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Generation of odd-frequency surface superconductivity with spontaneous spin current
due to the zero-energy Andreev bound state
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We propose that the odd-frequency s wave (sodd wave) superconducting gap function, which is usually unstable
in the bulk, naturally emerges at the edge of d wave superconductors. This prediction is based on the surface
spin fluctuation pairing mechanism owing to the zero-energy surface Andreev bound state. The interference
between bulk and edge gap functions triggers the d + sodd state, and the generated spin current is a useful signal
uncovering the “hidden” odd-frequency gap. In addition, the edge sodd gap can be determined via the proximity
effect on the diffusive normal metal. Furthermore, this study provides a decisive validation of the “Hermite
odd-frequency gap function,” which has been an open fundamental challenge to this field.
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I. INTRODUCTION

In strongly correlated metals, the introduction of an edge
or interface frequently generates new electronic states that are
quite different from the bulk ones. For example, in unconven-
tional or topological superconductors, the zero-energy surface
Andreev bound state (SABS) frequently emerges and reflects
the topological property of the bulk superconducting (SC)
gap [1–12]. Because the flat band due to the SABS is fragile
against perturbations, interesting symmetry-breaking phe-
nomena have been actively considered theoretically [13–16].
A well-known example is the edge s wave state with
time-reversal-symmetry (TRS) breaking due to an attractive
channel, the so-called d + is wave state [13,14].

The huge local density of states (LDOS) in the zero-
energy SABS also provides novel strongly correlated surface
electronic states. For example, surface ferromagnetic (FM)
criticality is naturally expected based on the Hubbard model
theoretically [17–19]. Edge-induced unconventional super-
conductivity would be one of the most interesting phenomena
due to FM criticality. Based on this mechanism, two of the
present authors previously proposed an edge-induced p wave
SC state on d wave superconductors [20]. Another exotic
possibility of the edge SC state is the “odd-frequency SC
state.” However, regardless of the difficulties in its realization,
the odd-frequency SC state is attracting considerable atten-
tion in the field of superconductivity because the varieties of
pairing symmetry are doubled by allowing the odd parity
with respect to time [21–26]. Therefore, an accessible method
for generating the odd-frequency gap function is proposed
in this study. Although it is possible to consider the induced
odd-frequency gap function near the edge [27], there has not
been microscopic theory in realistic systems.

The mechanisms and properties of the odd-frequency
SC states have been actively discussed by many theorists
[21–24,27–33]. Based on the spin-fluctuation theory, FM

(antiferromagnetic) fluctuations can mediate odd-frequency
superconductivity with the s wave triplet (p wave singlet) gap
[30,34–38]. However, if the odd-frequency gap function is
Hermitian, it is unstable as a bulk state due to the inevitable
emergence of the “paramagnetic Meissner” (para-Meissner)
effect [22,23,39]. To escape from this difficulty, inhomoge-
neous SC states with a large center of mass momentum of the
gap function have been considered [40]. In contrast, a homo-
geneous non-Hermitian odd-frequency gap function with the
usual Meissner effect has been proposed [31–33]. However,
mixing between Hermitian and non-Hermitian odd-frequency
“pair amplitudes” gives rise to an unphysical imaginary con-
tribution to the Josephson current and superfluid density
[28]. At present, the essential properties of the odd-frequency
gap function remain unknown. To address this challenge, it
would be beneficial to study the coexisting states of the odd-
frequency and well-known even-frequency gap functions.

In this study, we predict that the odd-frequency spin-
triplet s wave (sodd wave) gap function naturally emerges at
the edge of d wave superconductors, which is mediated by
SABS-induced magnetic fluctuations [18–20]. This prediction
is derived from the analysis of the edge SC gap equation based
on the cluster Hubbard model with the bulk d wave gap. The
obtained bulk+edge superconductivity with TRS accompa-
nies the spontaneous edge spin current, which is an important
signal for determining the “hidden” odd-frequency SC gap.
This study provides a decisive validation of the spatially lo-
calized odd-frequency gap function with the para-Meissner
effect.

It is known that the odd-frequency pair amplitude can
be induced by external symmetry breaking from conven-
tional even-frequency pairing. If spin-rotational symmetry
is broken, odd-frequency spin-triplet s wave pairing can be
induced from the conventional spin-singlet one shown in
the superconductor/ferromagnet junction [41–52]. On the
other hand, translational symmetry breaking can also induce
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FIG. 1. (a) Cluster Hubbard model with a (1,1) edge. The or-
thogonal unit vectors (x̂, ŷ) and (X̂ , Ŷ ) are illustrated. (b) Bulk FS.
(c) SABS-induced peak in the LDOS at �d = 0.16 in the case with
quasiparticle damping γ = 0.01. (d) Edge-induced FM fluctuations
obtained via the site-dependent RPA χ s

y,y(qx, 0) for T = 0.05 and
�d = 0.10. (e) Linearized edge gap φ (+) equation composed of
Green’s functions, Gd and Fd , for �d �= 0. λedge is the eigenvalue. The
second terms on the right-hand side determine the phase difference
between �d and φ (φ+).

odd-frequency pairing from bulk even-frequency supercon-
ductors with translational symmetry braking [25,53–56]. In
this case, spin-singlet odd-parity (spin-triplet even-parity)
pairing can be generated from spin-singlet even-parity (spin-
triplet odd-parity) bulk superconductors [25,53–56]. In these
cases, the anomalous proximity [57,58] and para-Meissner
effects [59–64] are induced even if the sodd wave gap function
is zero. In particular, the odd-frequency amplitude is enlarged
by the zero-energy SABS, and it can induce the sodd wave gap
function via the U introduced in this study.

In this paper, we study the emergence of the odd-frequency
superconducting gap function in the paramagnetic state, me-
diated by edge-induced ferromagnetic fluctuations.

To investigate the strong correlation effects induced by the
huge LDOS in the edge SABS, we apply spin-fluctuation
theory [65–69] to the cluster Hubbard model with an edge
structure, as illustrated in Fig. 1(a). This framework is useful

for electronic systems without periodicity because it can nat-
urally elucidate the impurity-induced enhancement of the
magnetic fluctuations observed in cuprate superconductors
[70–73]. Note that the non-Fermi liquid transport phenomena
and d wave bond order in cuprates are well understood based
on the spin-fluctuation theories [65,69] by considering vertex
corrections correctly [69,74–76].

II. MODEL AND THEORETICAL METHOD

The Hamiltonian is expressed as

H = H0 + U
∑

i

ni↑ni↓ +
∑
i, j

�d
i, j (c

†
i↑c†

j↓ + H.c.), (1)

where U denotes the on-site Coulomb interaction. H0 =∑
i, j,σ ti, jc

†
iσ c jσ represents the kinetic term, where ti, j denotes

the hopping integral between sites i and j.
In this study, we set (t1, t2, t3) = (−1, 1/6,−1/5), where

tn is the nth nearest-neighbor hopping integral and it cor-
responds to the YBa2Cu3O7−x (YBCO) model [18–20,69].
The energy unit is |t1| = 1. The Fermi surface (FS) in
the periodic system is illustrated in Fig. 1(b). �d

i, j is the
bulk dxy wave (dX 2−Y 2 wave) gap function given as �d

i, j =
(�d/4)(δri−r j ,±X̂ − δri−r j ,±Ŷ ). A similar bulk d wave gap
function is microscopically obtained based on spin-fluctuation
theories. Considering this fact, we introduce �d as the model
parameter to simplify the discussion. To reproduce the sup-
pression of the d wave gap near the edge, we multiplied the
d wave gap function by the decay factor {1 − exp[(yi + y j −
2)/2ξd ]} [20]. Then, we set the coherence length ξd = 10.
Figure 1(c) presents the LDOS at the edge site for �d = 0.16.
The obtained sharp SABS-induced peak in LDOS drives the
system towards a strong correlation [19]. In the following
numerical study, we set the filling as n = 0.95. The numerical
results are essentially unchanged for n = 0.8–1.2.

In this study, we introduce the 2Ny × 2Ny Nambu Green’s
function in the presence of the bulk d wave gap �d

y,y′ (kx ) ≡
�d ↑↓

y,y′ (kx ). Since we assume that �d
i, j is real, {�d

y′,y(kx )}∗ =
�d

y,y′ (kx ) is satisfied. Thus, we consider the following Nambu
Hamiltonian [19,20]:

Hd =
∑

kx

(
t ĉ†

kx,↑,t ĉ−kx,↓
)(Ĥ0(kx ) �̂d (kx )

�̂d (kx ) −t Ĥ0(−kx )

)

×
(

ĉkx,↑
ĉ†
−kx,↓

)
, (2)

where ĉkx,↑ and ĉ†
−kx,↓ represent the Ny-component column

vector of sites. Next, we define the Green’s functions in the
bulk d wave SC state as follows:(

Ĝd (kx, iεn) F̂d (kx, iεn)
F̂+

d (kx, iεn) −t Ĝd (−kx,−iεn)

)

=
(

iεn1̂ − Ĥ0(kx ) −�̂d (kx )
−�̂d (kx ) iεn1̂ +t Ĥ0(−kx )

)−1

. (3)

Then, we calculate the site-dependent spin susceptibility
χ s

y,y′ (qx, iωl ) in the cluster Hubbard model with the bulk
d wave gap in Eq. (1), using the real-space random-phase
approximation (RPA). Here, we adopt the kx representation
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by considering the translational symmetry, and ωl = 2πT l
represents the boson Matsubara frequency. The irreducible
susceptibilities are given by Ĝd , F̂d , and F̂+

d as

χ0
y,y′ (qx, iωl ) = −T

∑
kx,n

Gd y,y′ (qx + kx, iωl + iεn)

× Gd y′,y(kx, iεn), (4)

ϕ0
y,y′ (qx, iωl ) = −T

∑
kx,n

Fd y,y′ (qx + kx, iωl + iεn)

× Fd
+
y′,y(kx, iεn). (5)

ϕ0 is finite only in the SC state. The Ny × Ny matrix of the
spin (charge) susceptibility χ̂ s(c) is calculated using χ̂0 and ϕ̂0

as

χ̂0s(c)(qx, iωl ) = χ̂0(qx, iωl ) + (−)ϕ̂0(qx, iωl ), (6)

χ̂ s(c)(qx, iωl ) = χ̂0s(c)(qx, iωl )

×{1̂ − (+)U χ̂0s(c)(qx, iωl )}−1. (7)

The spin Stoner factor is the largest eigenvalue of
U χ̂0s(qx, iωl ) at ωl = 0. The magnetic order is realized when
αS � 1. The pairing interaction for the triplet SC is given by

V̂ (qx, iωl ) = U 2
(− 1

2 χ̂ s(qx, iωl ) − 1
2 χ̂ c(qx, iωl )

)
. (8)

Figure 1(d) illustrates the obtained χ s
y,y(qx, 0) in the yth layer

at zero frequency. The obtained strong FM fluctuations (qx ≈
0) originate from the SABS [19], and they mediate the spin-
triplet edge-induced superconductivity [20].

The linearized triplet gap equations for φ̂(kx, iεn) (∝
〈ckx↑c−kx↓〉) and φ̂+(kx, iεn) (∝ 〈c†

−kx↓c†
kx↑〉) are presented in

Fig. 1(e), and their analytic expressions are

λedgeφy,y′ (kx, iεn)

= −T
∑

k′
x,Y,Y ′,m

Vy,y′ (kx − k′
x, iεn − iεm)

×{Gy,Y (k′
x, iεm)φY,Y ′ (k′

x, iεm)Gy′,Y ′ (−k′
x,−iεm)

− Fy,Y (k′
x, iεm)φ+

Y,Y ′ (k′
x, iεm)FY ′,y′ (k′

x, iεm)}, (9)

λedgeφ+
y,y′ (kx, iεn)

= −T
∑

k′
x,Y,Y ′,m

Vy,y′ (kx − k′
x, iεn − iεm)

×{GY,y(−k′
x,−iεm)φ+

Y,Y ′ (kx, iε′
m)GY ′,y′ (k′

x, iεm)

− F+
y,Y (k′

x, iεm)φY,Y ′ (k′
x, iεm)F+

Y ′,y′ (k′
x, iεm)}. (10)

(We did not study the singlet gap equation because FM fluc-
tuations suppress spin-singlet gaps.) Because the spin-orbit
interaction was absent, we assumed that d ‖ z (Striplet

z = 0)
in the triplet gap without the loss of generality. A detailed
derivation is presented in Appendix A. Based on Ref. [20],
we derived the even-frequency p wave triplet gap φ̂(kx, iεn) =
φ̂(kx,−iεn), where εn = (2n + 1)πT . However, this is not
a unique possibility because the odd-frequency pairing state
φ̂(kx, iεn) = −φ̂(kx,−iεn) is not prohibited in principle.

FIG. 2. Obtained sodd wave triplet gap at the edge:
(a) φ1,1(kx, ±iπT ) in the first BZ (−π/2 < kx � π/2) and
(b) φ1,1(kx = π/2, iεn) in the �d

0 = 0.16 case at T = 0.05. Obtained
T dependences of (c) the Stoner factor αS and (d) the eigenvalue
λedge for the sodd wave state. Here, the bulk d wave SC gap appears
at Tcd = 0.06. In addition, 2�d

0/Tcd = 4.0–5.3 for �d
0 = 0.12–0.16.

The edge sodd wave gap is obtained for αS � 0.95 at T = Tcd .

III. NUMERICAL RESULTS

In the triplet state, the even-frequency (odd-frequency) gap
exhibits an odd (even) parity in space due to fermion anticom-
mutation relations. Considering both possibilities equally, we
analyze the gap equation in Fig. 1(e) by considering the iεn

dependence of φ̂(kx, iεn) comprehensively. Here, we assume
the Hermitian odd-frequency gap function [27,28]:

φ+
y,y′ (kx, iεn) = [φy′,y(kx,−iεn)]∗. (11)

The reliability of this relationship will be clarified later.
We assumed the BCS-type bulk gap function �d (T ) =
�d

0 tanh(1.74
√

Tcd/T − 1) with the transition temperature
Tcd = 0.06, which corresponds to ∼100 K in cuprates for
z|t1| ∼ 1500 K, with z = m/m∗ ∼ 0.3.

Experimentally, 4 < 2�d
0/Tcd < 10 in YBCO [77,78].

Thus, we set �d
0 = 0.12 or 0.16, which corresponds to

2�d
0/Tcd = 4.0–5.3. We set U = 2.32, where the spin Stoner

factor αS is 0.975 at T = Tcd .

A. sodd wave SC state

Figures 2(a) and 2(b) exhibit the kx and iεn dependences
of the odd-frequency s wave (sodd wave) gap for �d

0 = 0.16
at T = 0.05, respectively. Here, the odd-frequency sodd wave
state is obtained as the largest eigenvalue state. At the edge,
the pure sodd gap function is obtained because the d wave gap
is zero at y = 1.

Figures 2(c) and 2(d) exhibit the obtained spin Stoner
factor αS and the eigenvalue λedge as a function of T , respec-
tively. Since SC susceptibility is proportional to 1/|1 − λedge|,
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FIG. 3. (a) Obtained energy-scale of the dynamical spin suscep-
tibility ωd (∝ 1 − αS ) as a function of T . Eigenvalues λedge obtained
by the pairing interaction χ̂ s(qx, 0)�(ωl ; ωd ) for (b) ωd = 0.04 and
(c) 0.1. As it approaches the magnetic criticality ωd → 0, T odd

cs

increases, whereas T even
cp decreases. In (b), T odd

cs is higher than T even
cp .

the edge-gap function is expected to appear when λedge ∼ 1.
In the normal state (�d

0 = 0), λedge decreases at low T be-
cause the pairing interaction for the odd-frequency SC gap
is proportional to T χ s(qx, 0) ∝ T/(1 − αS ) [30,34–38]. This
is a well-known difficulty of the spin-fluctuation-mediated
odd-frequency SC mechanism in bulk systems. In contrast,
in the presence of the SABS, αS increases rapidly due to
the huge LDOS at zero energy [19,70]. Therefore, λedge

rapidly approaches unity owing to the SABS-induced mag-
netic criticality [20]. Thus, the SABS-driven odd-frequency
SC mechanism is naturally realized at the edge of d wave
superconductors.

B. sodd wave SC state dominates peven wave SC state

Here, we discuss the reason behind the edge sodd wave
state dominating the edge even-frequency peven wave state
in this study. In the kx-space argument, the larger conden-
sation energy is expected in the nodeless sodd wave state.
In the εn-space argument, proximity to the magnetic crit-
icality (αS � 1) is crucial: The edge pairing interaction
V1,1(qx, iωl ) ∝ χ s

1,1(qx, iωl ) at qx ∼ 0 is well fitted by the
function �(ωl ; ωd ) = ωd/(|ωl | + ωd ), and the obtained ωd in
the present real-space RPA study is presented in Fig. 3(a).
ωd (∝ 1 − αS ) approaches zero at the magnetic critical point,
and the eigenvalues of even- and odd-frequency solutions
become similar [30,34–38]. To verify this discussion, we
compare the eigenvalues λedge of both sodd wave and peven

wave states by introducing a separable pairing interaction
Vy,y′ (qx, iωl ) ∝ χ s

y,y′ (qx, 0)�(ωl ; ωd ). The obtained results are
presented in Figs. 3(b) and 3(c) for ωd = 0.04 and ωd = 0.1,
respectively. It is verified that the sodd wave dominates the
peven wave near quantum criticality ωd = 0.04, which corre-
sponds to the RPA study demonstrated in Fig. 2. The obtained
sodd wave state should be robust against impurity scattering
according to the Anderson theorem.

The obtained edge sodd wave gap in the εn representation
is real in the case of �d = real. That is, φ1,1(kx, iεn) ∝ εn is
real for small εn. Then, after the analytic continuation, φ′ =
[φR

1,1(kx, ε) + φA
1,1(kx, ε)]/2 ∝ iε becomes purely imaginary.

In addition, the triplet gap function is odd with respect to the
time reversal. Therefore, the obtained state is the TRS “d +
sodd wave state.” Because φ′′ = [φR

1,1(kx, 0) − φA
1,1(kx, 0)]/2

also approaches zero near the magnetic criticality [30], the

FIG. 4. (a) Obtained edge currents in the d + sodd state derived
from the edge gap equation shown in Fig. 1(e). Here, d = dxy.
The edge currents in the p + isodd, d + iseven, and p + seven states
are illustrated in Appendix D and listed in Table I. Here, we set
�d = 0.16, while the sodd wave gap function is set as φy,y′ (iεn) =
φo f o(εn)δy,1δy′,1 with φo = 0.16, where f o(εn) is given in Fig. 2(b).
(b) Obtained total edge current JSz

x for �d = 0.16 as a function of φo.

edge sodd wave gap will not affect the LDOS at zero energy.
This result is consistent with the ubiquitous presence of the
zero-bias conductance peak in the tunneling spectroscopy of
cuprates [10,11,79,80]

C. Edge supercurrent

Here, we elucidate the emergence of the nontrivial edge
supercurrent in the d + sodd wave state. In the present cluster
model with the d + sodd wave gap, the charge current along
the x axis from layer y [Fig. 1(a)] to any layer is calculated as

JC
x (y) =

∑
kx,y′,σ,ρ

{(−eδσ,ρ )vx(kx, y, y′)

×Gσ,ρ

y′,y (kx, iεn)e−iεn0 + (y ↔ y′)}, (12)

where vx(kx, y, y′) ≡ ∂H0
y,y′ (kx )/∂kx [81] and Gσ,ρ

y′,y presents the
Green’s function for the d + sodd state in Appendix A. Here,
we set φy,y′ (iεn) = φo f o(εn)δy,1δy′,1, with φo = �d

0 = 0.16,
where f o(εn) is provided in Fig. 2(b). The numerical results
obtained are insensitive to the parameters φo and �d

0 = 0.16.
Accordingly, the total edge current is JC

x = ∑
y JC

x (y). We
also calculate the spin current along the x axis JSμ

x (y), where
μ represents the spin current polarization. It is obtained by
replacing (−eδσ,ρ ) with (h̄σ̂ μ

σ,ρ ) in Eq. (12), where σ̂ μ depicts
the Pauli matrix. Because sz is conserved in the present SC
state, JSμ

x (y) is zero for μ = x, y. We emphasize that JSμ
x (y)

remains constant under the time reversal.
Figure 4(a) presents the obtained currents in the d + sodd

wave state by setting e = h̄ = 1. Here, the charge current
JC

x (y) vanishes identically, which is consistent with the exper-
imental reports of muon spin rotation (μ-SR) [82]; however,
the nonzero spin current JSz

x (y) flows spontaneously. The spin
current polarization is parallel to the d vector. Here, the parity
of the mirror operation Mx is odd because the dxy (sodd)
gap has odd (even) parity. In addition, the spin exchange
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FIG. 5. Obtained edge currents in (a) the p + isodd wave state, (b) the d + iseven wave state, and (c) the p + seven wave state. Here, p = px ,
d = dxy, and �p,d = 0.16. We set the sodd wave gap function as φy,y′ (iεn) = φo f o(εn)δy,1δy′,1 with φo = 0.16, where f o(εn) is given in Fig. 2(b).
We also set the seven wave gap φy,y′ (iεn) = φeδy,1δy′,1 with φe = 0.16.

parity is −1. Consequently, conduction electrons acquire spin-
dependent velocity, and therefore, JSz

x (y) �= 0. The obtained
total spin current JSz

x ≡ ∑
y JSz

x (y) is φo linear, as shown in
Fig. 4(b). Because JSz

x is linear in |φo|, a sizable amount of
spin current is expected.

Furthermore, we also study the edge currents in the d +
iseven, p + isodd, and p + seven wave states. In the TRS break-
ing p + isodd wave state (p = px), we find that the finite charge
current emerges as shown in Fig. 5(a), whereas spin current
vanishes. In the p + isodd wave state, the parity of Mx is odd,
while the parity of the spin part is even. As a result, JC

x �= 0
is realized. The present study is a nontrivial extension of the
theory of the d + iseven wave state [14].

We notice that, when the bulk SC gap is px wave, the
SABS that drives the edge sodd wave state is absent [7]. In
the pX wave SC state, the SABS exists, and the parity of Mx

is not completely even. Therefore, the pX wave SC state is
favorable to realize the odd-frequency SC state with a finite
edge current. The pX wave can be realized by applying the
uniaxial strain in the chiral or helical p wave state.

Next, we calculate the edge-induced currents due to the
edge even-frequency s wave states. Figures 5(b) and 5(c) are
the obtained edge currents in the d + iseven wave and p +
seven wave states, respectively. The obtained charge current
in Fig. 5(b) is consistent with the Matsumoto-Shiba theory
[14]. The parities and edge currents in the edge odd- and
even-frequency SC states are summarized in Table I.

TABLE I. Parities and edge currents in d + sodd p + isodd, d +
iseven, and p + seven wave states for d = dxy and p = px . These states
satisfy Mx = −1. All currents disappear if the phase of the edge
gap is shifted by π/2. No currents flow for d = dx2−y2 and p = py

because Mx = +1.

SC state Time reversal Spin exchange JC
x JSz

x

d + sodd + − 0 nonzero
p + isodd − + nonzero 0
d + iseven − + nonzero 0
p + seven + − 0 nonzero

IV. RELATIONSHIP BETWEEN φ AND φ+

Finally, we discuss a fundamental open problem in the
relationship between φ and φ+ in the odd-frequency gap
function. In this study, we assume the relationship in Eq. (11),
which is directly derived from the Lehmann representation.
This relationship gives the para-Meissner effect, and there-
fore, it is not as stable as a bulk SC state. Nonetheless,
the odd-frequency gap function is naturally expected as the
edge state of bulk superconductivity. However, a different
non-Hermitian relationship, φ̄+

y,y′ (kx, iεn) = [φy′,y(kx,+iεn)]∗,
proposed in Refs. [22,31–33], which exhibits the usual Meiss-
ner effect, inevitably induces imaginary spin current in the
d + sodd wave state, as demonstrated in this study. Therefore,
the Hermitian relationship (11) should be the true equation.

To determine the edge sodd gap function, it is beneficial to
focus on the anomalous proximity effect in a diffusive normal
metal (DNM), where the quasiparticle in the DNM exhibits
a zero-energy peak of the LDOS [57]. In the absence of the
edge sodd gap function, the odd-frequency singlet p wave is
solely induced at the interface; however, it cannot penetrate
into the DNM. Once the sodd triplet SC state is induced, it can
penetrate into the DNM and generate the zero-energy peak of
the LDOS.

V. SUMMARY

We have predicted that an odd-frequency spin-triplet s
wave gap function emerges at the edge of d wave su-
perconductors, mediated by the zero-energy SABS-induced
ferromagnetic fluctuations. This prediction is obtained from
the analysis of the edge SC gap equation based on the clus-
ter Hubbard model with a bulk d wave gap. The predicted
odd-frequency s wave gap function is expected to be robust
against randomness. The obtained SC state with the TRS
accompanies the spontaneous edge spin current. The predicted
edge spin current in the d + sodd wave state is a useful signal
for detecting the hidden odd-frequency SC gap function. We
also provided decisive validation of the Hermitian relationship
[Eq. (11)] of the odd-frequency gap function. An important
future issue is to analyze the electronic states below T odd

cs by
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considering strong coupling effects, like the self-energy and
feedback effects.

We have revealed that SABS-driven spin fluctuations at
the edge of the bulk superconductor induce exotic edge su-
perconductivity. The SABS-driven spin fluctuations will also
induce an exotic edge charge density wave (CDW) due to
the paramagnon interference mechanism [83–87]. The d wave
bond order [75,76,88], p wave charge current order [89], and
p wave spin current order [90] are expected to be realized by
the paramagnon interference mechanism [91]. The emergence
of an edge-induced exotic CDW is an important future issue.
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APPENDIX A: LINEARIZED GAP EQUATION FOR THE
EDGE-INDUCED TRIPLET STATES

In this Appendix, we derive the linearized triplet gap equa-
tion in the presence of the bulk d wave gap [20]. First, we
assume that �d

y,y′ (kx ) and the edge triplet gap φy,y′ (kx, iεn) ≡
φ

↑↓
y,y′ (kx, iεn) are both finite. We ignore the spin-orbit inter-

action, so we can set the d vector as d̂ = (0, 0, φ̂). Then,
we define the 2Ny × 2Ny Green’s functions ĜNam in the
bulk+edge SC state as follows:

ĜNam ≡
( Ĝ↑↑(kx, iεn) F̂↑↓(kx, iεn)

F̂+↑↓
(kx, iεn) −t Ĝ↓↓(−kx,−iεn)

)

=
(

iεn − Ĥ0(kx ) −�̂d (kx ) − φ̂(kx, iεn)
−�̂d (kx ) − φ̂+(kx, iεn) iεn + t Ĥ0(−kx )

)−1

.

(A1)

The equation for the triplet gap φy,y′ (kx, iεn) is given by

φy,y′ (kx, iεn) = T
∑
k′

x,m

Vy,y′ (kx − k′
x, iεn − iεm)

× F triplet
y,y′ (k′

x, iεm), (A2)

where F̂ triplet (kx, iεn) ≡ {F̂↑↓(kx, iεn) + F̂↓↑(kx, iεn)}/2 is
the triplet part of the anomalous Green’s function in the
coexisting SC state. In order to linearize (A2), we evaluate
F̂ triplet by the first-order perturbation of φ̂ and φ̂+ to the
Green’s functions (3). Since F̂d satisfies the relation F̂↑↓

d =
−F̂↓↑

d , we obtain F̂ triplet = −Ĝd φ̂
ˆ̄Gd + F̂d φ̂

+F̂d , where ˆ̄Gd ≡
t Ĝd (−kx,−iεn). By substituting it into Eq. (A2), we obtain the
analytic expression of the linearized triplet gap equation for φ̂

in Fig. 1(e). The set of Eqs. (9) and (10) gives the linearized
triplet gap equation in the presence of the bulk d wave gap.
[In Eqs. (9) and (10), the subscript d of G and F is omitted.]
The edge triplet SC state appears when the eigenvalue λedge is
around unity.

FIG. 6. Weight of the edge layer state in the normal state;
Wy=1(kx, ε).

In the main text, we use the Hermitian odd-frequency gap
φ+(iεn) = −[φ(iεn)]∗ and obtain the time-reversal-symmetry
d + sodd wave state. We note that the eigenvalue λedge is
unchanged even if one assumes a non-Hermitian relation
φ+(iεn) = [φ(iεn)]∗.

In the present study, the Hermitian odd-frequency gap re-
lation gives the finite charge or spin current unless the parity
of Mx is even. On the other hand, the non-Hermitian odd-
frequency gap relation leads to unphysical imaginary currents
in the cases of the d + isodd wave and p + sodd wave states.

APPENDIX B: kx DEPENDENCE OF sodd GAP

Figure 6 shows the weight of the edge layer state (y = 1)
in the present cluster tight-binding model without �d . It
is given as Wy(kx, ε) = ∑

b δ(Eb,kx − ε)|U (y, b, kx )|2, where
Eb,kx is the bth band energy at kx measured from μ and
U (y, b, kx ) is the unitary matrix. Note that the relation
Dy(ε) = ∑

kx
Wy(kx, ε) holds. Since the edge weight is large

for |kx| ∼ π/2, the magnitude of the sodd wave gap function
in Fig. 2(a) is large for |kx| ∼ π/2.

FIG. 7. |�d
i, j | for i = (x, y) and j = (x + 1, y + 1) for ξd = 10.
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APPENDIX C: COHERENCE LENGTH OF THE BULK d
WAVE GAP

The d wave gap function in the Hamiltonian is given
as �d

i, j = (�d/4)(δri−r j ,±X̂ − δri−r j ,±Ŷ ). Near the edge layer

(y = 1), �d
i, j should be suppressed if the y components of sites

i and j, yi and y j , are smaller than the coherence length ξd =
10. In order to reproduce this suppression, we multiply �d

i, j
in the Hamiltonian by the decay factor {1 − exp[(yi + y j −
2)/2ξd ]} [20]. In the main text, we set the coherence length
ξd = 10, and then |�d

i, j | for i = (x, y) and j = (x + 1, y + 1)
is given in Fig. 7. From the experimental results [92–95],
the coherence length in the a-b plane of YBCO is 1 nm for
T � Tcd . Therefore, ξd = 10 is a reasonable value.

APPENDIX D: ANALYSIS BY MODIFIED FLEX
APPROXIMATION

In the main text, we calculated the y, y′ dependence of the
pairing interaction Vy,y′ (kx, iωn) using the site-dependent RPA
theory. Here, we calculate Vy,y′ (kx, iωn) using the modified
fluctuation-exchange (FLEX) approximation in order to study
the effect of the self-energy effect by following our previous
study [19]. We set U = 2.8 hereafter.

Figures 8(a) and 8(b) show the qx and ωn dependences of
the odd-frequency sodd wave gap at T = 0.05, respectively. By
setting �d

0 = 0.24 (0.20) in the Hamiltonian, the normalized
d wave gap is obtained as �d

0
∗ = 0.17 (0.14) due to the self-

energy in the FLEX approximation [20]. The obtained results
are similar to those in Figs. 2(a) and 2(b) in the main text given
by the RPA.

Figures 8(c) and 8(d) exhibit the obtained spin Stoner fac-
tor αS and the eigenvalue λedge as functions of T , respectively.
In the normal state (�d

0
∗ = 0), αS moderately increases at low

temperatures. In contrast, λedge decreases at low T since the
pairing interaction for the odd-frequency SC gap is propor-
tional to T χ s(qx, 0). In contrast, in the presence of the d wave
gap �d

0
∗
, αS rapidly increases due to the huge zero-energy

surface Andreev bound state (SABS) peak. Therefore, λedge

FIG. 8. Odd-frequency gap functions obtained by the modified
FLEX theory for U = 2.8. (a), (b) Obtained sodd wave triplet gap
at edge: (a) φ1,1(kx,±iπT ) and (b) φ1,1(kx = π/2, iεn) in case of
�d

0
∗ = 0.17 at T = 0.05. (c), (d) T -dependences of (c) the Stoner

factor αS and (d) the eigenvalue λedge for the sodd wave state. Here,
the bulk d wave SC gap appears at Tcd = 0.06. 2�d

0
∗
/Tcd = 4.7 and

5.6 for �d
0
∗ = 0.14 and 0.17, respectively. The edge sodd wave gap is

obtained for αS � 0.968 at T = Tcd .

rapidly increases owing to the SABS-induced magnetic criti-
cality [20]. These results are similar to those in Figs. 2(c) and
2(d) in the main text.

Thus, the SABS-driven odd-frequency SC state is naturally
obtained at the edge of d wave superconductors, even if the
self-energy effect is taken into account based on the modified
FLEX theory.
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