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The antiferromagnetic J1 − J2 model is a spin-1/2 chain with isotropic exchange J1 > 0 between first
neighbors and J2 = αJ1 between second neighbors. The model supports both gapless quantum phases with
nondegenerate ground states and gapped phases with �(α) > 0 and doubly degenerate ground states. Exact
thermodynamics is limited to α = 0, the linear Heisenberg antiferromagnet (HAF). Exact diagonalization of
small systems at frustration α followed by density matrix renormalization group calculations returns the entropy
density S(T, α, N ) and magnetic susceptibility χ (T, α, N ) of progressively larger systems up to N = 96 or 152
spins. Convergence to the thermodynamic limit, S(T, α) or χ (T, α), is demonstrated down to T/J ∼ 0.01 in the
sectors α < 1 and α > 1. S(T, α) yields the critical points between gapless phases with S′(0, α) > 0 and gapped
phases with S′(0, α) = 0. The S′(T, α) maximum at T ∗(α) is obtained directly in chains with large �(α) and by
extrapolation for small gaps. A phenomenological approximation for S(T, α) down to T = 0 indicates power-law
deviations T −γ (α) from exp[−�(α)/T ] with exponent γ (α) that increases with α. The χ (T, α) analysis also
yields power-law deviations, but with exponent η(α) that decreases with α. Spin correlation functions account
for S(T, α) differences between frustration α < 1 within a chain and α > 1 between HAFs on sublattices.
S(T, α) and the spin density ρ(T, α) = 4T χ (T, α) probe the thermal and magnetic fluctuations, respectively,
of strongly correlated spin states. Gapless chains have constant S(T, α)/ρ(T, α) for T < 0.10. Remarkably, the
ratio decreases (increases) with T in chains with large (small) �(α).
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I. INTRODUCTION

The antiferromagnetic J1 − J2 model, Eq. (1) below, is in
the large family of one-dimensional (1D) models with one
spin per unit cell that includes Heisenberg, Ising, and XY
and XXZ chains, among others. Their rich quantum (T = 0)
phase diagrams have fascinated theorists for decades in such
contexts as field theory, critical phenomena, density matrix
renormalization group (DMRG) calculations, exact many-
spin results, and the unexpected difference between spin-1/2
and spin-1 Heisenberg chains. A uniform magnetic field B and
ferromagnetic exchange expand the variety of exotic quantum
phases.

Exact thermodynamics, aside from some Ising models,
is limited to the linear Heisenberg antiferromagnet (HAF)
[1]. Maeshima and Okunishi [2] studied the thermodynam-
ics of Eq. (1) at both B = 0 and B > 0 using the transfer
matrix renormalization group (TMRG). Feiguin and White
[3] obtained the B = 0 thermodynamics with an enlarged
Hilbert space with ancilla. The methods agree quantitatively
for T/J > 0.2 and semiquantitatively down to T/J ∼ 0.1. In
this paper, we discuss the thermodynamics of Eq. (1) us-
ing exact diagonalization (ED) of short chains followed by
DMRG calculations of the low-energy states of progressively
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longer chains in which the thermodynamic limit holds down
to progressively lower T . We lower the converged range to
T/J ∼ 0.01. Exact HAF thermodynamics [1] reaches decades
lower T where logarithmic contributions are important.

The antiferromagnetic J1 − J2 model is a spin-1/2 chain
with isotropic exchange J1 and J2 between first and second
neighbors, respectively. The model at frustration α = J2/J1 is
conventionally written with J1 = 1 as

H (α) =
∑

r

�Sr · �Sr+1 + α
∑

r

�Sr · �Sr+2. (1)

The ground state |G(α)〉 is a singlet (S = 0) for any α. The
α = 0 limit is the gapless HAF with a nondegenerate ground
state; Faddeev and Takhtajan used the Bethe ansatz to obtain
the exact spectrum of two-spinon triplets and singlets [4]. The
degenerate ground states at α = 1/2, the Majumdar-Ghosh
(MG) point [5], are the Kekulé valence bond (VB) diagrams
|K1〉 or |K2〉 in which all spins S2r are singlet paired with
either spin S2r+1 or spin S2r−1. The initial studies [6–9] of
H (α) focused on the critical point αc = 0.2411 at which a spin
gap �(α) opens, spin correlations have finite range, and the
ground state is doubly degenerate. The critical point obtained
by level crossing [9] has been discussed in terms of field
theory and a Kosterlitz-Thouless transition.

The J1 − J2 model at α > 1 describes HAFs on sublattices
of odd and even numbered sites. It can be viewed [10–13]
as a zigzag chain or a two-leg ladder with skewed rungs J1

and rails J2. Now H (α)/α has J2 = 1, and J1 = 1/α is a

2469-9950/2021/103(24)/245139(11) 245139-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7100-9358
https://orcid.org/0000-0001-6929-6581
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.245139&domain=pdf&date_stamp=2021-06-24
https://doi.org/10.1103/PhysRevB.103.245139


SAHA, ROUTH, KUMAR, AND SOOS PHYSICAL REVIEW B 103, 245139 (2021)

frustrated interaction between sublattices. The 1/α = 0 limit
of noninteracting HAFs is gapless; the ground state of the
decoupled phase is nondegenerate with quasi-long-range spin
correlations within sublattices. The spin gap �(α) opens at the
critical point 1/α2 = 0.44, and the ground state becomes dou-
bly degenerate [14]. This critical point is mildly controversial
because field theories [10–13] with different approximations
limit the gapless phase to the point J1 = 0; however, level
crossing at α > 2 was not recognized. The difference be-
tween the α < 1 and α−1 < 1 sectors was a motivation for
the present study.

Thermal and magnetic fluctuations are suppressed at T =
0. The spin gap �(α) is insufficient to characterize how the
entropy S(T, α) or magnetic susceptibility χ (T, α) of gapped
correlated 1D systems decreases on cooling. We find power
laws T −x(α) that modify exp[−�(α)/T ] at low T < 0.05.
The exponent x(α) depends on frustration: It increases with
α for thermal fluctuations and decreases with α for magnetic
fluctuations. Thermodynamics at T < 0.05 is a prerequisite
for such results that, as far as we know, have not been reported
for the J1 − J2 model. Indeed, the low-T entropy turns out to
be a good way to characterize the model.

We obtain the thermodynamics by ED of Eq. (1) in small
systems of N = 4n spins and periodic boundary conditions
followed by DMRG calculations of the low-energy states of
larger systems of N ∼ 100 or more [15]. DMRG is a pow-
erful numerical method [16], now well established [17,18],
for the ground-state and elementary excitations of 1D mod-
els. Convergence to the thermodynamic limit is directly seen
at T > T (α, N ) as thermal fluctuations suppress correlations
between distant spins. The full spectrum of 2N spin states is re-
quired for small systems but not for large ones. Extrapolation
to lower T < T (α, N ) is possible and makes the thermody-
namics accessible to T ∼ 0.01J1 for α < 1 or to ∼0.01J2 for
α−1 < 1.

The entropy density S(T, α) illustrates convergence to the
thermodynamic limit and differences between gapped and
gapless quantum phases. The left panel of Fig. 1 shows
the entropy per site S(T, α, N ) at the MG point where the
ground state of finite chains is doubly degenerate and �(1/2)
is substantial. ED for N = 16, 20, and 24 converges from
below to S(T, 0.5) for T > 0.15. DMRG calculations for
the low-energy states of larger systems extend the limit to
T (1/2, 152) ∼ 0.03 as shown by the solid red line and sum-
marized in Sec. II. The converged line is shifted up by S =
0.03 and color coded according to the contributing system
size; T (α, N ) is the low-T edge. The ground-state degeneracy
leads to exactly N−1 ln 2 at T = 0. The thermodynamic limit
between T = 0 and T (1/2, 152) is approximated in Sec. IV.

The right panel of Fig. 1 shows the corresponding results
for S(T, α, N ) at the critical point [9] αc = 0.2411 where the
gap �(α) opens. The ground state of finite systems is non-
degenerate except at α = 1/2. Calculations to N = 96 return
the thermodynamic limit for T (αc, 96) > 0.025, below which
finite-size gaps are evident. The color-coded line S(T, αc) is
again shifted by 0.03. The dashed line S(T, 0) is the exact
[1] HAF limit, initially linear in T , that previously served
to validate the ED-DMRG method [15]. Frustration increases
S(T, αc) by about 20% above S(T, 0) at low T . Extrapolation
yields the thermodynamic limit for T < T (αc, 96).
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FIG. 1. Entropy per site S(T, α, N ) at α = 0.50 (left panel, MG
point) and αc = 0.2411 (right panel, critical point) at system size
N in Eq. (1). The thermodynamic limit S(T, α) is the red line that
holds for T > T (α, N ). S(T, α) is shifted up by 0.03 and color coded
according to the contributing N . The degenerate MG ground state
gives S(0, 1/2, N ) = N−1 ln 2. Finite-size gaps decrease S(T, αc, N )
at low T . The HAF entropy S(T, 0) = 2T/3 is exact [1] as T → 0.

Since S(T, α) is linear in gapless 1D chains, S′(0, α) is
finite up to αc, while �(α) > 0 ensures S′(0, α) = 0 in gapped
chains. Entropy calculations provide an independent new way
of estimating quantum critical points. Frustration increases
the density of states at low T compared with the HAF, while
�(1/2) initially decreases S(T, 1/2) at the MG point.

Two-spin correlation functions at frustration α are ground-
state expectation values,

C2(p, α) = 〈G(α)|�S1 · �Sp+1|G(α)〉 ≡ 3〈Sz
1Sz

p+1(α)〉. (2)

We have used periodic boundary conditions and isotropic ex-
change in Eq. (2). HAF correlations C2(p, 0) are exact [19]
up to p = 5; they are quasi-long-ranged and go [20,21] as
(−1)p(ln p)1/2/p for p 
 1. C2(p, α) is quasi-long-ranged up
to αc. The range then decreases to first neighbors at the MG
point where C2(p, 1/2) = 0 for p � 2. The α−1 = 0 limit of
HAFs on sublattices has vanishing correlations for odd p for
spins in different sublattices and quasi-long-range correlations
for even p. The α < 1 and α−1 < 1 sectors have different but
related spin correlations.

The paper is organized as follows. The ED-DMRG method
is summarized in Sec. II using the size dependence of the mag-
netic susceptibility χ (T, α, N ) and entropy S(T, α, N ) per
site. The energy spectrum {E (α, N )} of Eq. (1) and partition
function Q(T, α, N ) yield the thermodynamics. The entropy
and spin specific heat C(T, α) are obtained in Sec. III in
gapless chains and approximated in gapped chains. We find
the inflection point T ∗(α) of S(T, α) and relate it to the
power law T −γ (α) that modifies exp[−�(α)/T ]. Section IV
presents the thermodynamic determination of critical points
and differences between intrachain frustration leading to αc

and interchain frustration leading to 1/α2. Converged sus-
ceptibilities χ (T, α) are reported in Sec. V for gapless and
gapped chains. They are modeled using T ∗(α) and the power
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FIG. 2. Molar magnetic susceptibility χ (T, α, N ) of Eq. (1) with
N spins at α = 0.50 and 0.30. Convergence to the χ (T, α) line,
shifted up by 0.02 in both panels, holds for T > T (α, N ), shown
by the open circles. The solid and dashed red lines are converged
χ (T, α) and extrapolation to T < T (α, 152), respectively.

law T −η(α). The ratio R(T, α) = S(T, α)/4T χ (T, α) is the
relative contribution of thermal and magnetic fluctuations. It
is initially constant in gapless chains and focuses attention
on deviations from exp[−�(α)/T ] in gapped chains. R(T, α)
decreases on cooling below 0.05T for α = 0.35 or 0.40, and it
increases for α = 0.50 or 0.67. Section VI is a brief discussion
and summary.

II. DMRG AND CONVERGENCE

The molar magnetic susceptibility χ (T, α) provides direct
comparison with experiment since electronic spins domi-
nate the magnetism. The reduced susceptibility is in units of
NAg2μ2

B/J1, where NA is the Avogadro constant, μB is the
Bohr magneton, and g = 2.00 232 is the free-electron g fac-
tor. Isotropic exchange rules out spin-orbit coupling. We take
J1 = 1 or J2 = 1 for α < 1 or α−1 < 1 calculations, respec-
tively. The energy spectrum {E (α, N )} of H (α) has 2N spin
states. Given {E (α, N )}, the partition function Q(T, α, N )
is the sum over exp[−βEp(α, N )], with β = 1/kBT and
Boltzmann constant kB. Standard statistical mechanics yields
χ (T, α, N ), S(T, α, N ), C(T, α, N ), and spin correlation func-
tions C2(T, p, α) of finite systems.

We discuss the ED-DMRG method by following the con-
vergence of χ (T, α, N ) in Fig. 2 to χ (T, α) with increasing
system size at α = 0.50 and 0.30. The logarithmic scale fo-
cuses attention on low T . The solid red lines are χ (T, α) +
0.02, displaced upwards from the finite-size calculations. ED
of Eq. (1) up to N = 24 demonstrates convergence for T >

0.2 in either case using the full spectrum of 2N states. DMRG
returns the low-energy states Ep(α, N ) of larger systems. Fi-
nite gaps �(α, N ) to the lowest triplet decrease with N and
suppress the susceptibility at T = 0. Convergence to the ther-
modynamic limit requires N−1 � �(α), a condition that is
almost satisfied at N = 96, 128, or 152 in the upper panel. The

exponentially small gap at α = 0.30 > αc is not at all evident
in the lower panel even at N = 152.

We summarize the DMRG calculations in sectors with total
0 � SZ � N/2 presented in detail and tested in Ref. [15]. The
singlet ground state is in the SZ = 0 sector. We use periodic
boundary conditions, increase the system size by four spins
at each step of infinite DMRG, and keep m = 500 eigenstates
of the system block. The total dimension of the superblock
(the Hamiltonian matrix) is approximately 500 × 500 × 4 × 4
(∼106). Varying m between 300 and 500 indicates a three-
to four-decimal-place accuracy of low-lying levels, which are
explicitly known for the HAF (α = 0) at system size N . We
target the lowest few hundred states in SZ sectors instead of
the ground state and energy gaps in standard DMRG.

We introduce a cutoff with Ep(α, N ) � EC (α, N ) and
compute the entropy per site SC (T, α, N ) of the trun-
cated spectrum. Increasing EC (α, N ) ensures convergence to
S(T, α, N ) from below since truncation should not reduce
the entropy. We increase the cutoff until the maximum of
SC (T, α, N )/T has converged or almost converged. The max-
ima T (α, N ) are shown as open circles in Fig. 2. The entropy
at T = T (α, N ) is the best approximation to S(T, α) for the
cutoff. The truncated spectrum suffices for a small interval
T � T (α, N ) of converged thermodynamics at each system
size before truncation takes its toll; additional points T (α, N )
can be found. The thermodynamic limit χ (T, α) + 0.02 is
shown as a bold red line through the points that smoothly
connects to ED at high T . Convergence to χ (T, α) is from
below and has been checked [15] against the exact HAF
susceptibility.

The DMRG results for S(T, α, N ) in Fig. 1 for N > 24 are
also based on truncated Ep(α, N ) � EC (α, N ). They converge
for T > T (α, N ) at the lower edges of the color-coded line.
The procedure is general. Other system sizes, including larger
ones, can be studied. The numerical accuracy is ultimately
limited by the density of low-energy states of large systems
[15]. ED-DMRG exploits the fact that a few hundred states
Ep(α, N ) � EC (α, N ) in sectors with SZ = 0, 1, . . . suffice
for the thermodynamics in a limited range of T at each sys-
tem size. The discarded states have Boltzmann factors with
βEC (α, N ) > 10 in the following results.

Convergence to the thermodynamic limit is more chal-
lenging in the α−1 < 1 sector of weak exchange between
HAFs with J2 = 1 in sublattices. The system size is effectively
N/2 instead of N . We compare in Fig. 3 the entropy densi-
ties S(T, α, N ) at α−1 = 1/3 and system size N with α−1 =
0 (HAF) and N/2. Interchain exchange α−1 = 1/3 hardly
changes the entropy of finite systems below T = 0.06. More-
over, interchain exchange reduces the entropy compared with
S(T, 0), while αc in Fig. 1, right panel, increases the entropy.
These qualitative differences are related to spin correlation
functions. We obtain convergence to the thermodynamic limit
for T > T (α, N ) = 0.023 for α = 3, N = 152.

The initial ED-DMRG calculations were up to system
size N = 96 and returned converged thermodynamic for
T > T (α, 96). About half of the calculations were subse-
quently extended to N = 128 or 152 and convergence for T >

T (α, 152) in order to address specific points. Converged re-
sults are shown as solid lines down to T (α, 96) and T (α, 152)
for S(T, α) in Fig. 1 and χ (T, α) in Fig. 2, respectively.
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FIG. 3. Entropy density S(T, α, N ) of Eq. (1) with J2 = 1, J1 =
1/3 and system size N (thin solid lines) and with J2 = 1, J1 = α−1 =
0 and N/2 (thin dashed lines). Converged S(T, α) are shown as solid
bold lines, and extrapolations to T = 0 are shown as dashed bold
lines.

It has been very instructive to follow the size dependence
of thermodynamic quantities explicitly to suggest possible
extrapolation or interpolation to lower T . Larger N ∼ 200
is accessible with sufficient motivation. We know on gen-
eral grounds that S(0, α) = 0 and that gapped systems have
S′(0, α) = 0. The thermodynamic limit of the entropy in
Figs. 1 or 3 is obtained more accurately than the magnetic
susceptibility in Fig. 2. It turns out that S(T, α) is an effective
way to characterize the low-T thermodynamics of the J1 − J2

model, Eq. (1).

III. ENTROPY AND SPECIFIC HEAT

We obtain in this section the entropy density S(T, α) of the
J1 − J2 model, Eq. (1), at low T . Converged S(T, α) gives the
spin specific heat C(α, T ) per site as the derivative S′(T, α) =
C(T, α)/T . ED to system size N = 24 and DMRG to N = 96
return converged S(T, α) for T > 0.15 and T > T (α, 96),
respectively. The solid lines in Fig. 4 are calculated C(T, α)/T
at the indicated α and T > T (α, 96). Frustration increases the
S′(T, 0) maximum of the HAF and shifts it to lower T . The
TMRG results in Fig. 5(b) of Ref. [2] extend down to T/J1 =
0.05. DMRG results with an expanded Hilbert space and an-
cilla are shown down to T/J1 = 0.05 in Fig. 3(a) of Ref. [3].
The C(T, α)/T curves agree quantitatively for T > 0.2 where
the thermodynamic limit is now accessible by ED. There are
differences at low T . For example, the previous C(T, 0.5)/T
curves increase continuously down to T = 0.05, while we find
a maximum. A maximum appears [2] at α = 0.6 with larger
spin gap. We seek the thermodynamics below T ∼ 0.1.

Turning to low T , we show S′(T, α) results in Fig. 5 for
systems with large spin gaps �(α). Open circles at T (α, N )
mark converged S′(T, α) for α = 0.45, 0.50, and 0.67 at sys-
tem size N = 96, 128, and 152. The S′(T, α) maxima at T ∗(α)
are directly accessible when N−1 � �(α). They are points of
inflection where the curvature S′′(T ∗, α) is zero. Since gapped
chains have S′(0, α) = 0, they necessarily have T ∗(α) > 0.
However, exponentially large N will be needed to resolve
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FIG. 4. Thermodynamic limit of the entropy derivative
S′(T, α) = C(T, α)/T from T = 0.05 to 0.8 at frustration α in
Eq. (1). Solid lines are ED-DMRG. Dashed lines are TMRG, from
Fig. 5(b) of Ref. [2]. Circles represent ancilla calculations, from
Fig. 3(a) of Ref. [3]. Differences appear at T < 0.10.

T ∗(α) when the gap is exponentially small. The dashed lines
in Fig. 5 are based on a phenomenological approximation.
We discuss the entropy of gapless chains and gapped chains
with T ∗(α) < T (α, N ) for the largest system studied before
returning to the dashed lines in Fig. 5.

The entropy is strikingly different in chains with small
or no spin gap. Figure 6 shows converged S(T, α) up to
T = 0.20 and frustration α. Solid lines are DMRG results for
T � T (α, N ) with N = 96, except for N = 152 at α = 0.30.
They are model exact and initially linear in T in gapless chains
with S′(0, α) > 0. Small �(α) at α > αc enforces S′(0, α) =
0 without otherwise spoiling the linear regime. The dashed
lines T � T (α, N ) are linear extrapolations

S(T, α) = A(α)T − B(α) (3)

based on the calculated A(α). The linear regime has
S′′(T, α) = 0 over an interval that shrinks to a point of in-
flection T ∗(α) with increasing �(α) at the S′(T, α) maxima
in Fig. 5. It follows that Eq. (3) is limited to some α < 0.45
that remains open.
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FIG. 5. S′(T, α) to T = 0.16 for α = 0.45, 50, and 0.67. Solid
lines are converged results for T > T (α, 152). Open circles represent
T (α, N ) at N = 96, 128, and 152; solid circles represent the maxima
T ∗(α). The dashed lines are Eq. (4) up to T (α, 152).
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in Eq. (1). Solid lines are for T > T (α, N ), N = 96 or N = 152 for
α = 0.30. Dashed lines are linear extrapolations using Eq. (3).

The linear regime with B(α) = 0 extends to T = 0 in gap-
less chains. In chains with a small gap, S(T, α) is initially
linear at T > T (α, N ), where N = 96, and presumably to
T ∗(α) < T (α, 96) in longer chains. The functional form at
low T is not known. As a simple phenomenological approxi-
mation, we take

S(T, α) = c(α)T −γ (α) exp[−�(α)/T ]. (4)

The range is from T = 0 to T ∗(α) or T (α, N ), whichever is
lower, where T (α, N ) refers to the largest system studied. We
match the magnitude and slope at T (α, N ) when T (α, N ) <

T ∗(α) to find γ (α) and c(α). When T ∗(α) < T (α, N ), we
extrapolate Eq. (3) to lower T and find c(α), γ (α), and T ∗(α)
by setting S′′(T ∗, α) = 0 and matching the magnitude and
slope of the extrapolated S(T, α) at T ∗(α).

The α � 0.45 systems in Fig. 5 have converged S(T, α)
for T � T (α, 152) and resolved S′(T, α) maximum T ∗(α).
Matching slopes at T = T (α, N ) leads to

γ (α) = �(α)

T
− T S′(T, α)

S(T, α)
. (5)

At T (α, 152) we find T S′/S = 2.63 at α = 0.45, T S′/S =
4.47 at α = 0.50, and T S′/S = 3.80 at α = 0.67. Spin gaps
�(α) are obtained by 1/N extrapolation of DMRG gaps
�(α, N ) in chains up to N = 100. They are 0.113, 0.233,
and 0.433 with increasing α. The dashed lines in Fig. 5 up
to T (α, 152) are Eq. (4) with �(α) and exponent γ (α) in
Eq. (5). The exponents γ (α) depend on the system size be-
cause Eq. (4) approximates S(T, α) up to T (α, N ). We are
interested in the dependence of γ (α) on frustration rather than
its magnitude. Deviations from exp[−�(α)/T ] up to, say,
T ∗(α) clearly require a function with many more parameters
than c(α) and γ (α).

Linear S(T, α) in Fig. 6 extends to T ∗(α) < T (α, 96) in
systems with α � 0.40. The maximum at S′′(T ∗, α) = 0 re-
quires large N when �(α) is small. We extrapolate S(T, α) to
T ∗(α) and use Eq. (4) for T � T ∗(α). Zero curvature at T ∗(α)

TABLE I. Singlet-triplet gap �(α), entropy parameters A(α) and
B(α) in Eq. (3) at frustration α in Eq. (1), and T (α, 96) discussed in
the text.

α �(α) A(α) B(α) T (α, 96)

0.4 0.0299 1.292 0.0075 0.039
0.35 0.0053 1.102 0.0012 0.025
0.3 0.00074 0.980 0.00056 0.025
0.2411a 0 0.885 0.00008 0.029
0.2 0 0.820 0 0.033
0b 0 0.663 0 0.039

aCritical point.
bHAF.

relates the gap and exponent

�(α)

T ∗(α)
= 1 + γ (α) +

√
1 + γ (α). (6)

The coefficients A(α) and B(α) in Eq. (3) are constant in the
linear regime. The ratio of the slope and the magnitude of
S(T, α) at T ∗(α) leads to

�(α)

T ∗(α)
= y(α)[y(α) − 1], (7)

where y(α)2 = A(α)�(α)/B(α) and y(α) − 1 =
[γ (α) + 1]1/2.

We discuss C(T, α) at weak frustration α � 0.40 using
the coefficients A(α) and B(α) in Eq. (3) and T (α, 96).
Table I lists �(α), A(α), and B(α) for both gapless and
gapped chains. We find A(0) = 0.663 instead of the exact [1]
A(0) = 2/3. The gap opens at αc and is still tiny at α = 0.30.
The inferred T ∗(α) and γ (α) based on Eq. (4) up to T ∗(α)
are in Table II. We have omitted α = 0.30, which requires
greater numerical accuracy and larger N and most likely has
T ∗(0.30) < 0.001. We have included systems with α � 0.45
and T ∗(α) > T (α, 152). The exponent η(α) is obtained later
from the susceptibility χ (T, α).

The evolution of S′(T, α) = C(T, α)/T with frustration is
shown in Fig. 7. The upper panel has T < 0.1 thermodynam-
ics that is accessible to ED-DMRG. Open circles represent
T (α, N ) with N = 96 and in some cases also 128 and 152. The
S′(T, α) maxima T ∗(α) are represented by solid circles. Lines
at T < T (α, N ) or T ∗(α), whichever is lower, are Eq. (4) with
exponent γ (α) in Table II.

S′(T, α) increases continuously to T ∗(α) in gapped chains
and is initially constant in gapless chains. The linear regime

TABLE II. S′(T, α) maximum T ∗(α) in gapped J1 − J2 mod-
els, ratio �(α)/T ∗(α), and exponents γ (α) in Eq. (4) and η(α) in
Eq. (15).

α T ∗(α) �(α)/T ∗(α) γ (α) η(α)

0.67 0.130 3.34 3.56 1.24
0.50a 0.057 4.12 4.34 1.23
0.45 0.042 2.71 1.97 2.79
0.4 0.0104 2.88 0.61 2.71
0.35 0.0020 2.65 0.46 2.61

aMG point.
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FIG. 7. S′(T, α) = C(T, α)/T at the indicated α to T = 0.1 (up-
per panel) and T = 0.4 (lower panel). In the upper panel, solid circles
represent T ∗(α) in Table II for gapped chains with α � 0.35, and
open circles represent T (α, 96) in Table I, T (α, 152) at α = 0.30,
and T (α, N ) at N = 96, 128, and 152 for α � 0.45.

between T ∗(α) and T (α, N ) shrinks to T ∗(α) with increasing
α and N , as shown explicitly for α � 0.45. As best seen for
α = 0.40 in the lower panel, T ∗(0.4) is slightly underesti-
mated because S′(T, 0.4) is not quite constant. The abrupt
increase in S′(T, α) to T ∗(α) < 0.01 is a general result for
small �(α). The crossing of C(T, α)/T curves with increas-
ing T in the lower panel of Fig. 7 follows from entropy
conservation since the area under S′(T, α) is ln 2 for any
frustration. The area is conserved to better than 1%.

The exponent γ (α) in Eq. (4) increases with α since
S′(T, α) and �(α)/T ∗(α) increase with α. The spin gap
opens at αc = 0.2411 where T ∗(αc) = 0. Just above αc we
have T ∗ = 0+ and slope A(αc) at T > T ∗. Equation (4) with
γ (α) = −1 and �(α) → 0 returns linear S(T, α). Increasing
γ (α) for α � αc follows directly from S(T, α) even though
the present results are limited to α � 0.35 and Eq. (4) is
phenomenological.

Spin correlations account qualitatively for increasing
S(T, α) with α in gapless chains and increasing S(T ∗, α) in
gapped chains. Separate evaluation of N−1 ln Q(T, α, N ) and
E (T, α, N )/T indicates that the internal energy per site is
considerably larger at low T . The internal energy density of
Eq. (1) is

E (T, α) = C2(T, 1, α) + αC2(T, 2, α). (8)

Taylor expansion about α = 0 leads to

E (T, α) − E (T, 0)

= αC2(T, 2, 0) + α

(
∂C2(T, 1, α)

∂α

)
0

+ O(α2).

(9)

The HAF correlation function C2(T, 2, 0) between sec-
ond neighbors [19] is C2(0, 2, 0) = 0.18 204, while the
first-neighbor correlation function C2(0, 1, 0) = −0.44 315
becomes less negative with increasing α. Both linear terms
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FIG. 8. S(T, α) to T = 0.05. Inset: S(T, α) to T = 0.005. Solid
lines are converged for T > T (α, 96) or T (α, 152) as noted in the
text; dashed lines are linear extrapolations using Eq. (3).

in Eq. (9) are positive. The T dependence is negligible for
T < 0.1.

Thermal fluctuations are quantified by C(T, α)/T . As seen
in Fig. 7, the density of low-energy correlated states increases
with frustration α � αc. Correlated states are shifted out of
the gap �(α) for α � αc, thereby increasing the local density
of states. The behavior of correlated states is similar to the
single-particle picture, at least at the level of thermal averages.

IV. CRITICAL POINTS

The entropy provides an independent way of identifying
critical points between gapless and gapped quantum phases.
Linear S(T, α) at low T in gapless phases implies B(α) = 0
in Eq. (3) and Table I, while a gap leads to S′(0, α) = 0 and
exponentially small entropy at T � �(α). The evaluation of
critical points depends on how quantitatively Eq. (3) deter-
mines the dashed lines in Fig. 6 at T < T (α, 96) or T (α, 152)
for α = 0.30. Increasing the system size reduces the extrapo-
lated interval, while the coefficients A(α) and B(α) in Table I
reflect the numerical accuracy.

Figure 8 zooms in on S(T, α) up to T = 0.05 > T (α, 96)
or T (α, 152) for α = 0.30, where solid lines are converged
S(T, α), with 2T/3 at α = 0. The inset magnifies the origin.
As noted above, frustration initially increases S(T, α). The in-
set indicates gapped phases at α = 0.30 or larger with B(α) >

0 and a gapless phase at α = 0.20. At αc = 0.2411, we find
B(αc) = 8 × 10−5 and consider it to be zero within numerical
accuracy. This well-established critical point benchmarks the
entropy determination.

The quantum critical point αc = 0.2411 between the gap-
less phase and the dimer phase is based on level crossing
[9] and field theory [6–8]. As recognized from the begin-
ning, an exponentially small �(α) is beyond direct numerical
evaluation. However, Okamoto and Nomura [9] pointed out
that finite systems with nondegenerate ground states have a
finite-size gap �′(α, N ) to the lowest singlet and that gapped
phases must have two singlets below the triplet. The weak size
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FIG. 9. Upper panel: Convergence of S(T, α, N ) to the thermo-
dynamic limit S(T, α) for T > T (α, 152). The dashed line is the
extrapolation to T = 0. Lower panel: Solid and dashed lines are
converged and extrapolated S(T, α), respectively, with N = 96 for
α = 0 and 128 for α = 2.2 and 2.4.

dependence of the crossing point α(N ) at which �′(α, N ) =
�(α, N ) yields [9] αc on extrapolating ED results to N = 24.

The critical point 1/α2 = 0.44 ± 0.01 (J2/J1 = 2.27 ±
0.06) between the gapped incommensurate (IC) and gapless
decoupled phases is based on level crossing [22] (ED to N =
28) and the maximum of the spin structure factor [14] (DMRG
to N = 192). As mentioned in Sec. II, the chain length is
effectively N/2 when J1 is small. It is then convenient to work
with H (α)/α and J2 = 1, J1 = 1/α in Eq. (1).

The α = 3 entropy S(T, α, N ) in Fig. 3 is almost equal
at low T to S(T, 0, N/2). The upper panel of Fig. 9 zooms
in on T � 0.1 where convergence to S(T, α) holds for T >

T (α, 152) = 0.023. A linear plus quadratic fit to T = 0.10
gives the dashed line with S(0, 0.3) = 0, as does a linear fit
up to T = 0.03. Larger N is more demanding computationally
but is needed here since the system is effectively N/2. The
solid and dashed lines in the lower panel are converged and
extrapolated S(T, α), respectively, with DMRG to N = 128
for α = 2.4 (gapless) and 2.2 (gapped). The critical point
based on entropy is consistent with other estimates and occurs
at finite J1 = 1/α2 rather than at J1 = 0.

We notice that S(T, α) for α > 1 in the lower panel of
Fig. 9 is comparable to or slightly smaller than S(T, 0)
whereas the α < 1 entropies in Fig. 7 are considerably larger
than the HAF entropy. Even at α−1 = 1/2.4, the S(T, α, N )
curves in Fig. 10 are remarkably close to S(T, 0, N/2) up to
T = 0.05; the α = 3 curves in Fig. 3 are even closer in this
interval. The reason is the difference between intrachain spin
correlations in Eq. (9) for α < 1 and spin correlations between
sublattices for α > 1. With J2 = 1 and J1 = α−1, the Taylor
expansion of the internal energy about α−1 = 0 is

E (T, α−1) − E (T, 0)

= α−1C2(T, 1, 0) + α−1

(
∂C2(T, 2, α−1)

∂α−1

)
0

+ O(α−2).

(10)
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FIG. 10. S(T, α, N ) of Eq. (1) with J2 = 1, J1 = 1/2.4 (solid
lines) at system size N and with J2 = 1, J1 = α−1 = 0 at N/2 (dashed
lines). Converged S(T, α) are shown as solid lines for T > T (α, N )
and extrapolations to T = 0 are shown as dashed lines.

Since α−1 = 0 corresponds to noninteracting HAFs on sub-
lattices, C2(T, 1, 0) = 0, and C2(T, 2, 0) is the first-neighbor
correlation within sublattices. It has a minimum at α−1 = 0
and becomes less negative for either sign of J1. There is
rigorously no α−1 term.

Bond-bond correlation functions provide additional char-
acterization of critical points. The largest separation between
bonds (1,2) and (2r + 1, 2r + 2) in a chain of N = 4n spins
with periodic boundary conditions is at r = n. We define the
four-spin correlation function at frustration α as the ground-
state expectation value

C4(2n, α) = 〈G(4n, α)|Sz
1Sz

2Sz
2n+1Sz

2n+2|G(4n, α)〉. (11)

Bonds (1,2) and (2n + 1, 2n + 2) are in the same Kekulé VB
diagram, either |K1〉 or |K2〉. The next-most-distant bonds
have 2n → 2n ± 1 in Eq. (11) and one bond in |K1〉, the other
in |K2〉. The difference between most-distant and next-most-
distant correlation functions is

D4(2n, α) = C4(2n, α) − C4(2n − 1, α). (12)

Finite D4(2n, α) > 0 as n → ∞ indicates long-range bond-
bond correlations. The correlation functions are readily
evaluated at the MG point where D4(1/2) = 1/32 for dis-
tant bonds. Except for nearby neighbors, bonds in different
diagrams are uncorrelated, with C4(2n − 1, 1/2) = 0, while
C4(2n, 1/2) = 1/16 for the diagram with both bonds and zero
for the other diagram.

Figure 11 shows bond-bond correlations D4(2n, α) in sys-
tems of N = 4n spins over the entire range from J2 = 0
to J1 = 0. The red line is based on 1/N extrapolations of
D4(2n, α). The gapped phases between αc and 1/α2 have
long-range bond-bond correlations that exceed unity at α =
0.60. The spin gap opens quite differently with increasing α <

1 and increasing α−1 < 1. The structure factor peak [14] is
finite at wave vector q = π in the dimer phase αc � α � 1/2.
The peaks are finite at π ± q(α) in the IC phase with q(α) = 0
at α = 1/2 and increasing to π/2 at α2. The gapless phase at
small α has quasi-long-range spin correlations C2(p, α), while
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FIG. 11. Ground-state bond-bond correlations D4(2n, α) in
Eq. (12) for N = 4n spins and frustration α in Eq. (1). Finite
D4(2n, α) indicates that different correlations between the most-
distant and next-most-distant bonds persist in the thermodynamic
limit. Arrows mark the critical points and MG point. Inset: Two-spin
correlation functions within sublattices, Eq. (13), that go as n−2 in
the decoupled phase, 1/α < 1/α2.

the gapless phase at large α has quasi-long-range C2(2p, α)
within sublattices.

Spins in different sublattices are uncorrelated when J1 = 0
(α → ∞). The four-spin correlation functions in Eq. (12) then
reduce to two-spin correlations within sublattices

D4(2n, α → ∞) = C2(2n, 0)

× [C2(2n, 0) − C2(2n − 2, 0)]. (13)

Since the sublattice HAF correlations go as (−1)n/2n,
D4(2n, α) decreases as 1/n2 when J1 = 0. That is indeed the
case in Fig. 11 as shown in the inset for α = 3. The weak
dependence on α > 2.4 is additional evidence that sublattice
spin correlations are hardly sensitive to J1. On the contrary,
α < 1 correlations are very sensitive to J2 since the second-
neighbor C2(2, 0) > 0 changes sign at α = 1/2.

The expansion of the ground state |G(4n)〉 in the correlated
real-space basis of N-spin VB diagrams is well defined [23]
for arbitrarily large N = 4n. The dimension of the singlet
sector is

R(4n) = (4n)!

(2n)!(2n + 1)!
. (14)

The Kekulé diagrams |K1〉 and |K2〉 are the only ones with
long-range bond-bond order in arbitrarily large systems. Ac-
cordingly, their expansion coefficients are macroscopic in the
thermodynamic limit of gapped J1 − J2 models with finite
�(α), doubly degenerate ground state, and D4(2n, α) > 0 as
n → ∞.

V. MAGNETIC SUSCEPTIBILITY

Crystallographic data specify the unit cells of materials
with strong exchange within chains or layers. The measured
molar magnetic susceptibility χ (T ) of chains with one spin-
1/2 per unit cell can be compared with the χ (T, α) of 1D

FIG. 12. Converged χ (T, α) at T > T (α, N ) with N = 96 for
α � 0.35 and N = 152 for α � 0.45. Inset: The product χmTm at the
maximum specifies α.

models such as H (α) in Eq. (1). Long ago, Bonner and Fisher
[24] used ED to N = 12, insightful extrapolations, and the
T = 0 result to obtain converged χ (T, 0) for T/J1 > 0.1 and
a good approximation for the HAF down to T = 0. Now ED
to N = 24 yields converged χ (T, α) and C(T, α) to lower T ,
and DMRG for N > 24 extends the range to T > T (α, N ) in
spin-1/2 chains with isotropic exchange. Susceptibility data
on many materials, both inorganic and organic, are consistent
with HAFs. Physical realizations are quasi-1D due to other
interactions such as magnetic dipole-dipole interactions or
exchange between spins in different chains.

Figure 12 shows converged χ (T, α) for T > T (α, 96) for
α � 0.35 and T > T (α, 152) for α � 0.45. The increase with
α at low T for small or no gap is similar to that of C(T, α)/T
in Fig. 4. We again find quantitative agreement for T > 0.2
with previous χ (T, α) results [2,3]. The maximum χm(T, α)
at Tm(α) shifts to lower T in both gapless and gapped chains
up to α = 0.45. The product χmTm in the inset specifies α.
Converged χ (T, α) for T > T (α, 152) is almost quantitative
at α = 0.67 or 0.50.

The Peierls instability applies to spin-1/2 chains with lin-
ear spin-phonon coupling in the α < 1 sector of Eq. (1).
The spin-Peierls (SP) transition at TSP leads at lower T to a
dimerized chain with two spins per unit cell, provided that
competing 2D or 3D interactions do not induce other transi-
tions. Susceptibility data to 950 K fixed [25] α = 0.35 in the
inorganic spin-Peierls crystal CuGeO3 with J1 = 160 K and
TSP = 14 K. Data to 350 K fixed [26] α = 0 in an organic
SP crystal with J1 = 79 K and TSP = 12 K. We have recently
modeled [27] both SP transitions successfully using correlated
states both below and above TSP. The analysis of high-T data
is primarily a matter of identifying the proper model, the
appropriate version of Eq. (1), bearing in mind that isotropic
exchange (no spin-orbit coupling) is an approximation for
spins centered at metallic ions.

Extrapolation is required to obtain converged χ (T, α) in
the interval 0 � T < T (α, 96) or T (α, 152). There are three
cases: In gapless chains, the weak T dependence of χ (T, α)
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FIG. 13. Upper panel: Convergence of χ (T, 0.4, N ) with system
size N to S(T, 0.4) for T > 0.04 indicated by open circles. The
dashed red line is Eq. (15) for T < T ∗(0.4), for the solid circle, and
for the T > T ∗(0.4) extrapolation discussed in the text. Lower panel:
Solid lines are converged χ (T, α) at T > T (α, N ); dashed lines at
lower T are discussed in the text. Open circles represent T (α, 96)
for all α, T (α, 152) for α = 0.30, and α, N with N = 128 and 152
for α � 0.045. Solid circles represent T ∗(α) for gapped chains.

is readily extrapolated to finite χ (0, α) (case 1). In gapped
chains, we distinguish below between T (α, N ) < T ∗(α) (case
2) and T ∗(α) < T (α, N ) (case 3) as discussed for S(T, α).
We note that the ground-state degeneracy in Fig. 1 leading
to S(0, α) = N−1 ln 2 in gapped chains is readily seen when
N exceeds the gap �′(α, N ) between the ground state and
the lowest singlet excited state. The zero-point entropy of fi-
nite chains interferes with convergence to the thermodynamic
limit. Convergence to χ (T, α) is simpler in this respect and is
achieved at system size N ∼ 100 in J1 − J2 models with large
�(α).

For gapped chains, we took the functional form for S(T, α)
in Eq. (4) aside from the exponent η(α)

χ (T, α) = c(α)T −η(α) exp(−�(α)/T ). (15)

The range is again T = 0 to the lower of T ∗(α) or
T (α, N ). We start with T (α, N ) < T ∗(α). As seen in Fig. 2,
χ (T, 0.5, 152) is close to convergence, and the larger gap at
α = 0.67 ensures even faster convergence. Convergence at
N = 152 in Fig. 13 reaches T (α, 152) and small χ (T, α). We
determine η(α) for α � 0.45 by a least-squares fit of Eq. (15)
to χ (T, α, 152) up to T (α, 152). The dashed line in Fig. 2 has
η(0.5) = 1.23 for T < 0.0246.

When T ∗(α) < T (α, 96), we rely on both Eq. (15) and
extrapolation. The upper panel of Fig. 13 shows convergence
with size at α = 0.40. Open circles represent decreasing
T (0.4, N ) with increasing N . The solid circle represents
T ∗(0.4) = 0.0103 in Table II based on the entropy. We extrap-
olate converged χ (T, α) from T (α, 96) to T ∗(α) as A′(α)T −
B′(α) and match the magnitude and slope of Eq. (15) to
evaluate η(α). We obtain

η(α) = �(α)

T ∗(α)
− 1

1 − B′(α)/A′(α)T ∗(α)
. (16)

FIG. 14. Ratio S(T, α)/ρ(T, α) at α � 0.30 (upper panel) and
α � 0.35 (lower panel). The ratio is constant for α � 0.30. Con-
verged results for T > T (α, N = 96), shown as open circles, are
extrapolated to T = 0 for gapless chains; N = 96 and 152 points are
shown at α = 0.30. The T -dependent ratios in the lower panel have
T (α, N ) at N = 96 for all α and also N = 128 and 152 for α � 0.45.
Solid circles represent T ∗(α), the maxima of S′(T, α).

The exponents η(α) in Table II are based on Eq. (16) for α �
0.40 and least-squares fits for α � 0.45.

The lower panel of Fig. 13 shows converged χ (T, α) of
gapless chains with finite χ (0, α) and gapped chains. Open
circles represent T (α, 96) for all α, T (α, 152) for α = 0.30,
and T (α, N ) at N = 128 and 152 for α � 0.45. Solid circles
represent T ∗(α), the S′(T, α) maxima. Once again, modeling
the small gap at α = 0.30 and T ∗(0.3) < 10−3 requires con-
siderably larger systems.

Converged χ (T, α) in gapped chains at T < T ∗(α) indi-
cates power-law deviations with exponents η(α) in Eq. (15)
and Table II. We find that η(α) is almost constant up to
α = 0.45 and then decreases significantly at α = 0.50 and
0.67. The χ (T, α) knee at T ∗(α) in Fig. 13 for α = 0.35 or
0.40 requires η(α) ∼ 2.7. There is no knee at α = 0.50 or 0.67
with η(α) < 2. We speculate that η(0.45) = 2.8 is due to the
steep slope at T ∗(0.45) = 0.042.

Both S(T, α) and χ (T, α) become exponentially small in
gapped chains as T → 0, with exponents γ (α) and η(α) that
describe the thermal and magnetic fluctuations, respectively.
To focus on deviations from exp[−�(α)/T ], we consider the
ratio

R(T, α) = S(T, α)

4T χ (T, α)
≡ S(T, α)

ρ(T, α)
. (17)

Since the high-T limit of χ (T, α) is the Curie law, 1/4T in
reduced units, the spin density ρ(T, α) defined in Eq. (17)
is unity in that limit; ρ(T, α) is the effective density of free
spins at temperature T . The high-T limit is R(T, α) = ln 2
since S(T, α) goes to ln 2, independent of α or N . The ratio
quantifies the relative magnitudes of thermal and magnetic
fluctuations.

The upper panel of Fig. 14 shows R(T, α) up to T = 0.15,
with open circles at T (α, 96) for all α and at T (α, 152) for
α = 0.30. The ratio is almost constant for gapless chains and
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for α = 0.30. Except for α = 0.30, we extrapolate to T = 0
and find R(0, 0) = 1.54, within 7% of the exact π2/6 for the
HAF. The difference is mainly due to logarithmic corrections
that, as shown in Fig. 1 of Ref. [1], increase χ (T, 0) by
almost 6% at T = 10−4 and by more than 6% at T = 10−3.
Such corrections and rigorous T → 0 limits are beyond the
ED-DMRG method. Frustration slightly increases R(T, α)
in gapless chains; S(T, α)/T evidently increases faster than
χ (T, α). Constant R(T, α) in gapless chains follows from the
S′(T, α) and χ (T, α) results in Figs. 7 and 13.

The remarkable dependence of R(T, α) on frustration in
gapped chains is seen in the lower panel of Fig. 14. Solid
circles represent T ∗(α). Open circles at α = 0.35 and 0.40
represent T (α, N ) for N = 96, and open circles at α �
0.45 represent T (α, N ) for N = 96, 128, and 152. Con-
verged S(T, α) and χ (T, α) give R(T, α) for T > T (α, N ),
the largest system studied. The exponents γ (α) and η(α) in
Table II govern the T dependence at T < T (α, N ). Within this
approximation, R(T, α) is proportional to T η−γ−1. We have
R(0, α) = 0 when η(α) > γ (α) + 1, divergent R(0, α) when
η(α) < γ (α) + 1, and constant R(T, α) up to T (α, N ) when
η(α) = γ (α) + 1. The weak T dependence at intermediate
α = 0.45 is nominally T −0.18. The spread between R(T, 0)
and R(T, 0.67) decreases at higher T : from 0.882 to 0.999
at T = 2 and from 0.753 to 0.792 at T = 6. The high-T limit
is R(T, α) = ln 2.

The T → 0 limit of R(T, α) depends on the phenomeno-
logical equations (4) and (15). However, the intermediate
nature of α = 0.45 in Fig. 14 is evident for converged R(T, α),
as is the strong dependence on frustration up to T = 0.15. The
entire α = 0.5 curve shown is converged, with R = 12.4 at
T (0.5, 152) = 0.031. We suggest a qualitative interpretation
in terms of �(α). The α dependence of R(T, α) decreases
when T > �(α) and disappears at high T as noted above.
Almost constant R(T, α) for T > �(α) requires T > 0.03 for
α � 0.40, T > 0.11 for α = 0.45, and T > 0.23 or 0.43 for
α = 0.50 or 0.67. The internal energy contribution to S(T, α)
in the numerator starts as E (T, α) = 3β�(α) exp[−β�(α)]
in gapped chains, while ρ(T, α) in the denominator starts
as S(S + 1) exp[−β�(α)] with S = 1 for a triplet. Then
�(α)/T < 1 leads to the weak T dependence of R(T, α)
found for α � 0.40, while �(α)/T > 1 rationalizes the strong
T dependence for α = 0.50 or 0.67.

VI. DISCUSSION

We have obtained the low-T thermodynamics of the anti-
ferromagnetic J1 − J2 model, Eq. (1), with variable frustration
α in both the α < 1 and α > 1 sectors. The thermodynamics
of strongly correlated models are largely unexplored unless
the Bethe ansatz is applicable. Considerably more is known
about the quantum (T = 0) phases of correlated 1D spin
chains. The ground-state degeneracy, elementary excitations,
and critical points provide important guidance for thermody-
namics. It is advantageous to perform DMRG at both T = 0
and finite T . The principal difference is that hundreds of
low-energy states are targeted at finite T at each system size
instead of the ground state.

We compared ED-DMRG results with previously re-
ported thermodynamics [2,3] down to T = 0.05 and found

quantitative agreement at T > 0.2, good agreement down
to T ∼ 0.1, and limited agreement at lower T . Thermody-
namics down to T ∼ 0.01 is demonstrated for the entropy
S(T, α), spin specific heat C(T, α), and magnetic sus-
ceptibility χ (T, α) by following the size dependence and
extrapolation. Larger N is accessible if needed, but the T → 0
limit always requires extrapolation. DMRG to system size
N = 96, and occasionally N = 128 or 152, yields converged
S(T, α) or χ (T, α) down to T (α, N ) < 0.05 in Table I before
any extrapolation. The main results are converged low-T ther-
modynamics of the antiferromagnetic J1 − J2 model over the
entire range of frustration α < 1 within a chain and frustration
α−1 < 1 between HAFs on sublattices.

We note that the entropy has received far less attention
than the magnetic susceptibility or the spin specific heat. To
be sure, χ (T ) and C(T ) are directly related to experiment.
However, the mathematical physics of the models themselves
is the primary motivation for theoretical and computational
studies of quantum phases, symmetries, and excitations. The
size dependence of S(T, α, N ) yields converged S(T, α) that
we have exploited in this paper. The T dependence provides
an independent way of finding and evaluating quantum crit-
ical points. Additional evidence for α2 = 2.27 ± 0.06 was
an initial motivation. We also studied the difference between
frustrating second-neighbor exchange α < 1 in a chain with
J1 = 1 and frustrating exchange α−1 between HAFs with
J2 = 1 on sublattices of odd- and even-numbered sites. Long-
range bond-bond correlations in gapped phases illustrate other
differences.

Converged S(T, α) directly show the S′(T, α) maxima
T ∗(α) in Table II of J1 − J2 models with α � 0.45. Extrap-
olation and the phenomenological equation (4) lead to T ∗(α)
in chains with smaller �(α). The power law T −γ (α) modifies
the exp[−�(α)/T ] dependence on the spin gap �(α). The
exponent γ (α) in Table II increases with frustration. Figure 7
shows S′(T, α) = C(T, α)/T and the shifting of correlated
states out of the gap with increasing α. Converged χ (T, α) for
T > T (α, 96) in Fig. 13 clearly distinguishes between gapless
chains with finite χ (0, α) and gapped chains with the T −η(α)

factor in Eq. (15) for T � T ∗(α).
The ratio R(T, α) = S(T, α)/4T χ (T, α) in Fig. 14 com-

pares thermal and magnetic fluctuations. It is almost constant
in gapless chains up to T = 0.15 and increases slightly with
α. In gapped chains, R(T, α) highlights the exponents γ (α)
and η(α) since the spin gap divides out. The ratio decreases
strongly with increasing T for large gaps α > 0.45 but in-
creases with T for α < 0.45.

ED-DMRG is a general approach to the thermodynamics
of correlated 1D models. Spin-Peierls systems have chains
with two spins per unit cell and gap �(T ) for T < TSP.
The gap increases on cooling and suppresses correlations
between spins separated by more than 1/�(T ). The method
then holds down to T = 0 and has successfully modeled [27]
the two best characterized SP systems. The restriction to 1D
can be relaxed slightly. Quasi-1D materials with small inter-
chain J ′ compared with intrachain J have long been modeled
using the random-phase approximation [28]. The 1D suscep-
tibility χ (T ) is modified as 1/[1 + A(J ′/J )χ (T )], where A
depends on the model. Thermodynamics at T < 0.10 make
it possible to resolve corrections to isotropic exchange due to

245139-10



LOW-TEMPERATURE THERMODYNAMICS OF THE … PHYSICAL REVIEW B 103, 245139 (2021)

spin-orbit coupling or other small magnetic interactions. The
ED-DMRG returns the thermodynamics of the J1 − J2 model
down to T/J1 ∼ 0.01 for α < 1 or T/J2 ∼ 0.01 for 1/α < 1.
Quantitative numerical analysis should in turn lead to better
understanding of correlated spin states.
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