is a continuous coordinate along the leg direction (in
units of the lattice constant a), and the local terms are given
by

Hν = 1
2

[
Uρ2

ν + ρs(∂xφν )2
]

(ν = 1, 2) (2)

Hint = [−J cos (φ1 − φ2) + V ρ1ρ2]. (3)

Here U is the charge interaction and ρs the superfluid stiffness
within each leg, J is the interleg Josephson coupling and V is
the interleg charge interaction; ρν (x), φν (x) are, respectively,
the local charge-density fluctuation and phase operators on leg

245301-2



QUANTUM PHASES OF A WEAKLY DISORDERED … PHYSICAL REVIEW B 103, 245301 (2021)

ν. We further use the expansion [30]

ρν = − 1

π
∂xθν + ρ0

∑
p∈Z\0

ei·2p·(θν−πρ0x), (4)

where ∂xθν and φν are canonical conjugates, and ρ0 denotes
the uniform background charge density.

Since H0 obeys a Z2 symmetry to exchange between the
legs, its low-energy approximation can be decomposed into
independent symmetric (+) and antisymmetric (−) sectors
using the transformation

θ± = θ1 ± θ2√
2

, φ± = φ1 ± φ2√
2

. (5)

Accounting for the leading terms in Eq. (4) (see Appendix A
for details), this yields H0 = H+ + H− where each subsystem
independently exhibits a QPT tunable by a common parameter

of H0, e.g., K ∝
√

U
ρs

.

The symmetric part H+ is a sine-Gordon (SG) model:

H+ =
∫

dx[H(+)
LL + gcos(

√
8θ+ − 2πρ0x)],

H(+)
LL = u+

2π

(
K+ (∂xθ+)2 + 1

K+
(∂xφ+)2

)
(6)

which exhibits a Luttinger liquid (LL) behavior corresponding
to a gapless plasmon mode for generic values of ρ0. However
close to integer filling of the underlying lattice, a transition to
a Mott insulator occurs when the Luttinger parameter K+ ∼√

(U+V )
ρs

exceeds a critical value; this is a SIT where the SC

phase exhibits only a quasi-long-range order.
In contrast, H− describing the antisymmetric mode is a

self-dual SG model (SDSG) [31]

H− =
∫

dx[H(−)
LL − gφ cos

√
2φ− + gθ cos

√
8θ−],

H(−)
LL = u−

2π

(
K− (∂xθ−)2 + 1

K−
(∂xφ−)2

)
(7)

in which the competing phase-locking and charge-locking co-
sine terms arise from the corresponding two terms of Eq. (3).
In a wide range of parameters surrounding the self-duality
point K− = 2, gφ = gθ [accessible for U ∼ ρs in Eq. (2) and
J ∼ V ρ2

0 ], both of them are simultaneously relevant and the
SDSG is effectively described as two independent transverse-
field Ising models, one of which is highly massive [23,32].
The low-energy description is therefore given in terms of a
single pair of Majorana fields ξR, ξL:

H− =
∫

dx(ξR(−iu−∂x )ξR − ξL(−iu−∂x )ξL − i�ξRξL ) (8)

which indicates an Ising-type transition when the gap �

changes sign. This can be interpreted as a SIT as well: the
� > 0 phase [realized when J in Eq. (3) is sufficiently larger
than V ρ2

0 ] is phase locked (i.e., SC), while � < 0 (corre-
sponding to the opposite case) is a Mott insulator; both phases
are long-range ordered (with a gap |�|). Note that the nature
of CDW order in the insulator depends on the sign of V : For
V > 0, dipoles are formed on the rungs (θ− = ±π/

√
8), while

V < 0 favors equal charges on the two legs (θ− = 0).

We now introduce disorder resulting from random x-
dependent variations in the various parameters of the model.
We distinguish two types of disorder, as detailed below.

(a) Particle-hole preserving disorder. We first consider
randomness arising from spatial inhomogeneities in the
parameters U , ρs, J , and V of the original model Eqs. (2) and
(3) related to the charging and Josephson energies on the legs
and rungs of the ladder. Such corrections to the Hamiltonian
do not couple linearly to the density operators and hence do
not violate particle-hole symmetry when the chemical poten-
tial adjusts ρ0 to a commensurate filling. At the same time
this type of disorder maintains the Z2 symmetry of the model;
hence it does not couple the symmetric and antisymmetric
sectors and is ultimately manifested as randomness in the
parameters of H+, H− [Eqs. (6) and (8)]. Notably, since the
disorder is space dependent but not time dependent, it breaks
the Lorentz symmetry characterizing both low-energy degrees
of freedom; hence (as we show explicitly in the next section)
all the parameters including the velocities u± flow under RG.

The disorder in the symmetric sector is introduced as x-
dependent corrections to the parameters K+ , u+ , and g; all of
these can be assumed to originate from a term δHν (x) of the
form Eq. (2) with random charging energy δU (x) and super-
fluid stiffness δρs(x). We further assume that these random
corrections are the same on both legs ν = 1, 2 and correspond
to a static “white noise” characterized by the disorder averages

〈〈δU (x)〉〉 = 0, 〈〈δρs(x)〉〉 = 0

〈〈δU (x)δU (x′)〉〉 = DU δ(x − x′) (9)

〈〈δρs(x)δρs(x
′)〉〉 = Dsδ(x − x′).

As shown in the next section, these disorder terms renormalize
the parameters K+ , u+ of the quadratic part H(+)

LL in Eq. (6) but
are irrelevant under RG. More significant is their effect on the
cosine term, which we maintain as an independent disorder
term associated with random corrections to g:

Hg = 1

2

∫
dx(δg(x)ei

√
8θ+ + δg∗(x)e−i

√
8θ+ ), (10)

where the complex parameter δg(x) contains the oscillatory
phase shift of θ+ and is characterized by the disorder averages

〈〈δg(x)δg(x′)〉〉 = 〈〈δg(x)〉〉 = 0,

〈〈δg(x)δg∗(x′)〉〉 = Dgδ(x − x′). (11)

In the antisymmetric sector, the disorder characterized by
DU , Ds [Eq. (9)] combined with random fluctuations in the
rung interactions J , V generate x dependence in all the pa-
rameters of Eq. (7). However, within the regime of parameters
where the low-energy theory for H− is captured by Eq. (8),
we encode their most prominent contribution in a single
additional disorder parameter corresponding to spatially de-
pendent corrections to the mass �:

〈〈δ�(x)〉〉 = 0,

〈〈δ�(x)δ�(x′)〉〉 = D−δ(x − x′). (12)

Mapping to the Ising model, δ�(x) can be interpreted as a
random transverse field.

(b) Disordered chemical potential. We next consider ran-
domness in the chemical potential, arising, e.g., due to
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charged impurities in the system. However, to maintain the Z2

symmetry we assume the local potential δμ(x) to be identical
on the two legs. The leading term added to H0 of Eq. (1) is of
the form

Hη = 1

2

∑
ν

∫
dx(η(x)ei2θν + η∗(x)e−i2θν )

=
∫

dx(η(x)ei
√

2θ+ + η∗(x)e−i
√

2θ+ ) cos
√

2θ−, (13)

where η(x) is a complex random variable obeying

〈〈η(x)η(x′)〉〉 = 〈〈η(x)〉〉 = 0,

〈〈η(x)η∗(x′)〉〉 = Dηδ(x − x′). (14)

Distinctly from all the previous disorder terms, this introduces
a nontrivial coupling term between the symmetric and anti-
symmetric sectors of H0. In terms of their low-energy degrees
of freedom, it corresponds to a many-body boson-fermion
interaction, which in particular does not have a simple local
form in terms of the fermion fields of Eq. (8).

Accounting for all types of disorder introduced in (a) and
(b) as weak perturbations of H0, we next derive RG equations
in the spirit of the analysis described, e.g., in Ref. [33] (see
Appendix B for details). It is noteworthy that the special
case Dη = 0, which allows treatment of the ± sectors in-
dependently, indeed reduces the problem to models studied
elsewhere in the literature. However, the more generic case
where Dη is finite yields a set of coupled RG equations which
affects all parameters of the model and in particular generates
all other types of disorder (most prominently, Dg and D− ) even
when their bare values are zero. Below we sketch the main
steps and results of this RG analysis.

III. RG ANALYSIS AND MAIN RESULTS

The various disorder terms described in the previous sec-
tion affect the behavior of the system in different ways. We use
a perturbative momentum-shell RG method (see Appendix B
for details) in order to determine their effect on the system,
which will allow us to explore the different parts of the phase
diagram. We shall begin with the case Dη = 0 and analyze the
disorder terms of type (a), which affect each of the ± sectors
independently (Secs. III A and III B below); in Sec. III C we
introduce Dη �= 0 which couples the two sectors and yields
the full phase diagram.

A. Symmetric sector

First, we consider the symmetric sector H+. The clean part
is described by Eq. (6), to which we add three types of disor-
der: DU , Ds [Eq. (9)] and Dg [Eq. (10)]. The full Hamiltonian
for the symmetric sector acquires the form

H+ =
∫

dx[H(+)
LL + δU (x)(∂xθ+)2 (15)

+ δρs(x)(∂xφ+)2 + [δg(x)ei
√

8θ+ + H.c.]] ; (16)

note that here we assume a generic filling for which the
oscillatory cosine term in Eq. (6) can be eliminated. The
quadratic disorder parameters are better written in a dimen-

sionless form:

DU/s = DU/s

(2π )4u2
+
, (17)

where  is the upper momentum cutoff. Along with the defi-
nition from Ref. [33],

Dg = Dg

3u2
+
, (18)

one can write the RG equations for the symmetric sector:

dK+

d�
= 4

(
DsK

2
+ + Dg

K+
− DU

K2
+

)
K+

du+

d�
= − 4

(
DsK

2
+ + Dg

K+
+ DU

K2
+

)
u+

dDs/U

d�
= − Ds/U

dDg

d�
=

(
3 − 4

K+

)
Dg, (19)

where � is the logarithmic rescaling factor. One readily ob-
serves that the disorder in the quadratic terms (Ds/U ) is always
irrelevant, and so it just renormalizes the parameters K+ and
u+ (see Appendix C 1). The Luttinger parameter K+ can be
renormalized either upwards or downwards, while the velocity
is always corrected downwards—this results from breaking
the Lorenz invariance of the system. As these disorder terms
only contribute corrections to the parameters of the clean
model and are never relevant, in the forthcoming more com-
plex analysis we will ignore them and just use the effective
values of K+ , u+ .

On the contrary, Dg turns relevant at Kc = 4
3 . This critical

value might be modified due to Ds/U , but the general structure
is the same. The exact value depends on the parameters, but
around K+ = Kc one can find a critical manifold where the
symmetric sector undergoes a SIT. The superconducting phase
is a LL with power-law correlations which manifests zero
resistance only in the limit T → 0, and the insulating phase
is a disordered insulator, dominated by Dg.

B. Antisymmetric sector

Next, we turn to the antisymmetric sector H−. The clean
part of the Hamiltonian is given most generally by Eq. (7).
One should note that for very low values of K− (K− < 1), the
term gθ cos

√
8θ− turns irrelevant and the CDW order it tends

to induce is completely suppressed. In that case, the system
will be a gapped superconductor, where the relative phase φ−
is locked by the Josephson coupling. Similarly, for high values
of K− (K− > 4), the system is a gapped insulator with CDW
order parameter.

For values of K− in the intermediate regime between these
two extremes the system is well described by the fermionic
Hamiltonian Eq. (8), on which we focus. Apart from the
disorder terms Ds/U , whose effects we will include in the
definitions of u− and K− , here the dominant disorder will be
in the gap parameter �, i.e., D− defined in Eq. (12). This
disorder can be treated similarly to Dg, but as D− is always
relevant we account for second order contributions to get

245301-4



QUANTUM PHASES OF A WEAKLY DISORDERED … PHYSICAL REVIEW B 103, 245301 (2021)

FIG. 2. Left panel: Phase diagram of the antisymmetric sector for Dη = 0, as a function of the gap � and disorder in the gap D−. Here
u− = 1; the color code denotes �(� f ) obtained from the RG flow up to � f = 10. The black region corresponds to the disordered phase where
the perturbative analysis breaks down. Right panel: the same phase diagram, parametrized by the Luttinger parameter of the antisymmetric
sector K− ; the dependence of the gap on K− is monotonic but nonlinear, taken from Ref. [23]. In both panels, red is superconductor and blue
is insulator.

a more accurate description of the behavior. We define the
dimensionless disorder parameter

D− = D−
(2π )2u2

−
; (20)

along with the normalized gap δ ≡ �
u− 

one can write the

equations:

dD−
d�

=D− + 4

3

δ2

(1 + δ2)2
D2

−

du−

d�
= − D−

1 + δ2
u−

dδ

d�
=

(
1 − 2D−

1 + δ2

)
δ.

(21)

The above form hints towards a normalized disorder pa-
rameter, which accounts better for the simultaneous growth of
δ: D̃− ≡ D−

1+δ2 , that obeys the equation

dD̃−
d�

= D̃−
1 − (

1 − 16
3 D̃−

)
δ2

1 + δ2
. (22)

This yields a threshold value D̃− = 3
16 below which the disor-

der D̃− is less relevant than δ, and the system in dominated by
the clean limit (see further discussion in Sec. III C 2).

The resulting phase diagram is depicted in Fig. 2. For low
enough initial �,D− one finds that the disorder dominates in
a triangle in parameter space, |δ| � αD− with some constant
α. Higher initial values of D− introduce nonlinearity in the
behavior, but the qualitative behavior is the same—phase-
locked superconductor for large positive � (low K− ), disorder
for small � (intermediate K− ), and charge-locked insulator for
large negative � (high K− ).

The primary conclusion is that here, the SIT occurs via
an intermediate phase characterized by a wide distribution
of the gap parameter �, with tails in either signs. While a
full characterization of its behavior requires a nonperturbative
method, we interpret this phase as a Bose glass which exhibits
local CDW or SC order in random locations in space (and
likely develops to a Griffith’s phase in the strong disorder
limit). Interestingly, this T = 0 phase diagram resembles the
finite T characteristic of a clean Ising transition in 1+1 dimen-
sions, with D− providing the analog of temperature; a direct
transition from CDW to SC occurs only at the singular QCP
D− = � = 0.

C. Disordered coupling term

We next analyze the disorder term Hη [Eq. (13)], which
couples the ± sectors. As a basis for a perturbative RG analy-
sis of this term, we assume Dη  u2

±3 and take advantage of

the known correlations of the operators cos
√

2θ−, e±i
√

2θ+ in
their respective independent unperturbed states dictated by H±
[Eqs. (6) and (7)]. Notably, the former operator controlling the
coupling to the antisymmetric mode does not have a simple
representation in terms of the Fermions characterizing the
low-energy degrees of freedom for intermediate values of K−
[Eq. (8)]. However, its space-time correlations are well char-
acterized in terms of the order and disorder Ising fields [32]
and are crucially dependent on the sign of �. In particular, for
� > 0 where the antisymmetric sector is in the SC phase, its
correlations are exponentially decaying.

In the insulating phase of H− established for � < 0, the
disorder term Hη couples to a more relevant operator com-
pared to the SC phase. However, its ultimate effect on the
behavior of the system depends on an additional ingredient
of the model: the sign of the interleg interactions V [see
Eq. (3)] or equivalently the coefficient gθ in Eq. (7). As noted
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in Sec. II, in the clean limit this determines the charge order-
ing pattern on the rungs: For repulsive interactions (V > 0),
the charge field is locked at either one of the minima θ− =
±π/

√
8 for which 〈cos

√
2θ−〉 = 0; in the case of attractive

interactions (V < 0), θ− = 0, π/
√

2 yielding 〈cos
√

2θ−〉 �= 0,
and hence Hη couples to the total-charge mode via a highly
relevant operator cos

√
2θ+. We therefore separate these two

cases in our analysis.
We first consider the repulsive interaction case V > 0,

which turns out to yield a richer phase diagram. In this case,
cos

√
2θ− has no expectation value, and its correlators decay

exponentially. As a result, the only contribution of Hη to the
RG equations to leading (linear) order in Dη will be mani-
fested as shifts of the parameters g, gθ in the clean model. The
leading nontrivial contribution beyond that arises from fourth
order in the perturbation expansion; it can be interpreted
as a quenched disorder term of a higher scaling dimension
compared to all types of terms introduced in Sec. II and is
irrelevant in all the ordered phases of the Dη = 0 case (see
Appendix B for details). Consequently, the latter effect of a
finite Dη on the RG equations can be neglected.

To set up the derivation of RG equations at finite Dη, we
first define the dimensionless disorder parameter

Dη ≡ Dη

u23
; (23)

here a velocity scale u ≈ min {u+ , u−} is introduced, noting
that Dη couples to both sectors. As discussed above, the effect
of Dη on the RG flow strongly depends on the behavior of the
antisymmetric mode in the clean limit. We therefore consider
below three limits, classified most conveniently by the (bare)
value of the parameter K− : the bosonic superconductor, the
bosonic insulator, and the intermediate fermionic regime.

1. Bosonic superconductor (K− < 1)

This regime is established when the last term in Eq. (7) is
irrelevant, and H− reduces to a standard sine-Gordon model
dominated by the single cosine term describing Josephson
coupling on the rungs. The antisymmetric mode is then in
a gapped phase where the relative phase field φ− is locked
at φ− = 0; low-energy quantum fluctuations in φ− are well
described by a massive bosonic model. We note that this
behavior is not significantly altered even if randomness in the
mass is introduced (see Appendix D). As already noted, in this
case any operator of the form cos γ θ− coupling to the dual
field is exponentially irrelevant. As a result, the sole effect of
Dη is to provide corrections to the other parameters of the
model which can be absorbed in their bare values and hence
practically ignored.

2. Bosonic insulator (K− > 4)

In this regime of parameters, the last term in Eq. (7) is
dominant while the Josephson coupling on the rungs turns
irrelevant. As a result, one obtains a strong tendency for
charge locking in the antisymmetric sector at a CDW pattern
obeying 〈cos

√
8θ−〉 ≈ −1, and H− can be approximated by

a massive bosonic model with gap |�| (in terms of the def-
initions of Sec. II, � < 0). However, since at the same time
〈cos

√
2θ−〉 ≈ 0, the leading contribution to the RG equation

for the disorder term arises from order D2
η (see Appexdix B).

The linear order in Dη, on the other hand, generates terms
which can be regarded as corrections to the various parame-
ters of H0. Combining them all, we get the following set of
coupled equations:

dK+

d�
= 4

(
DsK

2
+ + 2Dg

K+
− DU

K2
+

)
K+ +

(
u+

u

)
Dη

du+

d�
= − 4

(
DsK

2
+ + 2Dg

u+
+ DU

K2
+

)
u+ −

(
u+

u

)
u+

K+
Dη

dK−

d�
= 4

(
DsK

2
− − DU

K2
−

)
K−

1 + δ2
+

(
u−

u

)
Dη

du−

d�
= − 4

(
DsK

2
− + DU

K2
−

)
u−

1 + δ2
−

(
u−

u

)
u−

K−
Dη

dδ

d�
= δ − δ

2/K− −1 u+

u−
Dη

dDU

d�
= − DU

dDs

d�
= − Ds

dDg

d�
=

(
3 − 4

K+

)
Dg + cD2

η

dDη

d�
=

(
3

2
− 2

K+
− 2

K− (1 + δ2)

)
Dη, (24)

where c is a constant of order unity. It is noteworthy that the
two bosonic descriptions mentioned above are valid approx-
imations even when both cosine terms are relevant, if one
of them has a significantly larger effect on the system, as
quantified by the gaps they induce [23]; see Appendix A.

3. Fermionic regime (intermediate values of K− )

In this regime where the clean part of the antisymmetric
sector is best approximated by the fermionic model Eq. (8),
the effect of Dη on the RG equations is similar in nature to
the previous case; the primary difference is that the operator
cos

√
8θ− which couples to the leading terms generated by

the disorder can be more conveniently expressed in terms
of fermion fields. This yields the following set of coupled
equations (see Appendix B for details):

dK+

d�
= 4

(
DsK

2
+ + 2Dg

K+
− DU

K2
+

)
K+ +

(
u+

u

)
Dη

du+

d�
= − 4

(
DsK

2
+ + 2Dg

K+
+ DU

K2
+

)
u+ −

(
u+

u

)
u+

K+
Dη

du−

d�
= − 4

(
DsK

2
−+DU

K2
−

)
u−

1 + δ2
−

(
u−

u

)
u−

K−
Dη− D−

1 + δ2
u−

dδ

d�
= δ − Cgθ

u+

u−
Dη − 2D−

1 + δ2
δ

dDU

d�
= − DU

dDs

d�
= − Ds
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FIG. 3. Phase diagrams as a function of K and Dη for V > 0, and different values of the ratio K+/K− . In both panels u+ = u− = 1, Dg =
D− = 0.002, gθ = 0.2, gφ = 0.05, and DU,s = 0. Left: K+/K− = 0.98; Right: K+/K− = 1.08. The titles of the phases match the definitions from
Fig. 1, Dis I+II is a phase where both disorder terms are relevant, and Dis II+SC is a potential intermediate phase where SC order in the
antisymmetric sector coexists with disorder in the symmetric sector.

dDg

d�
=

(
3 − 4

K+

)
Dg + c1D2

η

dD−
d�

=D− + 4

3

δ2

(1 + δ2)2
D2

− + c2D2
η

dDη

d�
=

(
1

2
− 2

K+

)
Dη. (25)

Here c1, c2 are constants of order unity; Cgθ
= ( 16πgθ

u− K−2 )
2/K− −1

2−2/K−

does not change significantly in the regime of parameters
where Eq. (25) is valid, so one can consider it as a constant
as well.

It is evident from the above two sets of equations that in
both cases, Dη turns relevant for high values K+ which exceed
the critical point (K+ = 4

3 ) for Dg to become relevant. Beyond
this critical point which indicates a localization transition in
the symmetric sector, the perturbative analysis breaks down,
leading to a rapid growth of K+ and consequently of Dη. We
therefore conclude that there is effectively a unique disordered
insulating phase. Within the framework of the weak-disorder
approximation, it is not possible to infer the precise nature of
the charge-density pattern on the rungs in this phase, though
it may survive locally in randomly distributed disconnected
domains.

It should be noted, however, that while Dη does not tune
a phase-transition separable from the one dominated by Dg,
its coupling to both the symmetric and antisymmetric sectors
generates a flow of all the other parameters [see Eqs. (24)
and (25)]. As a result, it can serve as the tuning parameter
for various transitions, as can be seen in Fig. 1. This figure
was obtained by setting the bare parameters to the fermionic
regime where the RG flow is determined by Eq. (25) and
exhibits a pronounced effect of Dη. We identify four distinct
phases, accessible, e.g., by tuning Dη upwards: For relatively
low values of Dη and K , the symmetric mode is a gapless LL

while the antisymmetric mode undergoes a transition from
a phase-locked SC phase to a CDW-ordered insulator via a
disordered intermediate phase, whose nature is described in
Sec. III B above; the fourth phase realized beyond a critical
line in the Dη-K plane is a disordered insulator, characterized
primarily by localization of the symmetric charge mode. Since
Dη couples the sectors, this will be the case in the antisymmet-
ric sector as well.

Although Fig. 1 captures the richness of the phase diagram
for typical parameters, tuning the parameters differently can
introduce other phases. Specifically, the tuning parameter

K+
K−

can change the order of the transitions: Dg may turn relevant
before D�. Two exemplary figures with different topology of
the phase-diagram can be seen in Fig. 3. It is suggestive that a
variety of distinct disordered phases are generated (see black
regions and different shades of gray in the figure).

Based on the weak-disorder approximation applied in our
study, one cannot reliably deduce the exact nature of these
phases. However, it appears that within the regime where a
disordered insulator is established in the symmetric sector,
some of the independent behavior of the antisymmetric sec-
tor still persists. In particular, there appears to be a regime
where D� is relevant and dominates the antisymmetric sector,
denoted by “Dis I+II” in Fig. 3; more interestingly, there is
potentially a mixed phase where the antisymmetric sector still
exhibits robust superconductivity, denoted “Dis II+SC” in the
figure.

We finally consider the crucially different case where the
interactions on the rungs of the ladder are attractive, V < 0.
The most significant effect of this change of sign is mani-
fested in the sign reversal of the parameter gθ in Eq. (7); it
is therefore equivalent to performing a shift θ− → θ− + π√

8
in the last cosine term in H− while maintaining the other
parts of the clean Hamiltonian the same. The resulting effect
on the behavior of Dη is dramatic: The CDW pattern in the
insulating phase of the antisymmetric sector favors θ− = 0,
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which corresponds to equal charge densities on the two legs
of the ladder. In this ground state, the operator cos

√
2θ− in

Hη [Eq. (13)] has a finite expectation value.
As a result, Dη has a much larger contribution and in the

charge-locked phase of the antisymmetric mode yields the
following RG equation:

dDη

d�
=

(
3 − 1

K+

)
Dη. (26)

This corresponds to a highly relevant disorder, with criti-
cal Luttinger parameter of K+c = 1

3 . We conclude that once
the antisymmetric sector transitions into the insulating phase
(which happens for K− way above this critical value), Dη turns
relevant. Notably, since its effect on the other disorder param-
eters is similar to what we have obtained in the V > 0 case,
this induces their divergence and consequently the formation
of a disordered insulating phase. The prominent change in the
phase diagram as compared to Fig. 1 is that the intermediate
phase manifesting CDW order on the rungs will disappear; the
sole intermediate phase separating the SC from a disordered
insulator will be the mixed phase marked by a gray region in
Fig. 1, where randomness in established in the antisymmetric
sector while the symmetric mode remains gapless.

IV. DISCUSSION

In this work we have discussed a two-leg ladder model of a
strongly fluctuating superconductor in the presence of various
types of quenched disorder and examined the resulting T = 0
phases. We found that by tuning a parameter K—which is con-
trolled by the ratio of charging and Josephson energies—or
the disorder strength, the system typically undergoes a se-
quence of quantum phase transitions rather than a direct SIT.
Between the two extreme phases—a SC phase manifesting
robust phase locking on the rungs and a disordered insulator—
at least one intermediate phase is formed. Particularly, in the
case of repulsive interactions across the rungs, two distinct
intermediate phases are identified: one ordered and one disor-
dered. The ordered phase is characterized by a dipolar CDW
order on the rungs, while the disordered intermediate phase
exhibits Griffith’s singularities interpolating between phase
and charge locking on the rungs; in both these mixed phases,
as well as in the SC phase, the longitudinal plasmon mode
(corresponding to fluctuations in the total charge) maintains
a gapless LL behavior and perfect conduction (R → 0) is
achieved in the limit T = 0. At the opposite extreme, a full-
fledged localization of this mode occurs only in the disordered
insulator phase (see Fig. 1).

The richness of this phase diagram rests on the symmetry
between the two legs, which restricts spatial variations in
the parameters to the longitudinal direction. This ensures a
relative resilience to weak disorder of the separability be-
tween antisymmetric (transverse) and symmetric (longitudi-
nal) phase/charge fluctuation modes. As a consequence, in the
former sector we observe traces of behavior characteristic to
the Ising model in a random transverse field [21]. Most promi-
nently, in the case where the interleg charge interaction is re-
pulsive, the system supports the two (duality-related) gapped
phases reminiscent of the clean Ising model, separated by a
mixed phase where segments of phase-locked rungs are em-
bedded in a background of charge-locked rungs or vice versa.

Our findings suggest that engineered Josephson ladders in
the strong quantum-fluctuations regime (EC ∼ EJ ) can serve
as a compelling platform for simulating the physics of the
random-field Ising model, as well as coupled boson-fermion
systems in 1D—as long as they possess the above mentioned
Z2 symmetry. Moreover, provided separate contacts to the
edges of the two legs are accessible, probing of the various
phases is possible via measurement of different conductance
components [23]. In practice, accurate control of the param-
eters in Josephson arrays which ensures a perfect symmetry
is quite challenging. However, as long as symmetry-breaking
corrections are small, they do not affect the model quali-
tatively. We note that the effect of uniform Z2-symmetry
breaking terms was discussed in earlier literature, showing
that they can be accounted for perturbatively. Specifically,
small corrections to the quadratic terms are marginal [23,34].
A more relevant perturbation is imposed by a uniform volt-
age bias between the two legs, which (following a duality
transformation) is equivalent to a perpendicular magnetic field
as introduced in Ref. [22]. Once again, there is a range
of stability where such corrections merely shift the criti-
cal lines but the phase diagram maintains its structure. The
random counterparts of the above mentioned terms are less
relevant. We therefore conclude that a weakly broken Z2

symmetry will not affect our main results, save for quan-
titative modifications (e.g., the CDW phase in Fig. 1 will
somewhat shrink).

An alternative realization of the model, which allows us to
better control and even fully guarantee the Z2 symmetry, can
potentially be achieved in a platform where the discrete de-
gree of freedom is not spatial but rather some internal degree
of freedom (e.g., a spin, valley, or orbital index). The most
promising candidate is a (bosonic) cold atom system, where
a “synthetic dimension” is introduced via manipulations of
internal degrees of freedom of the atoms [35–37]. Another
suggestive platform can be served by van der Waals materi-
als with long-range disorder, where valley symmetry can be
controlled to a reasonable degree. Such realization in bilayer
graphene subjected to a strong magnetic field was discussed
in Ref. [23]. The rapid progress in design and fabrication of
hybrid layered material in recent years offers a richer variety
of systems with suitable ingredients, e.g., a graphene-black
phosphorus bilayer, which exhibits a nearly flat quasi-1D band
structure [38]; a design of realizations for our model in such
platforms is left for future studies.

As a concluding remark, it would be interesting to test our
results and their limitations in a numerical study. For that pur-
pose, it would be useful to utilize an equivalent lattice model
efficiently tractable by standard numerical methods such as
classical Monte Carlo or density matrix renormalization group
(DMRG). We propose two general routes to this end: First,
it is possible to map our quantum model into an equivalent
classical spin model in 2D and address it in Monte Carlo,
similarly to the study of a single Josephson chain [39]. An
alternative route could be mapping to a model of interacting-
fermions ladder, where competing interactions can be tuned to
generate emergent bosons (tightly-bound pairs) with repulsive
interactions. Such models are tractable by DMRG—see, e.g.,
Refs. [40,41] (in the latter, compelling evidence for the Ising
transition of the clean limit was already seen).
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APPENDIX A: DERIVATION OF THE LOW-ENERGY
THEORY

The ladder model in the clean limit is described in Eqs. (1)–
(3). In this Appendix we detail the derivation of its low-energy
approximation, Eqs. (6)–(8), used as a basis for the remains of
the analysis.

As a first stage, in the definition of ρν in terms of θν

[Eq. (4)] we keep only the leading harmonics, coming from
p = ±1. The Hamiltonian acquires the structure

Hν = U

2π2
(∂xθν )2 + ρs

2
(∂xφν ) − 2ρ0U

π
∂xθν cos (2(θν − πρ0x)) + 2Uρ2

0 cos (2(θν − πρ0x))2

Hint = V

π2
∂xθ1∂xθ2 − 2ρ0V

π
[∂xθ1 cos (2(θ2 − πρ0x)) + ∂xθ2 cos (2(θ1 − πρ0x))] (A1)

+ 4ρ2
0V cos (2(θ1 − πρ0x)) cos (2(θ2 − πρ0x)).

The terms combining gradients with cosines must vanish, as they are not symmetric to inversion (x �→ −x). We rewrite Eq. (A1)
in terms of θ±, φ± as defined in Eq. (5), describing the symmetric (+) and antisymmetric (−) sectors to get the following
Hamiltonian:

H =
∫

dx

[
U + V

2π2
(∂xθ+)2 + ρs

2
(∂xφ+)2 + 2ρ2

0V cos(
√

8θ+ − 4πρ0x)

+ U − V

2
(∂xθ−)2 + ρs

2
(∂xφ−)2 + 2ρ2

0V cos(
√

8θ−) − J cos(
√

2φ−)

+ Uρ2
0 cos(

√
8θ+ +

√
8θ− − 4πρ0x) + Uρ2

0 cos(
√

8θ+ −
√

8θ− − 4πρ0x)

]
. (A2)

The first two lines correspond to Eqs. (6) and (7) in the main
text. The terms on the third line are less relevant, being higher
harmonics which we already neglect in the density operator
ρν .

We now identify the quadratic part of each sector as a

Luttinger liquid, with u± = √
(U ± V )ρs and K± =

√
U±V
π2ρs

.

We see that for the bare values, K+ > K− for repulsive inter-
actions, and K+ < K− for attractive interactions. However, as
we show in Appendix C 2, disorder terms of the type DU/s

modify each of these parameters independently; therefore,
this hierarchy of the Luttinger parameters is not necessarily
maintained once disorder is introduced.

To further analyze the antisymmetric sector, a slight modi-
fication of the standard fermionization [30] is helpful:

ψr = Ur√
2πa

e−i[rφ− (x)/
√

2−√
2θ−(x)] (A3)

with r = R, L for right- and left-moving fermions, a the lattice
constant, and Ur the Klein factor. For K− = 2, one can exactly
map Eq. (7) to noninteracting fermions:

ψ
†
R(−i∂x )ψR − ψ

†
L (−i∂x )ψL = 2(∂xθ−)2 + (∂xφ− )2

2

π

ψ
†
RψL + H.c. = 1

πa
cos(

√
2φ−) (A4)

ψLψR + H.c. = 1

πa
cos(

√
8θ−).

Now one can decompose these fermions to Majorana (real)
fields

ψr = ξr1 + iξr2√
2

(A5)

and the Hamiltonian decouples into two independent sec-
tors: one with ξ↑R ≡ ξ1R and ξ↑L ≡ ξ2L, and the other with
ξ↓R ≡ ξ2R and ξ↓L ≡ ξ1L. The Hamiltonian in terms of these
Majorana fields is

H =
∑
ν=�

∫
dxu− [ξRν (−i∂x )ξRν − ξLν (−i∂x )ξLν]

− i�νξRνξLν . (A6)

In the case of K− = 2, �� = �θ ± �φ where �θ,φ are
linear in gθ,φ , the coefficients of the cosines in Eq. (7).
However, if K− �= 2, there is an interaction term ∝(K− −
2)ξ↑Rξ↑Lξ↓Rξ↓L. Provided there is a separation of energy
scales between the � sectors, this can be treated in mean
field; the effective gaps have the same structure but with
�θ,φ the gap of the corresponding sine-Gordon model. This
approximation is self-consistent if �θ ≈ �φ (�↓  �↑), in
which case integrating over the ↑ sector is justified and yields
the low-energy theory. In this case, the effective Hamiltonian
is dominated by the sector with the smaller gap �↓ [Eq. (8)
in the main text where we have dropped the subscript ↓ on
�], which undergoes a transition as �↓ changes sign. This
allows us to analyze the behavior of the transition in the
antisymmetric sector and identify it as an Ising transition [23].
Note that �↑ and �↓ change their classification when the

245301-9



EYAL WALACH AND EFRAT SHIMSHONI PHYSICAL REVIEW B 103, 245301 (2021)

interaction term gθ ∝ V changes its sign; we define them such
that |�↑| = |�θ | + |�φ| and so �↑ is always the larger in
magnitude.

We next derive the disorder term Hη originating from ran-
domness in the chemical potential μ(x). Assuming a perfect
symmetry between the legs and employing the leading har-
monics in the expansion Eq. (4), the coupling to μ(x) is given
by

Hμ = −
∫

dxμ(x)[ρ1(x) + ρ2(x)]

=
∫

dxμ(x)

[
1

π
(∂xθ1 + ∂xθ2)

− 2ρ0(cos(2θ1 − 2πρ0x) − cos(2θ2 − 2πρ0x))

]

=
∫

dx

√
2μ(x)

π
∂xθ+

−
∫

dx4ρ0μ(x) cos(
√

2θ+ − 2πρ0x) cos(
√

2θ−).

(A7)

The first term can be “gauged out” with the shift by a random
phase:

θ+ �→ θ+ + ϕ(x), ϕ(x) ≡
√

2π

(U + V )

∫ x

μ(x) (A8)

which yields

cos(
√

8θ+ − 4πρ0x) �→ 1
2 ei(

√
8θ+−4πρ0x+√

8ϕ(x)) + H.c.
(A9)

Substituting in the cosine of Eq. (6), we obtain

2ρ2
0Vei(

√
8ϕ(x)−4πρ0x) ≡ δg(x), (A10)

where the correlations of δg are approximated to be totally
noncorrelated. Note that the amplitude g might also change
because of randomness in V .

The second term of Hμ [Eq. (A7)] is different. With the
random phase from the first term, we can write it as

Hη =
∫

dx[η(x)ei
√

2θ+ + H.c.] cos(
√

2θ−),

η(x) ≡ 4ρ0μ(x)ei(
√

2ϕ(x)−2πρ0x). (A11)

Here η(x) has both random amplitude and random phase, so
we once again approximate it to be totally noncorrelated.

APPENDIX B: DERIVATION OF THE RG EQUATIONS

In this Appendix we will discuss the method used to derive
the RG equations in this work, presented in Sec. III. We
particularly focus on the contribution of the disorder term in
chemical potential (Dη) in different regimes of the parameter
space, primarily on the regime where the antisymmetric sector
is well described by Majorana fields.

Generally, we consider a disorder term with the operator
Ô(x, τ ) of the form

Sdis =
∫

dxdτ [δgO(x)Ô(x, τ )] (B1)

in which the random coefficient δgO(x) obeys 〈〈δgO〉〉 = 0 and
the short-range correlations:

〈〈δgO(x)δgO(x′)〉〉 = DOδ(x − x′), (B2)

where 〈〈· · · 〉〉 stands for statistical averaging over the realiza-
tions of the disorder. We substitute this as a term in the action,
write the expression for the partition function, and expand
to second order in Sdis. Averaging over disorder and using
Eq. (B2) leads to the main contribution:〈〈

S2
dis

〉〉 =
∫

dxdτdτ ′DOÔ(x, τ )Ô(x, τ ′) (B3)

and one should subtract the disconnected terms, resulting
from 〈〈Sdis〉〉2.

To derive RG equations, we write the action describing
our model in momentum space. Now we would like to ap-
ply momentum-sell renormalization group, so we begin by
introducing a high momentum cutoff  and splitting the fields
representing the free part of the action to their slow and fast
momentum components:

ξ (r) = ξ<(r) + ξ>(r)

ξ<(r) = 1√
Lβ

∑
||q||<′

eiq·rξ (q) (B4)

ξ>(r) = 1√
Lβ

∑
′<||q||<

eiq·rξ (q),

where ξ stands for either of the Majorana fields ξR, ξL or the
bosonic fields φ+, θ+; here ′ = e−d� is a slightly smaller
momentum cutoff, q = ( ω

u , k), r = (uτ, x), and ||q||2 = ω2

u2 +
k2 with the appropriate velocity u; L and β are, respectively,
the length of the system and the inverse temperature.

If the operator Ô(x, τ ) can be directly written in terms of
the fields in the free action, in our case θ+, φ+, ξR, ξL, one
can integrate over the fast modes (θ>

+ , φ>
+ , ξ>

R , ξ>
L ) to get an

effective expression for the action of the slow modes. Below
we demonstrate how this procedure can be implemented and
show that this effective expression can be cast in the following
form: ∫

dxdτdτ ′eγ d�DOÔ<(x, τ )Ô<(x, τ ′)

+
∑

i

∫
dxdταid�Ô<

i (x, τ ), (B5)

where {Ôi} is a set of local operators and αi are coefficients
proportional to DO; the exponent γ is related to the scaling di-
mension of Ô; finally, Ô< is just Ô with all the fields replaced
with their “slow” low-momentum component.

This effective action is defined to fulfill the following equa-
tion:

e−S<
eff =

∫
Dξ>e−S, (B6)

where we integrate over fast modes of all fields. To obtain
S<

eff, we expand the exponent around the quadratic part of
the action S0, which results with a perturbative description of
the way DO scales and its effects on the other parameters of
the model.
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We begin with a simple example, the case of � disorder [Eqs. (8) and (12)], where δgO(x) = δ�(x) and Ô = iξRξL. The
disorder-averaged expression for S2

dis is then given by

〈〈
S2

dis

〉〉 = −D�

∫
dxdτdτ ′ξR(x, τ )ξL(x, τ )ξR(x, τ ′)ξL(x, τ ′)

= −D�

∫
d3kd2ωξR(k1, ω1)ξL(k2,−ω1)ξR(k3, ω3)ξL(−k1 − k2 − k3,−ω3). (B7)

In momentum space we split the five-dimensional integral to different regimes according to the decomposition in Eq. (B4). That
means the integration regime is split into sixteen different parts, as each momentum vector can be in the smaller ball (|q| < ′,
“slow”) or on the momentum shell (′ < |q| < , “fast”). However, expectation values over an odd number of fields vanish,
which means a large part of the terms cancel. Among those remaining we can use some symmetries and essentially get the
following expression:〈〈〈

S2
�

〉
>

〉〉 = −LβD�

∫
d5qξRξLξRξL − 2βD�

∫
dkdωξR(k, ω)ξL(−k,−ω)

∮
dk′dω′〈ξR(k′, ω′)ξL(−k′,−ω′)〉>

− 2D�

∫
dkdωξR(k, ω)ξL(−k,−ω)

∮
dk′〈ξL(k′,−ω)ξR(−k′, ω)〉>

+ D�

∫
dkdωξR(k, ω)ξR(−k,−ω)

∮
dk′〈ξL(k′, ω)ξL(−k′,−ω)〉>

+ D�

∫
dkdωξL(k, ω)ξL(−k,−ω)

∮
dk′〈ξR(k′, ω)ξR(−k′,−ω)〉> − Lβ

∮
d5q〈ξRξLξRξL〉>, (B8)

where d5q = dk1dk2dk3dω1dω3, and the integrals
∫

dk and
∫

dω are over the smaller momentum ball |qi| < ′, while those
denoted by

∮
dkdω′ are over the shell;

∮
dk′ means that (k′, ω) should be on the momentum shell. Also, note we have used the

fact that 〈ξ (q)ξ (−q′)〉 = f (q)δq,q′ .
Among the resulting six terms, the first one will give us the rescaling of D�, the next four will be corrections to local terms like

the second line of Eq. (B5), and the last one is a noninteresting constant. The expectation values are all over fast modes and with
respect to the quadratic action S− (the antisymmetric part of S0). They are known, and using the approximation ω/u−, k  

all the integrals are quite simple as well.
We now note that Eq. (B8) yields the desired correction to S<

eff [Eq. (B6)] only after re-exponentiating. To leading order in
D�, the correction is given by 1

2 (〈S2
dis〉 − 〈Sdis〉2) where the disconnected terms cancel. After performing the integrals over the

momentum shell and transforming back to the real-space representation, we obtain〈〈〈
S2

dis

〉
>

〉〉 − 〈〈〈Sdis〉2
>〉〉

2
= − D�

2

∫
dxdτdτ ′ξ<

R (τ )ξ<
L (τ )ξ<

R (τ ′)ξ<
L (τ ′) − 2D��

u2−(1 + (�/u−)2)

(
1

′ − 1



) ∫
dxdτ iξ<

R ξ<
L

− D�

2u2−(1 + (�/u−)2)

(
1

′ − 1



) ∫
dxdτ (ξ<

R ∂τ ξ
<
R + ξ<

L ∂τ ξ
<
L ). (B9)

The last step in the RG procedure is to rescale the coordinates and fields. In momentum space, we rewrite q �→ qed� for q to
restore the original cutoff . The differentials dx, dτ correspondingly are multiplied by a factor ed� each, and ξ are multiplied by
eyξ d� where yξ is their scaling dimension. In the clean model, yξ = − 1

2 ; however, here there is a correction of order D� required
to compensate for the last term in Eq. (B9), adjusting the overall coefficient of the term ξ∂τ ξ in the effective action to have a
coefficient unity. Substituting these rescaling factors, the leading term with coupling to four fermion fields becomes

e(3+4yξ )d�D�

∫
dxdτdτ ′ξR(x, τ )ξL(x, τ )ξR(x, τ ′)ξL(x, τ ′) (B10)

which gives the RG equation for D�. The equations for �

and u− arise from the appropriate rescaling of the fields and
coordinates in the last two terms of (B9). This concludes our
derivation of Eq. (21) in the main text.

The above derivation relied on the ability to switch be-
tween real space and momentum space in a straightforward
manner. This is useful for additional disorder terms that are
quadratic in the free fields of S0, such as δU (x)(∂xθ+)2 in
the symmetric sector. However, when there are nonquadratic
operators involved, the procedure is more complicated as the

coupling between fast and slow fields is tighter, and a simple
representation of Ô in (k, ω) space is lacking.

To deal with this type of disorder terms, certain approx-
imations will need to be implemented in the procedure of
integrating the fast modes. We employ the strategy described
below for a general disorder term. Subsequently, we apply this
approach to analyze the chemical potential disorder term Hη

[Eq. (13)].
We begin by splitting the double-time integral of Eq. (B3)

to two different terms, τ ≈ τ ′ and τ �≈ τ ′, where the former
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accounts for time differences �τ ≡ τ − τ ′ within the short-
time cutoff (u)−1:

S2
dis =

∫
τ �≈τ ′

dxdτdτ ′DOÔ(x, τ )Ô(x, τ ′)

+
∫

τ≈τ ′
dxdτdτ ′DOÔ(x, τ )Ô(x, τ ′). (B11)

Generally, different local operators Ôi are generated from
local expansions of the term Ô(x, τ ′):

Ô(x, τ ′) = Ô(x, τ ) + (�τ )∂τ Ô(x, τ ) + · · · . (B12)

One can expand to leading orders in �τ , resulting in a set
of local operators (independent of τ ′) multiplied by some
function of �τ :

S2
dis =

∫
τ �≈τ ′

dxdτdτ ′DOÔ(x, τ )Ô(x, τ ′)

+
∑

i

∫
τ≈τ ′

dxdτd (�τ )DOFi(�τ )Ôi(x, τ ). (B13)

We now turn to integrating over the fast modes. In the
first term, we know that the correlation of the fast modes
〈Ô>(τ )Ô>(τ ′)〉 decays, so that under the approximation τ �≈
τ ′ averaging over the fast modes will not depend on �τ .
The second term is already composed only from local terms
by construction. We therefore only need to calculate local
expectation values. The result can be brought to the following
structure:

S<2
dis = eγOd�

∫
τ �≈τ ′

dxdτdτ ′DOÔ<(x, τ )Ô<(x, τ ′)

+
∑

i

eγid�

∫
τ≈τ ′

dxdτd (�τ )DOFi(�τ )Ô<
i (x, τ ),

(B14)

where γi and γO are related to the scaling dimensions of the
operators, as will be seen in what follows.

To restore back the effective S2
dis in the slow modes sector

to the form of (B5), one must unite the τ �≈ τ ′ and τ ≈ τ ′
contributions to one term. A part of the local term is “ab-
sorbed” back in the nonlocal term to reconstruct the structure
of a disorder term. Following integration over �τ we obtain

S<2
dis = eγOd�

∫
dxdτdτ ′DOÔ<(x, τ )Ô<(x, τ ′)

+
∑

i

(eγid� − eγOd�)
∫

dxdτDOCiÔ
<
i (x, τ ), (B15)

where Ci ≡ ∫
d (�τ )Fi(�τ ), in which the integral is bounded

by the cutoff (u)−1 and yields a nonuniversal constant.
The exact value of Ci is not important—only its sign and
dependence on the parameters of the model. Note that eγid� −
eγOd� ≈ (γi − γO)d�, so this can be understood as a correction
to the coefficient of Ôi (an operator that typically exists in the
free action S0) of order d�.

To complete the RG transformation, we have to restore the
cutoff . Similarly to the discussion of the quadratic case,
dx and dτ will each be multiplied by a factor of ed�. In the
limit d� → 0, this rescaling can be neglected in the second
line of Eq. (B15). However, in the first, nonlocal term it

yields an overall prefactor e(3+γO )d�; we interpret the resulting
coefficient as the renormalized disorder. Noting that γO < 0,
the exponent yDO

≡ 3 + γO is the scaling dimension of the dis-
order operator, which will determine the condition for it to be
relevant. The second, local term provides a set of corrections
to the parameters of S0.

The last step is re-exponentiation—once again leading to
subtraction of the disconnected term 〈Sdis〉2. This yields the
final form Eq. (B5).

To demonstrate the general procedure described above,
we now briefly review the analysis the disorder term Hg

[Eq. (10)]. The operator in this case is Ô = cos
√

8θ+. We
will use intermediate calculations that match Appendix E of
Ref. [30], and the final result will be identical to Ref. [33].
Averaging over the fast modes we have

〈Ô(x, τ )〉> = e− 2
K Ô<(x, τ ) (B16)

and therefore γO = − 4
K , so the scaling of Dg is dDg

d�
= (3 −

4
K )Dg.

Looking at the short-range regime τ ≈ τ ′, the product
Ô(τ )Ô(τ ′) can be simplified using trigonometrical identities
and the expansion Eq. (B12). The result yields two local terms
in the leading orders:

Ô1(τ ) = cos
√

32θ+

Ô2(τ ) = (∂τ θ+)2. (B17)

The operator Ô1 is not very interesting, as its dimension is
very low, 2 − 8

K , and so it is irrelevant in our regime of
interest. The operator Ô2, on the other hand, will lead to the
corrections to u+ and K+ as they appear in (24) and (25).

We next turn to apply this approach for the analysis of Hη

[Eq. (13)], where Ô = cos(
√

2θ+) cos(
√

2θ−). As we follow
the same procedure, to linear order in Dη one straightfor-
wardly obtains the corrections to various terms which couple
to local operators Ôi. However, the RG transformation of the
disorder term itself poses a challenge: As long as the gap
� in the antisymmetric sector is finite, the correlations of
cos(

√
2θ−) never decay as a power law for �τ → ∞. Rather,

employing the decomposition

cos
√

2θ− = 〈cos
√

2θ−〉+ : cos
√

2θ− : (B18)

the second term has exponentially decaying correlations. For
V > 0, the first term vanishes (cos

√
2θ− couples to the

disorder field in the Ising representation [32]); hence Ô is
exponentially irrelevant to the present order in the perturbative
expansion of Hη.

To derive RG flow equations for Dη, we therefore
need to consider the next order in the perturbative expan-
sion. This yields a disorder term coupling to the operator
cos

√
8θ−, which has a simple representation in terms

of either the fermion fields ξR,L or the massive bosonic
field θ−. Indeed, the fourth order term S4

dis (with a co-
efficient proportional to D2

η) contains a specific four-point
combination Ô(x, τ )Ô(x, τ )Ô(x, τ ′)Ô(x, τ ′) which possesses
power-law decaying correlations. Using cos2(

√
2θ−) = 1

2 [1 +
cos(

√
8θ−)], this contributes several terms: Some of them

are local and can be interpreted as corrections to δ and g
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(the latter renormalizing Dg as well); the leading nonlocal
(“disorderlike”) term is therefore associated with the opera-
tor ˆ̃O = cos(

√
8θ+(x, τ )) cos(

√
8θ−(x, τ )), with a coefficient

∝D2
η.

Proceeding with the analysis of the latter disorder term is
made possible by implementing the approximate representa-
tion of cos(

√
8θ±) in terms of the free fields and explicitly

evaluating 〈 〉>. In particular, the operator cos(
√

8θ+) is al-
ready included in Hg and yields the same scaling exponent;
the scaling dimension of cos(

√
8θ−) can be inferred from

either the fermionic or the massive bosonic representations,
depending on the value of K− (see main text). This yields the
following scaling dimensions:

yDη
=

{
1
2 − 2

K+
fermionic behavior

3
2 − 2

K+
− 2

K− (1+δ2 ) bosonic behavior
(B19)

with δ the dimensionless gap in the bosonic regime. Note that
in any case, Dη is always less relevant than Dg; hence the
emergence of a disordered insulating phase is dominated by
the critical value of Dg and is only indirectly dependent on Dη

via the corrections it generates to the other parameters.
We now comment on the contribution to the RG equations

coming from linear order in Dη. These arise from corrections
to the coefficients of the following local operators {Ôi}:

Ô1(τ ) = (∂τ θ+)2

Ô2(τ ) = cos
√

8θ− (B20)

Ô3(τ ) = (∂τ θ−)2

these result in the contribution of Dη to Eqs. (24) and (25).
We finally note that in the regime where the antisymmet-

ric sector is a gapped superconductor, any operator which
contains nontrivial factors of cos γ θ− (with arbitrary γ ) is
exponentially irrelevant and contributes nothing to any order
in Dη. The only contributions come from terms in the expan-
sion that couple only to θ+, and therefore, at least to leading
(second) order, the effect of Dη is just creating a shift in Dg:

Dg → Deff
g = Dg + αD2

η. (B21)

For this reason, deep in the SC phase Hη can be ignored
altogether and the ± sectors are effectively decoupled.

APPENDIX C: ANALYTIC SOLUTIONS
OF THE RG EQUATIONS

The set of equations described in Eq. (25) is coupled,
and an analytic solution will be complicated if it even exists.
However, some special cases can be helpful to understand the
type of flow expected in each phase.

1. Quadratic Disorder

As discussed in Sec. III A of the main text, the dis-
order in quadratic terms of the symmetric (gapless) sector
δU (x)(∂xθ+)2, δρs(x)(∂xφ+)2 is always irrelevant, and there-
fore we have not discussed it in detail in the main text.
However, in the presence of this disorder alone one can ex-
actly solve the equations and understand its effect on the
system.

The equations for the disorder itself are simple:

dDU/s

d�
= −DU/s (C1)

so the solution is just an exponent

DU/s(�) = D0
U/se

−�. (C2)

This can be substituted in the equations for K+ , u+ :

dK+

d�
= 4

(
D0

s K2
+ − D0

U

K2
+

)
e−�K+

du+

d�
= − 4

(
D0

s K2
+ + D0

U

K2
+

)
e−�u+ . (C3)

Generally solving these equations is hard, but to leading
order in DU/s the renormalization of K+ inside the round
brackets can be neglected. The resulting flow is of the
form dQ

d�
= Ae−�Q, with the solution Q(�) = Q0eA·(1−e−� ). The

asymptotic values (at � → ∞) are

u+ (∞) =u+e
−4(D0

s K2
++D0

U
K2+

)

K+ (∞) =K+e
4(D0

s K2
+−D0

U
K2+

)
.

(C4)

As this flow converges very fast, we generally ignored it and
assumed the values of K+ and u+ we were using are the stable
ones (in terms of DU/s).

One should also consider the effect of these disorder terms
on the antisymmetric sector. Generally the effect should be
similar but adding a factor of (1 + δ2) complicates the cal-
culations. We can note that qualitatively, the effect on the
antisymmetric sector will be weaker. This is what gives us
the option to tune the ratio

K+
K−

to be above or below 1, in-

dependently of the sign of V (which does constrain the bare
values)—a strong Ds term will push the ratio up, and a strong
DU term will push it down.

2. Antisymmetric Sector

The disorder in � in the antisymmetric sector is special, as
D− always diverges: dD−

d�
> D−, which indicates an exponen-

tial divergence. Yet, there is an ordered phase in the sector: As
D− is the variance in the dimensionless gap δ, if

√
D−  δ

the randomness in the gap is actually small compared to the
average gap δ, and the clean limit is effectively recovered.
Indeed, in the RG equations D− is always divided by 1 + δ2.

As diverging D− is not a good indicator for the nature
of the phase, one should look instead on the “normalized
disorder” parameter D̃− = D−

1+δ2 defined in Sec. III B, which
obeys Eq. (22) in the case Dη = 0. The RG equations for the
velocity u− and δ become

du−

d�
= −D̃−u− ,

dδ

d�
= (1 − 2D̃−)δ. (C5)

Therefore, diverging D̃− will lead to u− , δ → 0, which char-
acterizes a disordered phase. However, from Eq. (22) it is clear
that D̃− = 3

16 is a turning point. If D̃− > 3
16 , dD̃−

d�
> 0 and the

disorder will diverge. On the other hand, if D̃− < 3
16 , there is
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a critical value of δ above which D̃− will flow downwards and
turn irrelevant: δc = 1

1−16/3D̃−
.

As a rule of thumb, for low initial values there is no strong
coupling between δ and D̃− (no linear contributions from one
parameter on the other) and the main question is what will
happen first—either δ will reach a value of order 1 or D̃−
will approach the critical value 3

16 or close to it. As δ and D̃−
scale the same close to the point (δ = 0, D̃− = 0), one expects
linear critical lines yielding the V shape D̃− ∝ |δ|, as can be
seen in Fig. 2. We finally note that to get the right panel of
this figure, one may use the explicit K− dependence of � (e.g.,
Eq. (D2) or Eqs. (25)–(27) in [23]); this leads to the curving
of the phase boundary in the top and bottom of the figure.

APPENDIX D: BOSONS WITH A RANDOM MASS

In this Appendix we consider a type of disorder which
was not discussed in the main text: randomness in the gap
characterizing the massive bosonic regimes of the antisym-
metric sector. Specifically, deep in the superconducting phase,
one can write the following effective Hamiltonian to describe
fluctuations in the relative phase φ−:

H− = u−

2π

∫
dx

[
K− (∂xθ−) + 1

K−
(∂xφ−)2 + �2φ2

−

]
, (D1)

where we have replaced gφ cos φ− with the gap term �2φ2
−

following the gap equation for a sine-Gordon model [30]:

�

u−
=

(
2π2K−gφ

2u−

) 1
2−K−/2

. (D2)

As � is affected by various parameters like u− , K− , and gφ ,
once either of them develops randomness it must also fluc-
tuate in space. We therefore replace � �→ � + δ�(x), with
〈〈δ�(x)δ�(x′)〉〉 = Dφδ(x − x′).

Defining the dimensionless parameters Dφ = πDφ

u2
− 

, δ =
�

u− 
and performing an analysis along the lines described in

Appendix B, the RG equations to leading order in Dφ are
given by

dδ

d�
= δ

(
1 − 8K−Dφ

1 + δ2

)
dDφ

d�
=Dφ (D3)

which can flow either to (δ = 0,Dφ = ∞) or to (δ =
∞,Dφ = ∞). The former is a disordered superconduc-
tor, with strong randomness in the gap—some kind of
vortex glass, perhaps [42]; the exact nature cannot be de-
termined from this approximate, perturbative approach. The
latter case obeys Dφ

δ
→ Const. < 1, which means that the

width of the distribution of δ gets smaller compared to δ

itself.
This behavior exists, of course, in the bosonic insulator

as well. However, it will never change the structure of the
phase diagram, as it does not affect the fermionic interme-
diate sector. The superconducting phase, the intermediate
disordered phase, and the intermediate ordered phase will
all exist, and the main effect of this disorder in θ will
be just inside the disordered insulating phase, where Dη is
dominating anyway and drives the system to a disordered
insulator state.
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