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Analytic expression for the charge carried by a locally excited Bloch state
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We consider the time evolution of Bloch electrons after a local excitation, like an interaction with a focused
laser pulse that irradiates only a part of the sample. The disturbance caused by the excitation propagates along the
sample towards detectors. We focus on the measurable time integral of the usually rapidly oscillating current. In
the long time limit this integral is the total charge that is displaced by the excitation. We develop an analytic way
for calculating this charge. The results are verified using an analytic example with quadratic dispersion in one
dimension. Additionally, numerical calculations are also performed in order to visualize the relevant physical
processes in a wide band gap material that is excited by a laser pulse.
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I. INTRODUCTION

Quantum mechanical particles moving in periodic poten-
tials are of interest since the advent of quantum theory. The
standard example is clearly the dynamics of electrons in a
crystal lattice, but new, mainly artificial systems have also
appeared more recently. These include, e.g., periodic waveg-
uide structures [1,2], periodic dielectric systems [3], or optical
superlattices [4,5]. The stationary states of these systems, the
Bloch states, are delocalized with their spatial extension being
the same as that of the whole sample. Although it is possible
to excite the complete system in a spatially uniform way, it is
more realistic to consider an interaction, e.g., with an external
field that involves only a part of the sample. (This does not
necessarily mean that the dipole approximation is invalid,
e.g., the linear size of the focal spot for a laser beam in the
visible range is at least three orders of magnitude larger than
typical solid state lattice constants.) The spatially localized
excitation produces disturbances (quantum mechanical wave
packets) that propagate away the interaction area. In the fol-
lowing we focus on the dynamics of these wave packets. Our
results based on Bloch states provide building blocks for the
description of more general initial states.

Although the methods to be presented here have various
applications, our main motivation and the context of the pre-
sentation will be the interaction of solids with pulsed laser
fields. Laser pulses impinging on solid state targets can in-
duce currents, even in dielectrics, as demonstrated in Ref.
[6]. Pulsed sources can produce bursts of electromagnetic
radiation with a duration in the femtosecond domain, thus the
interaction is finite not only in space, but also in time. For
time-dependent excitations, optical methods offer arguably
the shortest available switching times [7].

On the other hand, currently available detectors cannot
resolve such fast dynamics. It is only the time integral of the

*foldi@physx.u-szeged.hu

light-induced current (i.e., the charge displaced by the laser
pulse) that can be measured. Considering a light-induced,
moving electron wave packet, one can calculate the corre-
sponding time-dependent current that flows through a given,
fixed surface. By integrating this current, the charge that can
be collected along the surface is obtained. This method is rela-
tively straightforward, although the actual calculations usually
can only be performed numerically. Since it is the calcula-
tion of the time evolution that is numerically expensive, it
is worth obtaining the charge without the explicit need of
the time-dependent wave functions, as allowed by a Fourier-
transform-based method to be presented here.

Considering the light-induced process itself, various ap-
proaches can be used for calculating the dynamics. There
are related time-dependent numerical methods based on the
single-particle Schrödinger equation [8–10], Green’s func-
tions [11], and semiconductor Bloch equations [12–17]
(possibly supplemented by terms analogous to that of the
Boltzmann equation for interband dynamics [18]) are also
found to be effective. However, the charge displaced by
the laser pulse is typically detected considerably after the
pulse and far away from the interaction area. In other words,
the laser pulse creates a nonequilibrium charge distribution,
the free time evolution (when the pulse is over) of which is
to be calculated in order to determine the displaced charge.
Obviously when the external field is zero, there are no issues
that are related to the choice of the electromagnetic gauge
[19,20].

The complete description of the problem would require a
numerically demanding multiparticle model, including elec-
tron correlations. However, as it is shown, e.g., by Refs.
[21–26], single-electron calculations can adequately repro-
duce the steady state quantum transport properties of various
systems, and dynamical models with time-dependent bias or
external fields are also successful in this regime [11,27,28].
In view of this, as a first step, in the following we also apply
a single-electron model. We assume that the states that result
from the local optical excitation of electrons are known and
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they are described by a superposition of Bloch states. This
initial condition is used for the analytic determination of the
charge displaced by the laser pulse. In this picture the sum
of the contributions corresponding to all Bloch states that are
populated before the arrival of the laser pulse provides the
net charge displaced by the laser pulse. A similar summation
was shown to lead [29] to an elegant, easily computable ex-
pression for the transferred charge in terms of higher order
susceptibilities. (But, by necessity, without the insight to the
electron dynamics to be provided here.) Besides the context
outlined above, a simplified version of our method (with plane
waves instead of Bloch states) can be applied, e.g., for a par-
ticle beam that propagates in free space with low momentum
uncertainty, see, e.g., Refs. [30–33].

In the following, in Sec. II we outline the problem, the
analytic solution of which is given in Sec. III. The results are
compared to analytically solvable and numerical examples in
Sec. IV. Conclusions are drawn in Sec. V.

II. MOTIVATION AND STATEMENT OF THE PROBLEM

For calculating the current I (T ) that flows through a bal-
listic sample (e.g., InAlAs/InGaAs based heterostructure) at
a temperature T, a widely used method [21] is based on the
expression

I (T ) =
∫

i(E ) f (E, T )dE, (1)

where integration is over the possible electron energies E,

while f (E, T ) is the Fermi function and i(E ) denotes the
contribution of states with energy E to the net current. (Since
these currents are usually measured in the output leads, we
omitted the spatial arguments here.) That is, for static external
interactions (caused by, e.g., gate voltages), the currents car-
ried by the energy eigenfunctions are to be calculated. (These
states—due to the possible external gates—are generally not
Bloch states, and the corresponding currents are usually cal-
culated using the Landauer-Büttiker [34,35] method.)

For time-dependent excitations, a similar expression holds:

I (T, t, r) =
∫

i(E, t, r) f (E, T )dE, (2)

but in this case i(E, t, r) denotes the current that is carried
by states that are injected in the sample at energy E [11].
[I (T, t, r), as indicated by the arguments, generally depends
on both space and time.] Without external influence (no gate
voltages, no laser excitation), these are also energy eigenstates
in the sample itself, with appropriate (transparent) boundary
conditions. This emphasizes the role of Bloch states in calcu-
lating the time-dependent net current.

Considering optical excitation, the sampling time of state-
of-the-art charge detectors can be by orders of magnitude
longer than the characteristic time of charge oscillations. In
order to calculate experimentally measurable results, we are
to determine the charges displaced by the laser pulse in the
long time limit. As we demonstrate, the assumption t → ∞
renders the problem analytically solvable.

Let us consider an electron described by a Bloch state

�n(k, r) = 1√
N

un(k, r)eikr. (3)

Since in the following the reciprocal space will be considered
to be continuous, we wrote k as an argument, while n denotes
the band index. We use the convention that the lattice periodic
parts of the Bloch states are normalized in a unit cell of
volume Vc, i.e.,∫

Vc

u∗
n′ (k, r)un(k, r)d3r = δnn′ . (4)

This means that the constant N = V/Vc appearing in �n(k, r)
provides the normalization of the Bloch states over the com-
plete crystal volume, V. Note that with this normalization
condition, the dimension of the wave function (m−3/2) is
carried by the periodic part un(k, r) of the Bloch states.

In view of the beginning of this section, it is worth focusing
on a single Bloch state. Let �n0 (k0, r) denote the state that is
being excited locally, e.g., by a laser pulse. Assuming that the
exciting interaction has a finite duration, after the excitation,
the state of the electron can be written generally as

�(r, t ) = �n0 (k0, r, t ) + �(r, t ), (5)

i.e., we can separate the time evolution of the initial state. This
is motivated by the intention of focusing on effects caused
by the laser pulse, i.e., on the state �(r, t ) that emerges as
a consequence of the light-matter interaction. Additionally,
if a solid state system was in thermal equilibrium before the
interaction with the laser pulse, the net current carried by the
states �n0 (k0, r, t ) and �n0 (−k0, r, t ) would always be zero.

In the following we consider �(r, t ) as a given, known
complex valued function. In other words, we concentrate on
the time evolution after the pulse (when the external electric
field is zero). In view of this, it is natural to consider the end of
the laser excitation as t = 0. For t > 0, since �n0 (k0, r, t ) is
an eigenfunction of the field-free Hamiltonian of the system,
we have

�n0 (k0, r, t ) = �n0 (k0, r, 0) e−i
En0 (k0 )

h̄ t

= �n0 (k0, r, 0) e−iωn0 (k0 )t , (6)

where En0 (k) = h̄ωn0 (k) denotes the dispersion of the n0th
band. Now it is convenient to expand �(r, t = 0) also in the
basis of Bloch states:

�(r, t = 0) =
∑

n

∫
BZ

φn(k)�n(k, r)d3k, (7)

where φn(k) denotes the “expansion coefficients,” and the
integral runs over the first Brillouin zone. Note that the nor-
malizability of the Bloch states (3) requires us to consider
a finite sample, when the reciprocal space contains densely
situated, but discrete points. Above we applied the usual ap-
proximation of replacing a sum over the discrete points by an
integral.

The expansion (7) leads to

�(r, t ) =
∑

n

∫
BZ

φn(k)e−iωn (k)t�n(k, r)d3k. (8)

The usual nonrelativistic, field-free probability current
density is given by

j(r, t ) = h̄

m
Im {�∗(r, t ) ∇�(r, t )}. (9)
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By substituting the decomposition (5) into the equation above, we can separate three different terms. For example, for the x
component of this current density we have

jx(r, t ) = h̄

m
Im

{
�∗

n0
(k0, r, t )

∂�n0 (k0, r, t )

∂x

}
︸ ︷︷ ︸

j0(r,t )

+ h̄

m
Im

{
�∗(r, t )

∂�(r, t )

∂x

}
︸ ︷︷ ︸

j�(r,t )

+ h̄

m
Im

{
�∗

n0
(k0, r, t )

∂�(r, t )

∂x
+ �∗(r, t )

∂�n0 (r, t )

∂x

}
︸ ︷︷ ︸

jc (r,t )

. (10)

Here the probability current density j0(r, t ) corresponds to
�n0 (k0, r, t ), j�(r, t ) belongs to �(r, t ), while jc(r, t ) is the
cross term. (For the sake of brevity, we omitted the index x
here.) The probability current I (x, t ) flowing through a surface
that is parallel to the y-z plane is the integral of jx (10)
along the surface. Clearly the probability current density and
the charge current density are proportional. For the sake of
simplicity, we use the term “charge” for the time integral of
the probability current I.

We assume that the detectors start collecting charges at
t = 0, that is, the measured charge is zero everywhere at this
time instant (and before). The charge Q0 originating from j0
is linearly increasing/decreasing in time at any given position
of the detection plane. [However, in solid state targets, this
will not lead to a detectable charge at all, since the constant,
equilibrium j0 is exactly compensated by a current related
to the Bloch state �n0 (−k0, r, t ).] We are to determine the
additional charge that stems from the presence of �(r, t ). That
is, we will calculate the difference:

Qd (x, t → ∞) = Qd (x)

=
∫ ∞

0
I (x, t ) − I0(x, t ) dt

=
∫ ∞

0
I�(x, t ) dt︸ ︷︷ ︸
Q�(x)

+
∫ ∞

0
Ic(x, t ) dt︸ ︷︷ ︸
Qc (x)

. (11)

For the sake of simplicity, above we assumed that the detec-
tion plane can be described as x being fixed. Generalization
for differently oriented detection planes is straightforward.

III. ANALYTIC SOLUTION

A. The general case in one dimension

Although there is no fundamental difficulty in performing
the calculations in three dimensions, it is more transparent
to consider the problem in one dimension (1D) only. This
approach allows us to see the most important conceptual
steps without the need of performing multidimensional inte-
grals. The generalization of the calculations to be presented
below to the three-dimensional case can be found in the
Appendix.

In 1D there is no need to perform spatial integration along
the “detection surface,” which reduces to a single point in this

case. Let us start with Q�(x):

Q�(x) = h̄

m
Im

{∑
n,n′

∫ ∞

0

∫
BZ

∫
BZ

e−i[ωn′ (k′ )−ωn(k)]t

× φ∗
n (k)φn′ (k′)�∗

n (k, x)
∂�n′ (k′, x)

∂x
dk dk′ dt

}
.

(12)

The integrals can be simplified using the identity∫ ∞

0
e−i[ωn′ (k′ )−ωn(k)]t dt = πδ[ωn′ (k′) − ωn(k)]

− i

ωn′ (k′) − ωn(k)
, (13)

where a Dirac-delta distribution appears and a Cauchy princi-
ple value is understood on the right-hand side. Let us use the
notation Q�(x) = Q′

�(x) + Q′′
�(x), where Q′

�(x) corresponds
to the case when the first term of Eq. (13) is being inserted into
Eq. (12), while the principal value integral appears in Q′′

�(x).
In order to proceed, we need some pieces of information

regarding the dispersion relation of the system. By assum-
ing direct band gaps, δ[ωn′ (k′) − ωn(k)] does not give any
contribution for different band indices n and n′. (This cer-
tainly holds in 1D, but as we show in the Appendix, it is
also true in three-dimensional calculations.) Clearly the con-
dition ωn(k′) = ωn(k) trivially holds for k = k′, but this is not
the only possibility. For example, ωn(k) = ωn(−k) for Bloch
electrons. For the sake of simplicity, in the following we will
consider only these two cases. This leads to

Q′
�(x) = h̄

m
Im

{
π

∑
n

∫
BZ

|φn(k)|2
|ω′

n(k)| �∗
n (k, x)

∂�n(k, x)

∂x
dk

+π
∑

n

∫
BZ

φ∗
n (k)φn(−k)

|ω′
n(−k)| �∗

n (k, x)
∂�n(−k, x)

∂x
dk

}
,

(14)

where ω′
n(k) = ωn(k′ )

∂k′ |k′=k, i.e., the velocity in the nth band
at k. Since �n(−k, x) = �∗

n (k, x), the imaginary part of the
second term above is zero, thus it does not give contribution
to Q�. Additionally, it is worth averaging Q� over a unit cell
of length a that contains x, by calculating

Q′
�(x) = 1

a

∫ x+a/2

x−a/2
Q′

�(s)ds. (15)
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This averaging allows us to introduce the band velocity ω′
n(k).

The known expectation value of the momentum in a Bloch
state is∫ L/2

−L/2
�∗

n (k, x)(−ih̄)
∂�n(k, x)

∂x
dx = mω′

n(k). (16)

As it can be shown easily, by integrating over a unit cell only
(instead of the whole 1D crystal of length L), we obtain a
result that is less by a factor of N, that is, by the number of unit
cells in the crystal [see Eqs. (3) and (4) for the normalization]:

h̄

m

∫ a/2

−a/2
�∗

n (k, x)
∂�n(k, x)

∂x
dx = i

N
ω′

n(k). (17)

Substituting this result into the expression for Q′
�, finally we

obtain

Q′
� = π

L

∑
n

∫
BZ

sgn[ω′
n(k)]|φn(k)|2 dk, (18)

where L = Na were used. Q′
� is independent of x, which is a

consequence of Eq. (17).
The integral in Q′′

� with respect to k′ can also be simplified,
provided we can use reasonable assumptions on the analytic
properties of the integrand as a complex function. Clearly
when, e.g., a numerical calculation provides the coefficients
φn(k), there is no strict way of extending the integrand to the
whole complex plane. However, in dipole approximation “all
transitions are vertical.” When the excitation is local, but the
interaction volume is much larger than a unit cell, a similar
result is expected, i.e., a narrow final distribution around k0.

Practically we may assume that the modulus of the “expansion
coefficients” |φn(k)| has a finite support in k for all bands.
This allows us to extend the integration limits to ±∞ along
the real axis and consider closing the contour. To this end
we are to investigate the term exp(ik′x) which is the plane
wave part of �n(k′, x). For positive values of x, if k′ has
positive imaginary part, this term exponentially decreases as
Im(k′) → ∞. If this is the dominant term in the integrand, we
can close the contour on the upper half plane. (Let us denote
this contour by 	+.) While being reasonable, at this point
this is certainly an assumption. (Numerical results, however,
support this assumption, see the next section.) By closing he
contour we obtain

Q′′
�(x) = Im

{
−ih̄

m

∑
n,n′

∫
BZ

∮
	+

φ∗
n (k)φn′ (k′)

ωn′ (k′) − ωn(k)

× �∗
n (k, x)

∂�n′ (k′, x)

∂x
dk′ dk

}

= Im

{∑
n,n′

∫
BZ

∮
	+

N (k, k′, x)

ωn′ (k′) − ωn(k)
dk′ dk

}
. (19)

For n = n′, the integrand has two poles (k′ = ±k) along
the integration path (on the real axis). Assuming that these
poles are simple, they can be accounted for by calculat-
ing iπ times the corresponding residue N (k, k, x)/ω′

n(k) and
N (k,−k, x)/ω′

n(−k). When n �= n′, and we consider the case
of direct band gaps, there is no real solution k′ of the equation
ωn′ (k′) = ωn(k). There can be poles, however, in the upper

half plane, but their contributions vanish for large positive
values of x, which correspond to the physically reasonable
scenario of distant detectors. In this case we have

Q′′
�(x0) = h̄

m
Im

{
π

∑
n

∫
BZ

|φn(k)|2
ω′

n(k)
�∗

n (k, x)
∂�n(k, x)

∂x
dk

+π
∑

n

∫
BZ

φ∗
n (k)φn(−k)

ω′
n(−k)

�∗
n (k, x)

∂�n(−k, x)

∂x
dk

}
,

(20)

which is the same as Eq. (14) except from the denominator.
The imaginary part of the second term is zero also in this
case. Following the same steps that led us to Eq. (18) from
Eq. (14), we can calculate a cell-averaged charge Q′′

�. Com-
bining with Eq. (18), we have, for large positive values of
x:

Q�(x → ∞) = π

L

(∑
n

∫
BZ

(1 + sgn[ω′(k)]) |φn(k)|2 dk

)

= 2π

L

∑
n

∫ +
|φn(k)|2 dk, (21)

where the symbol
∫ + refers to integration over the domain

where ω′
n(k) is positive. Similarly, for negative, but large

magnitude values of x (when we can close the contour on the
lower half plane leading to a clockwise oriented integration
path) we obtain

Q�(x → −∞) = −2π

L

∑
n

∫ −
|φn(k)|2 dk. (22)

These are very intuitive results, telling us that the charge
carried by a laser-induced wave packet �(x) in the positive
(negative) direction is proportional to its part that corresponds
to positive (negative) band velocities. Additionally, the contri-
butions of different bands are found to be decoupled.

Considering the term Qc, which stems from the cross term
of the the initial state and the wave packet �(x), we can follow
similar steps as above, and obtain

Qc(x → ∞) = 4π

L
Re {φn0 (k0)}, (23)

provided ω′
n0

(k0) > 0 and zero otherwise. [Let us recall that
the initial state is �n0 (k0, x).] Similarly, for x → −∞ we have
the nonzero contribution of

Qc(x → −∞) = −4π

L
Re {φn0 (k0)} (24)

only for negative initial band velocity ω′
n0

(k0). Combining the
last formulas of Q�(x) and Qc(x) above leads to the final
result. For x → ∞ we have

Qd (x → ∞) =2π

L

∑
n

∫ +
|φn(k)|2 dk

+
{

4π
L Re {φn0 (k0)} if ω′

n0
(k0) > 0,

0 otherwise,

(25)
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and for the opposite, negative direction we have

Qd (x → −∞) = − 2π

L

∑
n

∫ −
|φn(k)|2 dk

−
{

4π
L Re {φn0 (k0)} if ω′

n0
(k0) < 0,

0 otherwise.
(26)

These equations mean that in the x → ∞ (x → −∞) limit:
(i) only the part of the laser-induced “disturbance” �(x) plays
a role that corresponds to positive (negative) band velocities,
and (ii) the initial state �n0 (k0, x) contributes to the measur-
able charge also only if its band velocity is positive (negative).
This provides a very transparent physical picture.

Let us note that in the calculations above the expansion
coefficients φn(k) played a crucial rule. It is not only the
magnitudes of these complex valued functions that influence
the final result, their phases are equally important. When cal-
culating the laser-induced dynamics (which is not the topic
of the current paper), these phases strongly depend on the
phases of the matrix elements of the light-matter interaction
term in the Hamiltonian. This underlines the importance of
the phases of the “transition dipole matrix elements” during
the light-induced time evolution [36].

B. The case of quadratic dispersion

An important example when not only the limits x → ±∞
can be obtained analytically, is the case of quadratic disper-
sion. For the sake of simplicity we present the calculations
for a single band. As we shall see, by using effective mass
approximation [when ω(k) = h̄

2m∗ k2 + ω0] there is no need for
assuming analytic properties of the integrands, simple alge-
braic calculations suffice. Since we focus on a single band,
we can drop the band indices and write the initial state as

�(x, 0) = �0(x) + �(x) = 1√
L

[
eik0x +

∫ ∞

−∞
eikxφ(k)dk

]
.

(27)

Note that here we assumed that the distribution φ(k) is nar-
row enough so that the dispersion is quadratic all over the
support of φ(k). This allows us to safely extend the limits
of the integral to ±∞. For the sake of comparison, we kept
the normalization convention given by Eqs. (3) and (4). This
means that the inverse of the Fourier transform above is given
by

φ(k) =
√

L

2π

∫ ∞

−∞
e−ikx�(x)dx. (28)

With these conventions, the real and reciprocal space proba-
bility densities read ρ(x) = |�(x, 0)|2, ρ̃(k) = 2π/L|φ(k)|2.
(The dimensions of these 1D quantities are the usual, i.e., 1/m
and m, respectively.)

In this case there is no need to perform averaging over
a unit cell, we can calculate the position dependent charges
directly. Most terms can be evaluated in a straightforward way,

it is only

Q′′
�(x) = 2m∗

Lm
Im

{∫ ∞

−∞

∫ ∞

−∞
ik′ φ

∗(k)φ(k′)
(k′2 − k2)

ei(k′−k)x dk dk′
}

(29)

that requires special attention. Now we can use the par-
tial fraction decomposition k′/(k′2 − k2) = 1

2 [1/(k − k′) −
1/(k + k′)]. As it can be seen, the imaginary part of the
integral with a denominator of k + k′ vanishes. That is,

Q′′
�(x) = − m∗

Lm
Im

{∫ ∞

−∞

∫ ∞

−∞
i
φ∗(k)φ(k′)

k′ − k
ei(k′−k)x dk dk′

}
.

(30)

This result can be simplified further by using the following
identity (which can be obtained by using the Fourier transform
of the Heaviside step function):

ei(k′−k)x

k′ − k
= −iπδ(k′ − k) + i

∫ x

−∞
ei(k′−k)s ds. (31)

This leads to the following integrals:

Q′′
�(x) = − πm∗

Lm

∫ ∞

−∞
|φ(k′)|2 dk′

+ m∗

Lm

∫ x

−∞

∣∣∣∣
∫ ∞

−∞
φ(k)eiks dk

∣∣∣∣2

ds. (32)

Combining this with the expression for Q′
�(x) leads to

Q�(x) = −m∗

m

∫ 0

−∞
ρ̃(k) dk + m∗

m

∫ x

−∞
ρ(s) ds. (33)

Note that in spite of the apparent distinguished role of negative
values of k above, the sign of k has no physical significance,
it is simply a consequence of a choice in (31). Using a similar
identity with different signs and integration limits, we would
have obtained

Q�(x) = m∗

m

∫ ∞

0
ρ̃(k) dk − m∗

m

∫ ∞

x
ρ(s) ds, (34)

which is equivalent to Eq. (33). For the sake of definiteness,
Eq. (33) will be used in the following.

Following similar steps, the charge related to the cross term
can also be calculated. Finally, we obtain

Qd (x) = − m∗

m

∫ −
ρ̃(k) dk + m∗

m

∫ x

−∞
ρ(s) ds

+ 2Re

{
1√
L

∫ x

−∞
�(x′) e−k0x′

dx′
}

−
{

4π
L Re{φ(k0)} if k0 < 0,

0 otherwise.
(35)

As direct calculations in the x → ±∞ limits show, this result
is consistent with the ones given by Eqs. (25) and (26).

IV. ANALYTIC AND NUMERICAL EXAMPLES

The expressions (25), (26), and (35) mean the central re-
sults of this paper. In this section we present examples that
verify these analytic findings and also point out their possible
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applications. First we consider the case of a Gaussian wave
packet, for which the time integral of the corresponding cur-
rent can be calculated in a way that is completely independent
from equations we obtained so far. This allows a direct, ana-
lytic verification of our results for a single band. For two bands
we calculate numerically the current that is induced by a laser
pulse that excites an initial Bloch state. In 1D it is also possible
to obtain Qd by direct time domain integration, which, for
distances far away the interaction area, is directly comparable
to the results given by Eqs. (25) and (26). The agreement that
we found is convincing.

A. Gaussian wave packet

Wave packets, the time evolution of which are well known,
allow the calculation of the charge Qd analytically, i.e., in-
dependently from the previous calculations. This offers a
possibility to validate our result (35) that is related to the case
of quadratic dispersion and plane wave expansion (27) for a
single band. Along this line, let us consider the case when the
additional wave packet �(x) is a normalized Gaussian with
uncertainty σx and expectation value xG:

�(x) = 1√√
2πσx

exp

(
− (x − xG)2

4σ 2
x

+ i kG (x − xG)

)
.

(36)
Let us emphasize that there is little chance that, e.g., laser ex-
citation creates a wave packet which is exactly a Gaussian, it
is the analyticity of the time evolution that makes this example
worth investigating.

The charge carried by the Gaussian (36) in the t → ∞ limit
can be computed in two different ways. We can use the wave
function in momentum representation and apply Eq. (35), but
the known time evaluation of a Gaussian wave packet together
with the continuity equation also provides an analytic result.
Both approaches lead to

Q�(x) = 1

2
erf

(
x − xG√

2σx

)
+ 1

2
erf

(
kG√
2σk

)
. (37)

We also obtain the same expression for the cross-term Qc

using both methods:

Qc(x) =
√

2π√√
2πσk

exp

(
− (k0 − kG)2

4σ 2
k

)

×
[

sgn(k0) cos (k0 xG)

+ Re

{
e−ik0 xG erf

(
x − xG

2σx
+ i

k0 − kG

2σk

)}]
, (38)

where k0 corresponds to the initial plane wave. Clearly the
final result Qd (x) is the sum of Eqs. (37) and (38).

We illustrate the formulas by considering four different
cases, when both xG and kG are either close to zero or have
considerably larger values, see Fig. 1. As a common feature
of the results shown by Fig. 2, we can observe that there
is a relatively sudden (as wide as σx) change in Qd around
x = xG. This effect is related to Q�, since this is the range
where the first term in Eq. (37) changes the most significantly.

-4

-2

 0
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 4
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 10

-4 -2  0  2  4  6  8  10

(a) (b)

(c) (d)

2σk

2σx

k G
/σ

k

xG/σx

FIG. 1. In order to illustrate the effect of different parameters on
Qd , we consider Gaussian wave packets that are superimposed on
an initial plane wave. The figure shows the parameters of the four
different Gaussians to be investigated.

This term is dominant when kG is close to zero, therefore Qd

changes sign in cases (c) and (d). We can also see that the
magnitude of Qd is the largest along the line described by
k0 = kG. This is a consequence of the Gaussian factor in Qc.
The oscillatory patterns that are more pronounced for cases (b)
and (d) also originate from the cross term Qc, they are induced
by the factors cos(k0xG). This explains why these oscillations
are less visible in cases (a) and (c) when the “wavelength” of
the oscillations is longer and only a few periods appear before
they decay.
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FIG. 2. Qd for Gaussian wave packets with different parameters.
(a)–(d) Cases that are denoted by the same letters in Fig. 1. The plots
were drawn using Eq. (35), but direct analytical calculations lead to
exactly the same result.
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B. Numerical example: External pulse induced
localized excitations

In the previous subsection an example was presented
when—for a single band—Eq. (35) was reproduced using a
conventional method. Now we carry out numerical calcula-
tions that can illustrate a practical application of our approach:
optical excitation of a solid state sample.

The fact that strong, short laser pulses can lead to temporal
“metallization” [37] and displace charges in a dielectric, was
demonstrated in Ref. [6]. In this experiment, the edge of a
silica prism was illuminated using a short (sub-4-fs) pulse at
λ ≈ 750 nm with peak field strength of 1.7 × 1010 V/m. The
generated charges were collected by gold contacts and their
time integral was measured by a current-voltage converter.
When the polarization of the electric field of the pulse was per-
pendicular to the slit between the gold contacts, the generated
charge carriers entered the contacts and produced measurable
charges that depended on the carrier-envelope phase (CEP)
of the pulse. More recently, considerably weaker pulses were
also shown to produce similar effects. As reported in [38], for
pulse energies in the pJ regime, an optimized lock-in amplifi-
cation technique can also lead to CEP-dependent signals.

For the sake of simplicity, we use a two-band, 1D model
for the solid. Realistically we assume that the external elec-
tromagnetic pulse is localized and has a finite duration.
Previously we assumed that the initial time instant for the
field-free time evolution is t = 0, therefore the pulse starts
at t = −τ and after t = 0 the external field is zero. In the
interaction region, the Hamiltonian describing the dynamics
is given by

H (x, t ) = 1

2m
[p − eA(x, t )]2 + U (x, t ), (39)

where e and m denote the charge and mass of the electron,
p = −ih̄ ∂

∂x is the canonical momentum. U means the periodic
effective potential of the crystal lattice, while A(x, t ) is the
vector potential corresponding to the electric field E (x, t ) of
the laser. [We assume an electric field that is linearly polarized
along the x axis, and its only nonzero component is denoted
by E (x, t ).] Outside the interaction area, A(x, t ) is assumed to
be zero [implying E (x, t ) = − ∂

∂t A(x, t ) = 0], i.e., H = H0 =
p2

2m + U (x) in this region. The parameters [39] of the periodic
effective potential U (x) are chosen so as to produce a band
gap of 3.2 eV (that corresponds to the case of ZnO, which is
often a target material in experiments aiming the generation of
high-order harmonics [40]). The explicit form of the potential
is the following:

U (x) = −U0

2∑
i=1

cos2 [π (x − xi )/�], (40)

where U (a)
0 = 25 eV, �(a)/a = 0.15, x(a)

1 /a = 0.3, and
x(a)

2 /a = 0.607 [39]. Working on a finite spatial grid, the
Bloch states �n(k, x) = 1/

√
N exp(ikx)un(k, x) can be ob-

tained using the eigenvalue equation

− h̄2

2m

(
d

dx
+ ik

)2

un(k, x) + U (x)un(k, x) = En(k)un(k, x).

(41)
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FIG. 3. Numerically calculated time evolution of the cell-
averaged particle density as induced by a localized laser pulse acting
in the x ∈ [−l/2, l/2] interval, with l = 100a. The periodic potential
for the 1D model is given by Eq. (40). The dotted vertical lines
indicate the boundaries of the interaction area. The initial Bloch state
corresponds to k0a = 0.1, the peak electric field is 1 GV/m and
τ = 20π/ω0 [see Eq. (42)]. Note that using the present normaliza-
tion, ρ(x) is constant unity before the excitation. The figure clearly
shows the formation of a structured wave packet the propagation of
which leads to Qd that will be shown in Fig. 4.

Although it is known that in order to obtain a qualita-
tively correct model, many bands are needed [10], for our
current demonstrative purposes it is sufficient to use the two
bands (denoted by n = 0, 1) that are closest to the band gap
of 3.2 eV. The next step is to choose an initial Bloch state
�0(k0, x) in the valence band and to solve the time-dependent
Schrödinger equation in the presence of the laser pulse. To this
end we need the waveform of the electric field, which can be
obtained using

A(x, t ) = A0 cos2
(π

l
x
)

sin2
(π

τ
t
)

cos (ω0t ), (42)

provided x is in the interaction domain between −l/2 and
l/2, and t ∈ [−τ, 0], otherwise A(x, t ) = 0. The central wave-
length of the laser is considered to be λ = 800 nm, and the
actual values of parameters l and τ will be indicated in the
figures and figure captions.

The dynamics is solved using a spatial grid that is con-
siderably larger than the interaction area, ensuring that the
laser-induced wave packet does not reach the boundaries of
the grid during the interaction with the laser pulse. As Fig. 3
shows, the cell-averaged probability density ρ(x) is constant
before the arrival of the laser pulse, as it should be. As we
can see, the laser-induced excitation creates propagating dis-
turbances. This figure corresponds to case when the classical
“traverse time” (the interaction length divided by the band
velocity) is considerably longer than the optical cycle time,
thus it is a good approximation to describe the laser field via
its ponderomotive potential [41]. This potential depletes the
interaction region, and later the created density oscillations
propagate away. (Note that the initial band velocity is negative
in the case shown by Fig. 3.)

When the pulse is over, at t = 0, the complete state of the
system �(x, t = 0) can be factorized as a sum of �n0 (x, t =
0) and an additional part that describes the effect of the
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FIG. 4. Numerically obtained different components of the charge
Qd (x) as a function of position. These charges result from the same
excitation that induced the density oscillations shown in Fig. 3. Top
panel: Q�, middle panel: Qc, bottom: their sum Qd . The contribution
of the different bands are plotted using different colors. Note that
Qc is zero for n = 1, since the initial state corresponded to the band
n = 0. For Qd , the dashed lines that are very close to the numerically
obtained limiting values, show the results of Eqs. (25) and (26).
The shaded domain indicated the interaction area [−l/2, l/2]. All
parameters are the same as for Fig. 3.

excitation �(x, t = 0) [recall Eq. (5)]. By expanding this state
in terms of the Bloch states, we can directly use Eqs. (25) and
(26) to compute Qd for large values of x.

On the other hand, we can determine the position depen-
dence of Qd by a direct numerical integration of the obtained
current. Clearly the limit t → ∞ cannot be reached numer-
ically, but it is possible to wait until Qd converges. The
function Qd (x) that is obtained in this way (without referring
to the results of Sec. III) can be seen in Fig. 4. (Note that
in this figure, and also in Fig. 3, we have chosen a narrow
interaction domain, which serves demonstrational purposes
well, but can be difficult to realize experimentally.) As shown
by Fig. 4, Qd is constant (independent of x) far from the
interaction region. In this limit, the purely numerical results
and the ones obtained using Eqs. (25) and (26) coincide
within a relative error of 10−4. This is remarkable since the

analytic results were obtained by considering a continuous k
space, while numerical integrations can only mean discrete
sums. Additionally, in order to derive Eqs. (25) and (26), we
applied assumptions regarding the analytic properties of the
integrands. During the numerical calculations, it is impossible
to imply these assumptions. This suggests that Eqs. (25) and
(26) not only provide a clear physical picture for the determi-
nation of the charge displaced by a laser pulse, but they are
also very general expressions.

V. CONCLUSIONS

We investigated the local excitation of charged particles in
a periodic potential. The initial state of the problem is a single
Bloch state, the excitation of which creates propagating wave
packets. We gave a general analytic formula for the charge
that is related to this disturbance. We compared our results to
the analytically solvable case of a Gaussian wave packet, and
found complete agreement. Numerical calculations provided
similarly satisfactory verification of our approach. The results
presented here can be used, e.g., in the context of optically
excited solids, for understanding how the measurable electric
charge that is displaced by a laser pulse depends on the pa-
rameters of the pulse.
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APPENDIX: GENERALIZATION TO
THREE DIMENSIONS

In three dimensions, the current that flows through a sur-
face can be obtained by integrating the appropriate component
of the current density along the surface. For the sake of sim-
plicity, let us consider a cubic lattice, a cuboid (Lx × Ly × Lz )
sample and a surface that belongs to a constant value of x.
Using the notation of Sec. II, we can write

I (x, t ) =
∫ Ly

2

− Ly
2

∫ Lz
2

− Lz
2

jx(x, y, z, t )dydz =
∫
F

j(r, t )ndf , (A1)

where F denotes a rectangle with sides Ly and Lz and a normal
vector of n = x̂. Clearly

jx(r, t ) = h̄

m
Im

{
�∗(r, t )

∂

∂x
�(r, t )

}
, (A2)

and the state �(r, t ) is given by the sum (5). It is clear that jx
contains six integrals in the k space, e.g., in Eq. (11), k and k′
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have to be replaced by k and k′ :

Q�(x) = h̄

m
Im

∑
n,n′

∫ ∞

0

∫
F

∫
BZ

∫
BZ

e−i[ωn′ (k′ )−ωn(k)]t

× φ∗
n (k)φn′ (k′)�∗

n (k, r)
∂�n′ (k′, r)

∂x
d3k d3k′ df dt

=
∑
n,n′

∫ ∞

0

∫
F

∫
BZ

∫
BZ

Inn′ (k, k′, r, t ) d3k d3k′ df dt,

where the last line only introduces a notation that simplifies
the following equations. Now let us assume that the order of
integration can be changed, and use that

∫
F Inn′ (k, k′, r, t ) df

is zero unless ky = k′
y and kz = k′

z. With the appropriate
prefactors, this leads to

Q�(x) = (2π )2

LyLz

∑
n,n′

∫ ∞

0

∫
F

∫ π
a

− π
a

×
∫

BZ
Inn′ (k, k′

x, r, t ) d3k dk′
x df dt, (A3)

where the integrand is a shorthand notation for
Inn′ (kx, ky, kz, k′

x, ky, kz, r, t ) and all k-space integrals run
from −π/a to π/a. (Recall that we are considering a cubic
lattice.) By changing again the order of integrals, we can
write

Q�(x) = (2π )2

LyLz

∫
F

∫ π
a

− π
a

∫ π
a

− π
a

[∑
n,n′

∫ ∞

0

∫ π
a

− π
a

∫ π
a

− π
a

Inn′ (kx, ky, kz, k′
x, r, t ) dkx dk′

x dt

]
dky dkz df . (A4)

Taking a look at the expression in the (redundant) square
brackets, we can see that it is analogous to Eq. (12): Although
now the functions have y, z and ky, kz arguments as well, while
performing the integrals inside the square brackets, they can
be considered as parameters. In other words, for any relevant
value of y, z, ky, kz, we can compute the expression in the
square brackets (let it be denoted by Q1D

� ) using the method
introduced at the beginning of this section. That is,

Q�(x) = (2π )2

LyLz

∫
F

∫ π
a

− π
a

∫ π
a

− π
a

[
Q1D

� (x; y, z, ky, kz )
]
dky dkz df .

(A5)

As an illustration, let us consider the 3D analogy
of Eq. (33), when the appropriate densities are ρ(r) =

|�(r, 0)|2, ρ̃(k) = (2π )3/(LxLyLz )|φ(k)|2. Performing the
calculations, we obtain

Q�(x0) = −m∗

m

∫ 0

−∞
ρ̃(k) dkx + m∗

m

∫ x0

−∞
ρ(r′) dx′. (A6)

That is, the charge that flows through a plane that is perpen-
dicular to the x axis and situated at a given coordinate x0, is
determined by the part of the wave packet that is characterized
by x < x0 and by the momentum space components for which
the velocity in the x direction is negative. This is a straightfor-
ward generalization of Eq. (33): although it could have been
guessed, now it is verified exactly. Equations analogous to
(A5) allow us to generalize all previous results to 3D.
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