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Hybrid fracton phases: Parent orders for liquid and nonliquid quantum phases
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We introduce hybrid fracton orders: three-dimensional gapped quantum phases that exhibit the phenomenol-
ogy of both conventional three-dimensional topological orders and fracton orders. Hybrid fracton orders host
both (i) mobile topological quasiparticles and loop excitations, as well as (ii) pointlike topological excitations
with restricted mobility, with nontrivial fusion rules and mutual braiding statistics between the two sets of
excitations. Furthermore, hybrid fracton phases can realize either conventional three-dimensional topological
orders or fracton orders after undergoing a phase transition driven by the condensation of certain gapped
excitations. Therefore they serve as parent orders for both long-range-entangled quantum liquid and nonliquid
phases. We study the detailed properties of hybrid fracton phases through exactly solvable models in which
the resulting orders hybridize a three-dimensional Z2 topological order with (i) the X-cube fracton order or (ii)
Haah’s code. The hybrid orders presented here can also be understood as the deconfined phase of a gauge theory
whose gauge group is given by an Abelian global symmetry G and subsystem symmetries of a normal subgroup
N along lower-dimensional subregions.
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I. INTRODUCTION

Gapped fracton phases of matter [1–5] are quantum phases
characterized by the presence of fractionalized, pointlike
excitations with highly restricted mobility, and a robust
ground-state degeneracy that can grow subextensively with
system size, due to an intricate pattern of long-range en-
tanglement. This phenomenology is in stark contrast to that
of more familiar, topologically ordered phases that can host
mobile pointlike excitations with nontrivial self-statistics and
mutual statistics in two spatial dimensions, along with loop
excitations in three dimensions. Gapped fracton orders appear
in two broad categories: Type I orders, such as the X-cube
fracton order [5], host both immobile quasiparticles (fractons)
as well as fractionalized excitations with restricted mobility,
while in Type II orders, such as Haah’s code [2], all fraction-
alized excitations are immobile, and cannot be separated with-
out incurring an energy cost. More exotic non-Abelian fracton
orders have been recently explored, in which certain exci-
tations with restricted mobility have a protected internal de-
generacy [6–9], analogous to the quantum dimension of non-
Abelian quasiparticles in two-dimensional topological phases.
More possibilities of immobile excitations, such as immobile
string excitations have also began to be explored [10].

Progress has been made towards understanding some uni-
versal properties of fracton orders that are characteristic of the
phase, such as fusion and braiding processes for fractionalized
excitations [11,12], topological entanglement entropy in the

*ntantivasadakarn@g.harvard.edu
†wenjieji@ucsb.edu
‡sagar@physics.ucsb.edu

ground-state [13–15], and the foliated structure of certain
Type I fracton orders which allows these phases to easily
“absorb” two-dimensional topological orders through the ac-
tion of a finite-depth quantum circuit [16–18], in contrast to
a conventional quantum liquid, which can similarly absorb
short-range-entangled degrees of freedom [19]. Quantum field
theories that capture the low-energy properties of Type I frac-
ton orders have been recently proposed [11,20–24].

Though fracton orders have attracted intense study, they
have so far been treated as exotic nonliquid phases that
stand alone from conventional, three-dimensional topological
orders, which can be described at low energies by topologi-
cal quantum field theories in (3 + 1) space-time dimensions
(TQFT4). Some indirect relations between fracton orders
and conventional quantum liquids have been identified. First,
strongly coupled stacks of lower-dimensional topological
phases can realize certain fracton orders or three-dimensional
topological orders, independently [8,25–36]. Second, lattice
models in which the gapped excitations contain non-Abelian
fractons as well as mobile particles which behave similarly
to the charges in a three-dimensional D4 gauge theory, have
been recently proposed [37–40]. However, key properties of
these models including (i) their relationship to conventional
quantum liquid orders such as the D4 gauge theory and (ii) the
braiding and fusion of excitations, are not fully understood.
Whether properties of certain long-range-entangled quantum
liquid and nonliquid states can coexist, or be possibly unified
into a “parent” order, has remained an open question.

In this work, we answer this question directly, by propos-
ing a family of hybrid fracton orders, which host both
the exotic excitations of a fracton phase, as well as the
point- and looplike excitations that appear in a TQFT4. Within
these hybrid phases, the two kinds of excitations have non-
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trivial mutual statistics and fusion rules—i.e., collections of
excitations native to the fracton order can fuse into excita-
tions of the quantum liquid order and vice versa—so that the
hybrid phase is truly distinct from a tensor product of the
two orders. These hybrid orders further serve as clear parent
phases for both conventional three-dimensional topological
orders and Type I or Type II fracton orders, since they can
realize either order after undergoing a phase transition in
which an appropriate set of gapped excitations condense. Af-
ter introducing a framework for understanding the emergence
of these orders, we concretely characterize certain hybrid
ordered phases through a series of exactly solvable models,
which provide a theoretical toolbox to determine the topo-
logical data—including fusion, braiding, and the mobilities of
excitations—in full detail.

A number of outstanding questions about these phases
that we introduce, and their generalizations, remain to be
addressed. First, it remains to be understood whether hybrid
fracton phases can fit into the existing framework of foliated
fracton orders. For example, can a two-dimensional topologi-
cal order be “exfoliated” from Type I hybrid fracton models?
This would also clarify their entanglement renormalization
group flow, which exhibits dramatically different behaviors
between liquid and nonliquid phases [41,42]. Whether hybrid
fracton phases can quantitatively improve upon the perfor-
mance of existing quantum memories based on Type II fracton
orders [43] also remains to be studied. Furthermore, a field-
theoretic understanding of such orders could shed light on
the universal properties of these states at low energies, other
proximate phases, and other hybridizations of liquid and
nonliquid orders that are possible. One such construction has
been recently realized in Ref. [44]. We note that a systematic
study of more general hybrid fracton orders, which also yield
non-Abelian fracton excitations, have been presented in recent
follow-up work [45].

Summary of main results. We now provide a detailed sum-
mary of our main results, and an outline of this work. To
illustrate the properties of hybrid fracton orders, we introduce
four exactly solvable models of these hybrid phases, in in-
creasing levels of complexity. All of the models introduced
can be thought of as a hybrid of a (liquid) Z2 toric code in
three dimensions, and a (nonliquid) Z2 fracton model, due to
the fact that the hybrid order hosts both the gapped excitations
of the toric code, as well as the exotic excitations of the
fracton order. In fact, the hybrid orders we introduce have
the same groundstate degeneracy as the tensor product of the
two orders on the three-torus. Nevertheless, the hybrid phases
differ from a trivial tensor product due to the nontrivial fusion
and braiding of the gapped excitations.

The excitations in the hybrid orders that we consider, along
with some of their braiding and fusion rules, may be summa-
rized succinctly. All of these orders host a mobile Z2 charge
(labeled e2) and a Z2 flux loop (labeled m), which have the
same mobility and mutual statistics as the Z2 charge and flux
in the 3d toric code. Furthermore, the hybrid order hosts an
excitation with restricted mobility (labeled e) and its conju-
gate excitation (labeled m2) which are in correspondence with
the excitations in a particular Type I or Type II fracton order.
For example, e can correspond to the fracton excitation in the
X-cube model, with m2 then corresponding to the conjugate

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Hybrid Haah’s code. In the hybrid Haah’s code, the two
species of fracton excitations (e and m2) that are native to Haah’s
code [2] are created in the geometric arrangements shown in (a) and
(b). Pairs of e fractons fuse into a mobile Z2 charge (e2) as in (c). The
hybrid order also hosts a flux loop m. Two identical, rectangular flux
loops fuse to generate an arrangement of the m2 fracton excitations,
shown schematically in (d). The precise geometry of the generated
fracton excitations is presented in Fig. 13 in Sec. V. The e2 charge
has identical mutual statistics with a flux loop m as in the 3d toric
code as shown in (e). In (f), braiding the flux loop m around the e
fracton gives a nontrivial phase that is consistent with the fusion and
braiding in (c) and (e).

excitation in the X-cube phase which is only mobile along
lines (the lineon). The resulting hybrid phase is then termed
the fractonic hybrid X-cube order, where “fractonic” refers
to the mobility of the e excitation. In select situations, this
labeling is unnecessary as the hybrid order can be defined
unambiguously. In Haah’s code, for example, both species
of excitations are fractons, which are further exchanged by a
duality transformation [41]. Therefore, in constructing a “hy-
bridization” of Haah’s code with the 3d toric code, choosing e
to be either of the fracton excitations in Haah’s code yields the
same hybrid order, whose properties are summarized schemat-
ically in Fig. 1.

Our labeling of the gapped excitations in the hybrid fracton
orders is suggestive of their fusion rules, which are summa-
rized in Table I. These fusion rules yield new phenomena
that are not separately possible in either the fracton or three-
dimensional toric code orders. For example, in both the hybrid
Haah’s code and in the fractonic hybrid X-cube order, two
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TABLE I. Fusion in hybrid fracton orders. In the hybrid orders
studied in this work, the excitations e2 (m) resemble the charge (flux)
in the 3d Z2 toric code, while e and m2 resemble the two species of
excitations with reduced mobility in a Z2 fracton order, respectively.
These excitations and their composites form all of the gapped exci-
tations in the hybrid order, and some of their characteristic fusion
rules are shown below. The inverses of e and m—labeled ē and
m̄, and defined by the relation ē × e = m̄ × m = 1—have identical
mobilities as e and m, respectively.

Excitations and fusion rules

Generating set = {1, e, e2, m, m2}
e2 ≡ e × e = mobile Z2 charge

m = flux loop
m2 × m2 = e2 × e2 = 1

Hybrid toric code layers (Sec. II)
e ≡ planon m2 ≡ planon

m × m = planons (m2) along loop

Fractonic hybrid X-cube (Sec. III)
e ≡ fracton m2 ≡ lineon

m × m = lineons (m2) at corners

Lineonic hybrid X-cube (Sec. IV)
e ≡ lineon m2 ≡ fracton

m × m = fractons (m2) at corners

Hybrid Haah’s code (Sec. V)
e ≡ fracton m2 ≡ fracton

m × m = fractons (m2) along loopa

aThe precise geometric arrangement of the fractons generated by the
loop fusion is presented in Sec. V.

fractons (e × e) fuse into a completely mobile quasiparticle
(e2). This is particularly striking, as a single fracton is com-
pletely immobile, and collections of these fractons can only
form excitations with significantly reduced mobility in a Type
I fracton order. Additionally, the fusion of a pair of loop exci-
tations (m × m) yields a geometric pattern of m2 excitations,
which are fractons in the hybrid Haah’s code.

Apart from the fusion rules, we obtain a universal braiding
phase for two excitations ea and mb, when at least one of the
two excitations exhibits enough mobility to remotely detect
the other. This braiding process leads to the accumulation of a
universal phase eiθab where

θab = iπ

2
ab, (1)

and with a, b ∈ {0, 1, 2, 3}, in all of the hybrid orders that
we present. Other braiding processes that are specific to each
hybrid order are also studied, which are not summarized here.

The emergence of hybrid fracton orders may be more
generally understood in two complementary ways. First, our
hybrid orders can be obtained by starting with a Type I or Type
II fracton order which is enriched by an on-site Abelian global
symmetry (e.g., Z2), so that certain excitations of the fracton
order carry fractional quantum numbers under the symmetry.
Gauging this global symmetry then yields a hybrid fracton
order, in which certain excitations of the original fracton order
can fuse into the gauge charge in a conventional topological
order (e.g., the gapped charge in a Z2 gauge theory).

Equivalently, the hybrid order can be thought of as the
deconfined phase of a gauge theory. We may start with

a short-range-entangled (SRE) quantum system with global
symmetry G and subsystem symmetries N , where N is a
normal subgroup of G; the subsystem symmetries are defined
as symmetry transformations along extensive subregions of
the lattice (e.g., planes). Importantly, the subsystem and global
symmetries are not independent of each other, and their in-
terplay is such that the gapped, symmetric excitations of the
SRE phase can be (i) charged under the global symmetry or
(ii) charged under a combination of planar symmetries and
the global symmetry, so that gauging these symmetries yields
a hybrid fracton order. As a consequence of this construction,
we also refer to the hybrid order as a (G, N ) gauge theory,
and in this work we restrict our attention to Abelian groups
G and N , where G/N = Z2. Because the hybrid order is the
deconfined phase of a gauge theory, we will often refer to its
gapped excitations as charges or fluxes depending on whether
the excitation is related to a (i) gapped, symmetric excitation
in the ungauged, SRE phase which transforms under the sym-
metry group (charge) or (ii) a defect of the symmetry group
(flux). (G, N ) gauge theories for more general groups G and
N are studied extensively in a follow-up work [45], where
it is found that gauging the Abelian global symmetry G and
subsystem symmetries N of a SRE state yields a hybrid order
that hybridizes a 3d G/N toric code and a fracton model based
on the subsystem symmetry gauge group N .

We now provide an outline of this work. In Sec. II, we
introduce the simplest example of a hybrid phase, which
hybridizes the order in a stack of two-dimensional (2d) Z2

toric codes and the three-dimensional (3d) Z2 toric code. This
order—termed the hybrid toric code layers—can be obtained
either as a generalized gauge theory, or by condensing a set of
gapped excitations in a stack of 2d Z4 toric codes. These two
complementary ways of obtaining the hybrid order provide an
important understanding about the fusion and braiding statis-
tics of the gapped excitations. The intuition obtained from this
example extends to the hybrid fracton orders that we consider
subsequently.

In the remaining sections, we introduce more complex
hybrid phases that hybridize a fracton order with a 3d toric
code topological order. For the hybrid Type I fracton models
that we present, we choose the X-cube order [5] as our input.
In this case, there are two possible hybrid orders that can
be obtained, if the gapped excitation e is chosen to be the
fracton in the X-cube model or the lineon excitation. The
former yields the fractonic hybrid X-cube order, in which a
pair of fractons fuse to the mobile charge e2, and is introduced
in Sec. III. The latter case, where a pair of lineons fuse to
the mobile charge, is presented in Sec. IV. The equivalance
between the ground-state degeneracy of the fractonic hybrid
X-cube order and of the tensor product of the X-cube and toric
code orders on the three-torus is related to an isomorphism
between the algebra of closed Wilson loop and membrane
operators in the ground-state subspace of these orders, which
we identify. Hybrid Type II orders can also exist1 and we

1Unlike a Type II fracton order, in which all topological excitations
are strictly immobile, a hybrid Type II order hosts the excitations of
both a liquid order and a Type II fracton order, and can have mobile
topological excitations.
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introduce a hybrid of the 3d Z2 toric code and Haah’s code
[2] in Sec. V and study its properties in detail.

Lastly, in Sec. VI, we study the proximate phases of the
hybrid fracton orders, which establishes that these models are
parent states for both conventional topological orders, as well
as fracton orders. We explicitly demonstrate that for either
the Type I or Type II hybrid fracton orders that we introduce,
condensing an appropriate set of gapped excitations can drive
a phase transition into either a Z2 topologically ordered phase
or a Z2 fracton phase. We show that the phase transition
between one of the hybrid orders and an X-cube fracton or-
der can be direct and continuous, and related to the Higgs
transition in a three-dimensional Z2 gauge theory in a par-
ticular limit, though the generic nature of this phase transition
remains to be understood.

Interestingly, we find that a common feature of the hy-
bridized model is that they can be thought of as promoting
certain Z2 degrees of freedom in the tensor product of a
liquid and nonliquid order into Z4 degrees of freedom. More
concretely, starting from a product of the Z2 toric code and a
Z2 fracton model, the hybridization can be viewed as pairing
up qubits of the toric code with qubits of the fracton model,
and promoting these pairs to a Z4 qudit. For cases where the
degrees of freedom of the two models both live on edges, such
as the models in Secs. II and IV, we are able to rewrite the
Hamiltonian as a mix of Z2 qubits and Z4 qudits. For those in
Secs. III and V, the positions of the degrees of freedom of the
toric code and fracton model do not match, and the algebra of
operators in the hybrid model is more involved [see Eqs. (22)
and (59)].

In Appendix A, we give a self-contained discussion of the
definition of an Abelian (G, N ) symmetry, and a qualitative
description of the process of gauging such a symmetry. A
more general construction of hybrid fracton models involving
a general finite group G is presented in a follow-up work [45].

II. HYBRID TORIC CODE LAYERS

In this section, we begin by describing the simplest con-
struction of a hybrid order, which hybridizes a stack of 2d toric
code layers with a 3d toric code, as described by the Hamil-
tonian (3). The resulting hybrid order contains the excitations
of both the 2d toric code, which are restricted to move within
planes, as well as those of the 3d toric code, with nontrivial
braiding and fusion rules.

We first obtain this hybrid order by gauging the symme-
tries of a short-range-entangled (SRE) phase. We start with
L independent copies of a two-dimensional, SRE states, each
with a global Z4 symmetry, and in a trivial gapped, symmetry-
preserving (paramagnetic) state. The full symmetry group of
the stacked layers is ZL

4 . The excitations in each layer that are
charged under this symmetry group (charges) can be labeled
by an integer modulo 4, and cannot move across layers.

Next, we may break the ZL
4 symmetry by adding a coupling

between adjacent layers that allows charge-2 excitations to
tunnel between layers. We observe that since the charge in
each layer is only now conserved modulo 2, the Z4 symmetry
in each layer is now broken down to Z2. Nevertheless, the
global Z4 symmetry defined as the diagonal Z4 symmetries
of all layers is still preserved.

FIG. 2. Hybrid toric code layers from a stack of Z4 toric codes.
An alternate construction of the hybrid toric code layers, which
clarifies the nature of the flux excitations is shown schematically.
Starting with a stack of Z4 toric codes, we condense pairs of e2

anyons in adjacent layers. The anyons m and m̄ in each layer is
confined, but a composite excitation composed of m and m̄ pairs in
each layer—the “m loop”—braids trivially with the condensate and
therefore remains as a topological excitation.

The charge excitations in the SRE state still transform as
a Z4 representation under the global symmetry, so they can
still be labeled by an integer modulo 4. However, they exhibit
mobility constraints due to the fact that they transform under
the remaining Z2 planar symmetry in each layer. The even
charges transform trivially under the Z2 planar symmetry,
meaning they are fully mobile, while the odd charges are
also charged under the planar symmetry, meaning they can
only move within their respective planes. From this, it is also
apparent that a fusion of two identical odd charges results in a
fully mobile even charge.

We now gauge all of the symmetries of this model. The
properties of the charge excitations of the SRE state carry
over to the gauge charges of the resulting hybrid order. Qual-
itatively, we can first gauge the Z2 planar symmetries, which
creates stacks of Z2 toric codes. The global symmetry is now
reduced from Z4 to Z2 because we have also gauged a Z2 sub-
group of the global symmetry, which is the product of the Z2

planar symmetry in every layer. As a consequence, the stack of
toric codes are each enriched by the remaining global Z2 sym-
metry. In particular, the global symmetry fractionalizes on the
toric code anyon e in every layer. Finally, we may also gauge
the global Z2 symmetry to obtain the desired hybrid model.

While the above construction is well-defined, it sheds less
light on the nature of the flux excitations in the final hybrid
model. To study the flux excitations, we find it more insightful
to consider the following alternate route, which will result in
the same hybrid order. We start with the SRE state and tem-
porarily neglect the interlayer couplings, so that each layer has
the full Z4 symmetry. By gauging the Z4 symmetry in each
layer, we obtain a stack of Z4 toric codes. Then, to restore the
interlayer couplings, we condense pairs of e2 anyons of the Z4

toric code between every adjacent layer, as shown in Fig. 2. As
a result, the e2 anyons in each layer are all now in the same
superselection sector in the condensate phase, making the e2

particle mobile in the z direction. In addition, the unit flux
m, which braids nontrivially with the e2 pairs is confined, but
a composite loop excitation composed of m-m̄ pairs in each
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TABLE II. Excitations in the hybrid toric code layers: A summary of the pure charge and flux excitations in the hybrid toric code layers is
provided below, along with the local operators that measure these excitations in the lattice model Eq. (3).

Excitation Creation operator Charge Local Wilson operator

planon e End points of Z on x, y edges Av = i, A2d
v = −1 Bpxy = closed e loop around pxy

End points of Z on x, y edges
mobile charge e2 Av = −1 B3d

p = closed e2 loop around p
End points of Z on z edges

Boundary of X membrane in xy, plane B3d
p = −1 Av = closed m membrane around v

loop m
Boundary of X membrane in xz, yz plane B3d

p = −1, Bpxy = ±i

planon m2 End points of X 2 in xy plane Bpxy = −1 A2d
v = closed m2 loop around v

layer remains deconfined. We will refer to this loop excitation
as the “m-loop”, a gauge flux of the hybrid model. The anyon
m2, however braids trivially and survives as a well-defined
excitation in the condensed phase. It therefore remains as a
point particle confined to each layer.

The considered condensation has interesting consequences
in terms of the mobility of the particles under fusion. Iden-
tically to the charge excitations before gauging, the gauge
charge e is a planon, but fusion with another gauge charge
gives e2, a fully mobile excitation. In addition, obtaining the
hybrid phase by condensing excitations in a stack of Z4 toric
codes allow us to determine the fusion of the flux excitations.
The m-loop is fully mobile, but upon fusion with itself, it
decomposes into pairs of m2 planons in each layer. The types
of excitations and their mobilities in the hybrid toric code
layers are summarized in Table II.

We note that other than the unusual mobilities, the statistics
of the excitations are the same as those of a Z4 toric code
model. That is, the mutual statistics of the excitations ea and
mb for a = 0, 1, 2, 3 is just iab. While it could be suggestive to
think that the final hybrid model simply decouples into a 3d
toric code (with mobile excitations e2 and m) tensored with
a stack of 2d toric codes (formed by planar excitations e and
m2) because each of the pairs above has a mutual −1 braiding
statistics, this can be refuted by noticing the mutual statistics
of i between the m loop and the e planon, which cannot occur
in the stacked model.

A simple exactly solvable lattice model for the hybrid toric
code layers can be explicitly constructed. The model is a hy-
brid of the 2d and 3d toric codes. On a cubic lattice, we place a
Z2 qubit on the z links with the usual Z and X Pauli operators,
and a Z4 qudit on the x and y links with the following clock
and shift operators

Z =
3∑

n=0

in |n〉 〈n| , X =
3∑

n=0

|n + 1〉 〈n| , (2)

which satisfy ZX = iXZ . The Hamiltonian is given by

HHybrid = H ′
TC3

+ H ′
TC2

,

H ′
TC3

= −
∑

v

Av + A†
v

2
−

∑
p

1 + B3d
p

2
,

H ′
TC2

= −
∑

v

1 + A2d
v

2
−

∑
p‖

Bpxy + B†
pxy

2
, (3)

where pxy refer to plaquettes that are in the xy plane only. The
explicit form of the operators are

Av = X †X †
XX

X

X

, (4)

B3d
p = Z2

Z2

Z2
Z2 ,

Z2

Z2

Z

Z ,

Z2

Z2

Z Z (5)

A2d
v = X 2

X 2

X 2

X 2
,

(6)

Bpxy = Z Z
Z† Z† .

(7)

The hybridization of the 2d and 3d Z2 toric codes can be seen
from the fact that the edges in the xy plane have been modified
from Z2 to Z4 qudits. The two models are coupled in such a
way that the vertex term of the 3d toric code Av squares to the
vertex term of the 2d toric code A2

v = A2d
v . Furthermore, for

plaquettes in the xy plane, the plaquette term of the 2d toric
code Bpxy squares to the xy plaquette of the 3d toric code B3d

pxy
.

The phenomenology of the hybrid model can be readily
checked from this lattice model as illustrated in Fig. 3 and
summarized in Table II. The planon e corresponds to Av = i,
and can only be excited at the end points of a string of Z in the
xy plane. Squaring this string operator creates the excitation
e2 at its end points, which satisfy Av = −1. However, e2 is a
mobile particle because it can also hop in the z direction by
acting with Z on z edges.

To create the flux loop m, we apply X on every x or y
link, and X on every z link that intersects a surface S ′ on the
dual lattice. The eigenvalues of the plaquette terms violated
at the boundary of S ′ are given by B3d

p = −1 and Bpxy = ±i.
Squaring the operator that creates the loop, we find that the
only terms that are violated are Bpxy = −1, which correspond
to m2 excitations created at the positions where the original
m loop pierces each xy plane. The m2 excitations are planons
because there are no local operators that can move them out
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Z Z ZZ
e (planon)

ē (planon)

Z2

e2 (mobile)

Z
e2 (mobile)

X 2

m2 (planon) m2 (planon)

m (loop)

X

XXX

X X

X

X

X

X

Z2 Z2 Z2

X 2 X 2

FIG. 3. Geometry of the excitations in the hybrid toric code lay-
ers. Excitations of the hybrid toric code layers from the Hamiltonian
(3) are shown. For charge excitations, the colors magenta, red, and
orange correspond to Av = i, −1, −i, respectively. For flux excita-
tions, blue refers to B3d

p , Bp,xy = −1, while cyan and purple refers to
Bpxy = i,−i, respectively.

of the plane. Finally, moving the e planon around the m loop.
we see that there is a single overlap of the Z and X operators,
which results in a braiding phase of i. In Appendix D 1, we
calculate the groundstate degeneracy of the model on a torus
to be 22L+3 and explicitly construct the logical operators.

III. FRACTONIC HYBRID X-CUBE ORDER

We now present a hybrid order that combines the phe-
nomenology of a (three-foliated) fracton order with that of the
3d toric code. Here, we will find that the charges and fluxes
that were originally planons in the hybrid toric code layers
will become fractons and lineons that behave similarly to the
excitations of the X-cube model. Furthermore, the fracton will
square to a mobile topological charge, and thus we will refer
to the resulting order as the fractonic hybrid X-cube order.
This hybrid order can be intuitively understood as the decon-
fined phase of a gauge theory, which is obtained by gauging
a collection of symmetries—including both global symme-

tries, as well as symmetries along three intersecting planes
(planar subsystem symmetries)—of a short-range-entangled
phase.

A. Paramagnet with global and subsystem symmetries

To illustrate the gauging procedure, we consider a four-
dimensional Hilbert space at each vertex of a cubic lattice,
with the Z4 clock and shift operators defined at each lattice
site, as in Eq. (2). We may consider a product state with
Xv = +1 at all lattice sites, which is trivially the ground-state
of a Hamiltonian

H = −
∑

v

[
Xv + X 2

v + X 3
v

]
. (8)

We will consider the gapped symmetric excitations of this
paramagnet which are invariant under a global Z4 symme-
try transformation

∏
v Xv , along with a planar Z2 symmetry

along any plane p in the xy, yz or xz directions
∏

v∈p X 2
v .

After gauging these symmetries, these excitations are in one-
to-one correspondence with the gapped, fractionalized charge
excitations of the resulting hybrid phase.

The elementary excitations of the paramagnet are cre-
ated as follows. First, for a plaquette p, the operator �p =
ZiZ†

j ZkZ†
l excites four charge excitations at the corners

i, j, k, l . These excitatons are charged ±i under the global Z4

symmetry. In addition, they are also charged −1 under the
Z2 planar symmetry, which renders them immobile. These
excitations will correspond to the fracton e after the gaug-
ing procedure. However, applying this operator twice creates
four particles which are charged −1 under the global Z4, but
charge neutral under the planar Z2. Therefore these charges
are mobile, and can be hopped using �e = Z2

i Z2
f , where i

and f are the endpoints of the edge e. Explicitly,

�2
(i jkl ) = �(i j)�(ik)�(il ). (9)

B. Hybrid order

We will now gauge the aforementioned symmetry, the de-
tails of which we will relegate to Appendix B. Qualitatively,
we separate the gauging into two steps. First, we gauge the
Z2 planar symmetries. This results in a Z2 X-cube model
where the remaining Z2 global symmetry fractionalizes on the
fracton excitation. Further gauging this Z2 global symmetry
will give the hybrid model we will now present. Instead, we
opt to motivate the resulting Hamiltonian as a hybridization
between the 3d toric code and the X-cube model.

We consider a cubic lattice with an additional diagonal
edge added to each plaquette on the cubic lattice as shown
in Fig. 4, and place a Z2 gauge field (qubit) on each edge and
each (square) plaquette of this lattice. In addition, we assign a
local ordering of the vertices to each edge e = (i f ) and each
square plaquette p = (i jkl ) as shown in Fig. 4.

The Hamiltonian can be thought of as first starting with
a Z2 toric code defined with Z2 gauge fields on each edge
of the lattice tensored with a Z2 X-cube model defined with
Z2 gauge fields on each square plaquette. Then, we couple
the two gauge fields by modifying the vertex term in the toric
code and the cube term in the X-cube model. The Hamiltonian
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i
i

i j

k

k

kl

l

l

j

i

f

f

f f

f

f
j

FIG. 4. Description of the lattice for the hybrid X-cube model.
Diagonal edges are added to each plaquette in the cubic lattice. (Left)
Each edge e = (i f ) is oriented, pointing outward from an “initial”
vertex i towards a “final” vertex f . (Right) Ordering of vertices for
each square plaquette p = (i jkl )

is given by

HHybrid=H ′
TC + H ′

XC ,

H ′
TC = −

∑

v

A v + A †
v

2
−

∑ 1 + B
2

,

H ′
XC = −

∑

v

1 + A XCv
2

−
∑

c

∑

r = x,y,z

B c,r + B †
c,r

2
,

(10)

where

Av =
∏
e→v

ξ†
e

∏
e←v

ξe, (11)

B =
∏
e∈

Ze, (12)

AXC
v =

∏
p⊃v

Xp, (13)

Bc,r =
∏
p∈c′

r

ζ†
p

∏
p∈cr

ζp. (14)

Here, Ze is the Pauli Z operator on each edge, and Xp is the
Pauli X operator on each plaquette. Visually, the operators
above are shown in Fig. 5. To clarify the notation above,
e → v (e ← v) in the vertex term Av denotes the incoming
(outgoing) edges towards (from) the vertex v as defined in
Fig. 4, and shown in orange (magenta) in Fig. 5. For the
plaquette term B , the sum is over all triangular plaquettes

. The cube term Bc,r , as in the X-cube model, depends on an
orientation r. In particular, cr and c′

r for r = x, y, z, are each
a set of two plaquettes surrounding the cube c shown in cyan
and purple respectively in Fig. 5. As in the X-cube model, they
satisfy Bc,xBc,yBc,z = 1.

Now, we notice that if ξe and ζp were Pauli X operators on
each edge and Pauli Z operators on each plaquette, then this
Hamiltonian is indeed just a stack of the toric code and the X-
cube models. However, in the hybrid model, the operators ξe

Av = A2
v = AXC

v = B =

Bc,x = Bc,y = Bc,z =

B2
c,x = B2

c,y = B2
c,z =

ξe = ≡ ξ2
e = ζp = ≡ ζ2

p =

FIG. 5. Lattice model for the fractonic hybrid X-cube order. Visualization of the operators in the fractonic hybrid X-cube model. The color
coding used is red=X , blue=Z , green = S, yellow = S†, magenta = ξ, orange = ξ†, cyan = ζ, purple = ζ†, and →= CNOT.
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and ζp are Pauli operators decorated with additional Clifford
gates

Xe → ξe = Xe

∏
p∈n(e)

CNOTe,p, (15)

Zp → ζp = ZpS(i j)S
†
(ik)S(il ), (16)

where

S =
(

1 0
0 i

)
, CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠. (17)

Here, for the CNOT gate in Eq. (15), the qubit on the edge e is
the control and the plaquette p is the target. Furthermore, n(e)
is the set of plaquettes p such that the edge e appears as (i j),
(ik), or (il ) of p as defined in Fig. 4 [see also Eq. (B6)].

Because the operators ξe and ζp act on both the gauge fields
on edges and on plaquettes, we can anticipate that the excita-
tions created by them will display features pertinent to both
the toric code and and X-cube models. For example, as we
will see, a fracton excitation can have nontrivial statistics with
the flux loop. Let us analyze the algebra of these operators.

First, when restricted to terms only on plaquettes or on
edges, the operators act the same as Z2 Pauli operators,

ζpXp′ = (−1)δp,p′ Xp′ζp, (18)

Zeξe′ = (−1)δe,e′ ξe′Ze, (19)

[ξe, ξe′] = [ζp, ζp′] = [ξe, Xp] = [ζp, Ze] = 0. (20)

Second, the square of the modified operators are also Pauli
operators,

ξ2
e =

∏
p∈n(e)

Xp, ζ2
p = Z(i j)Z(ik)Z(il ). (21)

Third, the operators ζp and ξe either commute, or act as the
clock and shift operators of a Z4 qudit, depending on if e is a
certain edge of the plaquette p shown in Fig. 4,

ζpξe =
⎧⎨
⎩

+iξeζp; e = ip jp, iplp,

−iξeζp; e = ipkp,

ξeζp; otherwise.
(22)

The first and second properties implies that ζp is still a Z2

gauge field on plaquettes with respect to the electric field Xp.
Similarly, ξe is still the Z2 electric field on each edge with
respect to the gauge field Ze. The replacement only modifies
the star term Av and the cage term Bc,r . Because of the second
property, the vertex term of the toric code Av term squares to
the vertex term of the X-cube model AXC

v , and the cube term of
the X-cube model Bc,r squares to a product of four triangular
plaquette terms B of the toric code as shown in Fig. 5.

1. Excitations and fusion

Since the model is a commuting projector Hamiltonian, it
is exactly solvable. Therefore we can explicitly write down
the excitations and compare the similarities to the hybrid toric
code layers in the previous section. Using the commutation
relations Eq. (22), we see that ζp commutes with Bc,r and B ,
but violates the projector containing Av at the four vertices at

the corners of p. In particular, this implies that the four corners
of ζp are charged ±i under the operator Av . Furthermore, since
A2

v = AXC
v these excitations are also charged −1 under AXC

v

and are therefore fractons. We will call the excitations e, ē for
the excitation Av = i,−i, respectively. In general, a product
of ζp over a surface S creates such fractons at the corners
of S

fracton e, ē :
∏
p∈S

ζp. (23)

The other type of charge excitation is created by a product of
Ze on an open string L,

mobile e2 :
∏
e∈L

Ze. (24)

The end points of the string operator above are charged −1
under Av , and commute with other local terms in the Hamil-
tonian. Now, the operator ζ2

p also creates such excitations on
the corners of p, as it is charged −1 under Av at the corners.
Thus, we will call Av = −1 the point excitation e2. This can
be seen from the fact that ζ2

p can be written as a product of
Ze operators. More generally, the product of ζ2

p on a surface S
creates the point charges at the corners of S ,

mobile e2 on corners :
∏
p∈S

ζ2
p, ζ2

p = Z(i j)Z(ik)Z(il ), (25)

which is just the dualized form of Eq. (9).
The e2 excitations are fully mobile, since a string of Ze

operators can hop individual e2 excitations. This can also be
seen from the fact that it is not charged under AXC

v , which
detects the fracton.

Next, we define operators that violate Bp and B , but
commute with Av and AXC

v . Excitations created from such
operators are flux excitations. First, acting with ξe on all edges
intersecting a given surface S ′ on the dual lattice creates a loop
excitation at the boundary of that surface.

mobile loop m :
∏
e⊥S ′

ξe, (26)

More precisely, the operators B along the boundary of S ′ are
charged −1. Interestingly, we find that the corners of the loop
operators are moreover charged ±i under two of the three Bc

operators. This is shown in cyan and purple in Fig. 6.
Lastly, applying Xp violates Bc,r on the two cubes adjacent

to p, creating two lineon excitations. In general, the lineon
operator is the product of Xp along a rigid string L′ on the dual
square lattice,

lineon m2 :
∏
p⊥L′

Xp, (27)

and are charged −1 under two of the three Bc,r operators.
In particular, a lineon mobile in the direction r′ = x, y, z is
charged under the Bc,r for r′ �= r.

The excitations of this model are summarized in Table III
and shown in Fig. 6. These excitations also have interesting
fusion rules. Two fractons fuse into a mobile charge, as we can
see from comparing Eq. (23) with Eq. (25). More surprisingly,
two identical loop excitations fuse into a number of lineons.
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TABLE III. Excitations in the fractonic hybrid X-cube model: A summary of the pure charge and flux excitations in the fractonic hybrid
X-cube model is provided above, along with the local operators that measure these excitations in the lattice model.

Excitation Creation operator Charges Local Wilson operator

fracton e Corners of ζp membrane Av = i, AXC
v = −1 Bc = Closed loop of e − ē dipole around c

Corners of ζ2
p membrane

mobile charge e2 Av = −1 B = Closed loop of e2 around .
End points of Ze string

loop m Boundary of ξe membrane Bp = ±i (at corners), B = −1 Av = Closed membrane of m around v

Corners of ξ2
e membrane

lineon m2 Bp = −1 AXC
v = Closed cage of m2 around v

End point of Xp string

To see this, we consider a fusion of the loop m with itself by
applying

ξ2
e =

∏
p∈n(p)

Xp, (28)

to all edges in a dual surface S ′. One can verify that∏
e∈S ′

ξ2
e =

∏
p∈∂S ′

Xp. (29)

e (fracton)

ē (fracton)

ē (fracton)

m (loop)

m2 (lineon)

e2 (mobile)

e2 (mobile)

e (fracton)

m2 (lineon)

FIG. 6. Geometry of the excitations in the hybrid X-cube order.
Excitations of the fractonic hybrid X-cube model and their corre-
sponding creation operators are shown. The excitations e, e2, m and
m2 are created using a membrane of ζp (cyan), a flexible string of Ze

(blue), a membrane of ξe (magenta), and a rigid string of Xp (red),
respectively.

That is, the product is equal to applying Xp to all plaquettes
along the boundary of S ′, which is just the lineon string along
the original loop. Therefore a lineon excitation is created at
every corner of the original loop excitation, and the lineon is
mobile along the direction normal to both edges of the loop
meeting at the given corner. This is illustrated in Fig. 7.

To summarize our results, the excitations in this exactly
solvable model can be created by cutting open “closed” Wil-
son operators. The excitations are “topological” in the sense
that once created, they can fluctuate as far as their mobilities
allow without an energy cost. To see this, we point out that the
following Wilson operators are just products of the stabilizers,
and therefore commute with the Hamiltonian

W e2
(L) =

∏
e∈L

Ze =
∏

∈S

B , (30)

W m(�) =
∏
e⊥�

ξe =
∏
v∈V

Av, (31)

W e−ē
r (Sr ) =

∏
p∈Sr

ζp =
∏
c∈�r

Bc,r, (32)

W m2 cage(C) =
∏
p∈C

Xp =
∏
v∈V

AXC
v . (33)

Here, L is a loop which encloses a surface S, � is a surface
which encloses a volume V , Sr is a closed ribbon within a
plane perpendicular to r̂ which encircles the region �r , and C
is a rigid cage configuration which encloses a block volume
V . This means that open Wilson operators that act on different
submanifolds but share the same boundary will create the
same excitations. For example, the m loop excitation, though
created by a surface operator, does not depend on the choice
of surface in which we choose to fill the loop.

2. Braiding

The hybrid model has nontrivial braiding processes be-
tween the excitations of different mobilities. Similar to usual
topological phases, we can prepare an excitation using an
open Wilson operator, then act with a different closed Wilson
operator to perform the braiding. The closed Wilson operator
describes the limit of a braiding process in the space-time
picture, performed in an infinitesimally small amount of time.

As in a Z4 gauge theory, there is a braiding phase of −1
between the mobile charge e2 and the flux loop m, reminiscent
of the braiding in a Z2 toric code. We show this in Fig. 1(e).
Similarly, there is also a braiding phase of −1 between a
fracton dipole pointing in direction r̂ with a lineon mobile
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m2 (lineon)

=

m (loop)corner of

FIG. 7. Loop fusion in the fractonic hybrid X-cube order. Fusion of two identical m excitations results in lineon excitations (m2) at the
corners of the membrane. The direction of mobility (blue double arrow) for each lineon is perpendicular to the two segments of the loop
meeting at that corner.

along the r̂′ direction if r �= r′ as shown in Fig. 8(a).2 The
braiding process here can be compared to the fracton-lineon
braiding process in the X-cube model [11,12].

The more interesting braiding that makes this model dif-
ferent from a stack of the toric code and X-cube models is
that the fracton e and the flux loop m has an Aharonov-Bohm
phase of i. There are two ways to see this. One way is to realize
that acting with the closed Wilson operator W m(�) around a
fracton braids a flux loop around that vertex. Since W m(�)
is just a product of Av operators enclosed within the surface
�, and the fracton is charged i under Av , this implies that the
braiding process gives a statistical phase of i.

Alternatively, we propose an exotic braiding process be-
tween a fracton dipole and a corner of an m loop, as shown
in Fig. 8(b). We consider a fracton dipole and use the closed
Wilson operator W e−ē

r (Sr ) to hop the fracton dipole in a closed
trajectory perpendicular to the direction r. Since W e−ē

r (Sr ) is
a product of Bc,r operators, and the corner of the m loop is
charged ±i under Bc,r in two of the three directions, we find
that if the trajectory of the fracton dipole encloses a corner
of the m-loop within the same plane, then the process can
detect a phase of ±i. Specifically, there is a statistical phase
if the m-loop pierces the W e−ē

r (Sr ) membrane. It is interesting
to note that although the fracton is immobile, it is allowed to
move when paired up as a dipole. Furthermore, it is only when
the dipole braids with a corner of the m loop that only one of
the fractons winds up forming a link with the m-loop3.

2This braiding phase is well-defined regardless of how the lineon is
created—whether from a single string operator, or from the fusion of
two lineons mobile in the other two directions.

3One might be concerned that the notion of a dipole detecting a
corner of an m-loop might not be well-defined away from the exactly
solvable limit. In particular, whether the notion of a m loop corner is
well defined point in space if the membrane operator that creates the
loop excitation has a larger support. However, we know that in the
exactly solvable limit, the Hamiltonian has a conservation law that
the product of Bc,r on all cubes in a given plane perpendicular to the
direction r is the identity. Since Bc,r detects the corners of the flux
loop, this conservation law guarantees that each plane always has
an even number of flux loop corners. Therefore the notion of a flux
loop corner is well defined for every plane. It follows that away from
the exactly solvable limit, there is an equivalent conservation law
(adiabatically connected to the Bc,r operator) that pins the flux loop

To conclude, the loop excitation in this hybrid model has
exotic braiding properties which makes it distinct from a loop
excitation in a pure TQFT4. Though the loop is fully mobile,

corners to specific planes. Hence, the braiding process is well-defined
throughout the hybrid phase.

e (fracton)))

m2 (lineon)

ē (fracton)

corner of
m (loop)

ē (fracton)

e (fracton)

corner of
m (loop)

acton)

(a)

(b)

FIG. 8. Braiding Processes for an e−ē dipole. (a) The braiding of
an e − ē dipole (pointing in the x direction) with an m2 lineon mobile
along the y direction. As the dipole moves around a closed loop in
the yz plane, if the dipole winds around the lineon, it picks up a phase
of −1. (b) An analogous braiding of an e − ē dipole with a corner of
the m loop in xz plane. If the path of the e fracton forms a link with
the m loop, it picks up a phase of i. The two braiding processes are
consistent with the fusion of two m loops in Fig. 7.
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TABLE IV. Braiding data. Summary of the braiding phases in
the fractonic hybrid X-cube model. The braiding process is obtained
by applying the closed Wilson operator over the excitations of the
fractonic hybrid X-cube model, as shown in Figs. 1(e) and 8.

Closed membrane
of m (W m(�))

fracton e i
charge e2 −1

Closed string of Closed string of
e − ē dipole (W e−ē

r (Sr )) e2 charge (W e2
(C))

loop m ±i (at corners of the loop) −1
lineon m2 −1 1

its corners can be detected with a phase i by fracton dipoles
defined in the same plane (in two of the three directions). Note
that this braiding is also consistent with fusion, since the m
loop corners square to lineons, which can be detected with an
identical process with braiding phase −1.

Finally, it is important to point out certain braiding pro-
cesses with trivial statistics. The first is the trivial braiding
between the mobile charge e2 and the lineon m2. This can be
seen from the fact that the operators that excite each particle
do not overlap (one acts on edges, while the other acts on
plaquettes). Furthermore, since e2 is mobile and both are
point particles, any possible braiding is homotopic to a trivial
braiding process. The second is trivial three-loop braiding
statistics, and other non-Abelian braiding processes which are
important topological invariants for (liquid) 3d topological
orders [26,46–55]. To show this, we use the fact that the
m-loop can be excited by a membrane of ξe, which satisfies
[ξe, ξe′] = 0. Therefore any braiding of loops cannot produce
a phase, including any three-loop braiding processes. In ad-
dition, because all operators in the algebra commute up to a
phase, all braiding processes are Abelian. A summary of the
braiding phases are given in Table IV.

3. Ground-state degeneracy and logical operators on a torus

The groundstate degeneracy of the hybrid model can be
calculated via similar methods used for the toric code and
X-cube models. In Appendix D, we count the number of
independent stabilizers and compare it to the total dimension
of the Hilbert space. We find that the groundstate degeneracy
of the model on a torus of size Lx × Ly × Lz, is

log2 GSD = 2(Lx + Ly + Lz ). (34)

To distinguish the different ground states, we restrict our-
selves to the groundstate subspace and explicitly construct
the logical (nonlocal Wilson) operators in this subspace by
tunneling excitations around the torus. In the following, we
argue that the logical operators can be factored to a “toric
code” subspace, consisting of operators that tunnel e2 and
m-loops, and an “X-cube” subspace, consisting of operators
that tunnel e-dipoles and m2-lineons. This will allow us to

FIG. 9. Logical (nonlocal Wilson loop) operators of the Hamil-
tonian (B31) on a three-torus: (Left: W e−ē(R) and W m2

(L′) logical
operators of the “X-cube” subspace. They describe the tunneling of
e − ē fracton dipole (cyan) and m2 lineons (red), respectively. (Right)
W e2

(C) and W m(�′) logical operators of the “toric code” subspace.
They describe the tunneling of e2 mobile charge (blue) and m mobile
loop (magenta), respectively.

conclude that the groundstate degeneracy is

log2 GSD = log2 GSDTC + log2 GSDXC

= 3 + 2(Lx + Ly + Lz ) − 3 = 2(Lx + Ly + Lz ).
(35)

Therefore they form a complete set of logical operators.
First, consider tunneling an e − ē dipole around the torus

using the operator

W e−ē(R) =
∏
p∈R

ζp, (36)

where R is a cyan ribbon shown in Fig. 9. Now, although the
corners of ζp are fractons with Z4 fusion rules, the ribbon of
ζp is actually a Z2 operator in the groundstate subspace, since
it squares to a product of B operators, which is set to one.
This operator anticommutes with the following operator that
tunnels the m2 lineon

W m2
(L′) =

∏
p⊥L′

Xp, (37)

for some rigid string L′ that intersects the ribbon R (shown
in red). These set of operators form 2(Lx + Ly + Lz ) − 3 pairs
of independent Z2 logical operators identically to those in the
X-cube model.

Next, consider tunneling the m-loop around a nontrivial
2-cycle �′ of the torus (shown in magenta), which can be
implemented by applying

W m(�′) =
∏
e⊥�′

ξe. (38)

Similarly, this operator is a Z2 operator in the groundstate
subspace, since squaring this operator gives at most a product
of AXC

v operators. This operator anticommutes with

W e2
(C) =

∏
e∈C

Ze, (39)

for some 1-cycle C (shown in blue) that intersects transver-
sally with �′. On a torus, there are three such pairs.

Lastly, the pairs W e−ē and W m commute, which can be
argued from the fact that an e-dipole braids trivially with
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an m-loop when there are no corners.4 This ensures that the
logical operators factor into the two subsets as claimed.

We point out that the hybrid X-cube model can also be
defined on different spatial manifolds, with a proper choice of
foliation structure. For example, we can put the hybrid model
on the manifold S3 by first beginning with the X-cube model
defined on S3 in Ref. [16], and apply the operator replace-
ment in Eqs. (15) and (16). We expect that by comparing the
number of independent constraints and the total dimension of
the Hilbert space (as outlined in Appendix D 3), one finds a
unique ground state. Thus the hybrid model is topologically
ordered, and its groundstate degeneracy depends on the topol-
ogy of the spatial manifold.

IV. LINEONIC HYBRID X-CUBE ORDER

In the previous model, the fractons and lineons were treated
as charge and flux excitations respectively. We will now con-
sider the opposite scenario, where the lineons are charges and
the fractons are fluxes. The model in this section is therefore
an example of a different type of hybridization between the
toric code and the X-cube model. To distinguish it from the
former, we will refer to this hybridization as the Lineonic
hybrid X-cube model.

We remark that although this is the simplest model to
construct in the case that lineons are charges, the model is
anisotropic. As we will see, only lineons mobile in the x or
y direction will square to a mobile particle, while the lineon
mobile in the z direction will square to the vacuum superselec-
tion sector. This is because the fusion rule of the three lineons
ex × ey × ez = 1 forbids all three lineons from squaring to
the same mobile Z2 particle. Nevertheless, it is possible to
construct a different hybrid model where the lineons square to
two different mobile particles. Such a model would instead be
a hybrid between the X-cube model and two 3d toric codes.
We construct such a model explicitly in Appendix E.

Following the structure of the previous section, the Ising
model and its hybrid model are described in Secs. IV A and
IV B, respectively. In Appendix C, we show that this model
can be obtained by a similar p-string condensation [27,28] to
the X-cube model by replacing the stacks of toric codes in the
xy planes with the hybrid toric code layers of Sec. II.

A. Paramagnet with global and subsystem symmetries

To obtain the previous model, the paramagnet had an onsite
planar symmetry in three directions, where each onsite term
is generated by the same normal subgroup of the global Z4

symmetry. Therefore an excitation is charged under planar
symmetries along all three directions, resulting in an immo-
bile charge in the gauged model

To start off differently, our paramagnet now has a global
G = Z4 × Z2 = 〈a4 = b2 = 1〉 symmetry. However, the pla-
nar symmetry N for each direction of planes is generated by a
different subgroup of G. In particular, the xz, yz and xy planar

4More explicitly, for each plaquette p on which the two Wilson
operators overlap, W m contains ζp and W e−ē contains either ξikξi j or
ξikξil . These two sets of operators always commutes using Eq. (22).

symmetries are generated by the Z2 subgroups a2, a2b and
b, respectively. As a result, excitations of this paramagnet are
charged under only two of the three planar symmetries and are
therefore lineons.

To obtain the model we are to present, we first gauge the
planar symmetries of the model to obtain the X-cube model.
The remaining Z2 global symmetry fractionalizes on the li-
neon mobile in the x and y directions. We can then gauge the
global Z2 symmetry to obtain the hybrid model.

B. Hybrid order

The model is defined on a cubic lattice with a Z4 qudit
on each x and y edge, and two qubits on each z edge. The
Hamiltonian of the model is

HHybrid =H ′
TC + H ′

XC,

H ′
TC = −

∑
v

Av + A†
v

2
−

∑
p

1 + Bp

2
,

H ′
XC = −

∑
v

∑
r=x,y,z

1 + AXC
v,r

2
−

∑
c

Bc + B†
c

2
, (40)

where

Av =
IX

X
IX

X X †X †
, (41)

Bp =
Z2

IZ IZ

Z2

, IZ

IZ

Z2

Z2

, Z2

Z2
Z2

Z2
,

(42)

AXC
v,x = X 2

XI

XI

X 2 , AXC
v,y = X 2

X 2

X 2

X 2 , (43)

AXC
v,z =

XI

XI
X 2

X 2
, Bc =

Z

ZI

ZZ

ZI

Z

Z†

ZI
Z

Z† Z†

Z†
Z

ZIZI
.

(44)

Note that the X-cube model is defined on the dual cubic
lattice compared to that of Sec. III. The vertex terms of the X-
cube model satisfy, AXC

v,x AXC
v,y AXC

v,z = 1. Furthermore, because
of the hybridization, the vertex term of the toric code Av

squares to AXC
v,z of the X-cube model, and the cube term Bc of

the X-cube model squares to a product of two Bp plaquettes.
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Z Z ZZ

ex (lineon)

ey (lineon)

Z2

e2 (mobile)

IZ
e2 (mobile)

m (loop)

X
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X X

XX
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Z2 Z2 Z2

ZI

Z
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ZI
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X 2 X 2
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X 2

XXX 222 X 22

XI XI

IX IX

m2 (fracton)

FIG. 10. Excitations and their creation operators in the lineonic
X-cube model.

1. Excitations, fusion, and braiding

The excitations in this model are shown in Fig. 10. First we
discuss the charges, which are violations of the vertex terms.
Because this model is anisotropic, the lineons ex and ey in
the xy plane are excited with Z on a rigid string in the xy
plane. On the other hand, the lineon ez is excited with ZI on
a rigid string in the z direction. The lineon er correspond to
AXC

v,r′ = −1 for r �= r′. Note that like the X-cube model, the
three lineons fuse to the vacuum.

lineon

⎧⎨
⎩

ex, ēx :
∏

e∈Lx
Ze

ey, ēy :
∏

e∈Ly
Ze

ez, ēz :
∏

e∈Lz
ZIe

. (45)

=

m (loop) m2 (fracton)

FIG. 11. Loop fusion in the lineonic hybrid X-cube order: After
fusing two identical m loops in the lineonic hybrid X-cube model,
the corners of the m loops fuse into fractons if the loops are oriented
in the xz or yz planes. Otherwise, they fuse into the vacuum.

The fusion rules for each lineon species, however, is different.

ez × ez = vacuum,

ex × ex = ey × ey ≡ e2. (46)

The excitation e2 is a mobile particle, and can move in the xy
plane using Z2, as well as in the z direction using IZ .

mobile e2 :
∏

e∈Lx,Ly

Z2
e ,

∏
e∈Lz

IZe. (47)

This mobile excitation is charged −1 under Av .
Next, we discuss the flux excitations. The first is the m-

loop, which is a violation of plaquettes. To excite an m loop,
we apply IX on a z edge, or X ,X † on an x or y edge. However,
we also notice that when the m-loop is oriented in the xz or yz
plane, the corners of the m-loop are charged ±i under the Bc

operator as shown in cyan and purple in Fig. 10.

loop m :
∏

e⊥Sxy

IXe,
∏

e⊥Sxz,Syz

Xe. (48)

Finally, the fracton is the excitation Bc = −1. Four fractons
can be created on the four cubes adjacent to an edge using X 2

acting on an x or y edge, or using XI on a z edge.

fracton m :
∏

e⊥Sxy

X Ie,
∏

e⊥Sxz,Syz

X 2
e . (49)

Similarly to the previous model, the fusion of flux ex-
citations gives immobile point excitations at its corners.
Interestingly, if the m-loop is oriented in the xy plane, then
two m-loops fuse to the vaccuum. However, if the m-loop
is oriented in the xz or yz planes, then there will be fracton
excitations left at the corners after the fusion. This is shown in
Fig. 11.

The local Wilson operators are products of stabilizers of
the Hamiltonian, and correspond to closed trajectories of the
excitations in the Hamiltonian as summarized in Table V.

In addition to the usual −1 phase between e2 and m simu-
lating the toric code, and between e and m2 simulating X-cube,
we also have a braiding phase of i when an m-loop moves
around the lineons. By realizing that a product of Av is a
closed configuration of the m-loop, we see that the ex, ey and
ez obtains a phase of i, −i, and −1 when an m-loop is braided
around each particle respectively.
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TABLE V. Excitations in the lineonic hybrid X-cube model. A summary of the pure charge and flux excitations in the lineonic hybrid
X-cube model is provided above, along with the local operators that measure these excitations in the lattice model.

Excitation Creation operator Charges Local Wilson operator

lineon ex End point of Z on x edges Av = i, AXC
v,y = AXC

v,z = −1
lineon ey End point of Z on y edges Av = i, AXC

v,x = AXC
v,z = −1 Bc = Cage of ex, ey, ez around c

lineon ez End point of ZI on z edges AXC
v,x = AXC

v,y = −1

End point of Z2 on x, y edge,
mobile charge e2 Av = −1 Bp = Closed loop of e2 around p.

End points of IZ on z edge

Boundary of IX membrane in xy plane Bp = −1
loop m Av = Closed membrane of m around v

Boundary of X membrane in xz, yz plane Bp = −1, Bc = ±i (at corners)

Corners of XI membrane in xy plane
fracton m2 Bc = −1 AXC

v,r = Closed loop of m2 dipole around v
Corners of X 2 membrane in xz, yz plane

V. HYBRID HAAH’S CODE

In this section, we construct a type-II hybrid fracton model.
Here we choose the subsystem symmetry to be the fractal
symmetry corresponding to Haah’s code [2]. Therefore we
will call this model the hybrid Haah’s code. The symmetric,
short-range-entangled state we start with has Z4 d.o.f. on ver-
tices of a cubic lattice. The SRE state is again the ground-state
of the Hamiltonian

H = −
∑

v

[
Xv + X 2

v + X 3
v

]
. (50)

We enforce a global Z4 symmetry generated by
∏

v Xv and
a Z2 fractal symmetry

∏
v∈fractal X 2, the latter of which is

precisely the symmetry that is gauged to obtain Haah’s code
[2]. The fractal symmetry replaces the planar symmetry previ-
ously considered when constructing the hybrid X-cube orders.

Excitations above the paramagnet ground state are ob-
tained by applying the following operators

�e = Z2
i Z2

f , (51)

�(1)
v = ZvZv+x̂Zv+ŷZv+ẑ, (52)

�(2)
v = ZvZv+x̂+ŷZv+ŷ+ẑZv+x̂+ẑ, (53)

where the unit vectors x̂, ŷ and ẑ denotes translation by a unit
cell in the x, y, and z directions respectively.

Next, we follow through the process of gauging the sym-
metry. We first gauge the Z2 fractal symmetry to obtain
Haah’s code where the gauge charge is fractionalized by the
remaining global Z2 symmetry. Then, we gauge the global Z2

symmetry to obtain the hybrid model.
The hybrid model lives on the same lattice as in Fig. 4,

and we adopt the same convention of ordering of vertices
on each edge. The Hilbert space of this model, however, is
different. We place a qubit on each edge and two qubits on
each vertex of this lattice. Furthermore, it is helpful to define
an index α = 1, 2. On edges, e(1) and e(2) denotes upright or
diagonal edges of this lattice, respectively, while on vertices,
v(1) and v(2) denote the first and second qubit of that vertex,
respectively.

The algebra of this model is generated by ζ(α)
v ,

ξ(α)
e , Ze, X (α)

v . ζp and ξe are modified operators

given by

ξ(α)
e = XeCNOTe,i(α)

e
, (54)

ζ(α)
v = Z (α)

v

∏
e(α)←v

Se. (55)

Here, e ← v denotes edges incoming to v as defined in Fig 4.
The operators satisfy the following algebra:

ζ(α)
v X (α′ )

v′ = (−1)δv,v′ δα,α′ X (α′ )
v′ ζ(α)

v , (56)

Zeξ
(α)
e′ = (−1)δe,e′ ξ

(α)
e′ Ze, (57)[

ξ(α)
e , ξ

(α′ )
e′

] = [
ζ(α)

p , ζ
(α′ )
p′

] = [
ξ(α)

e , Xp
] = [

ζ(α)
p , Ze

] = 0,

(58)

which makes them look like Z2 Pauli operators when defined
solely within the vertex or edge subspace, except that we
also have the following commutation relations between terms
between vertices and edges

ζ(α)
v ξ(α′ )

e =
{

iξ(α′ )
e ζ(α)

v ; if e ← v and α = α′,
ξ(α′ )

e ζ(α)
v ; otherwise.

(59)

The Hamiltonian of the hybrid Haah’s code is then ex-
pressly

HHybrid =H ′
TC + H ′

HC,

H ′
TC = −

∑
v

Av + A†
v

2
−

∑ 1 + B

2
,

H ′
HC = −

∑
v

1 + AHC
v

2
−

∑
v

Bv + B†
v

2
, (60)

where

Av =
∏
e→v

ξ†
e

∏
e←v

ξe, , (61)

B =
∏
e∈

Ze, (62)

AHC
v = X (1)

v X (1)
v−x̂X (1)

v−ŷX (1)
v−ẑX

(2)
v X (2)

v−x̂−ŷX (2)
v−ŷ−ẑX

(2)
v−ẑ−x̂, (63)

Bv = ζ(1)
v ζ

(1)
v+x̂+ŷζ

(1)
v+ŷ+ẑζ

(1)
v+ẑ+x̂ζ

(2)
v

†
ζ

(2)
v+x̂

†
ζ

(2)
v+ŷ

†
ζ

(2)
v+ẑ

†
. (64)

The operators are visualized in Fig. 12.
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FIG. 12. Lattice model for the hybrid Haah’s code. Visualization of the operators in the hybrid Haah’s code. The color coding used is
red=X , blue=Z , green = S, magenta = ξ, orange = ξ†, cyan = ζ, purple = ζ†, and →= CNOT.

Similarly to previous examples, this model is a hybrid
model of a Z2 toric code and a Z2 Haah’s code. If we had
replaced ξ(α)

e and ζ(α)
v in the definitions of Av and Bv with Pauli

matrices Xe and Z (α)
v , respectively, then the model would be a

tensor product of the 3d toric code defined on the edges and
Haah’s code defined on the vertices. However, by replacing
Xe → ξ(α)

e , Z (α)
v → ζ(α)

v , the degrees of freedom on the edges
and vertices are now coupled. The vertex term Av now squares
to AHC

v in Haah’s code. At the same time, the Bv term of
Haah’s code now squares to a product of twelve B terms
of the toric code.

A. Summary of excitations, fusion, and braiding

The fracton e is created via the operators ζ(α)
v , which com-

mutes with all Bv and B , but violates four Av projectors.
in particular they are charged i under the operator Av . As in
Haah’s code, a general charge configuration can be created
at the corners of a Sierpinski pyramid by applying ζ(α)

v in a
fractal pattern

fracton e :
∏

v∈fractal

ζ(α)
v . (65)

The mobile charge can be created at the end points of a string
of Ze, which is charged −1 under Av . Furthermore, they can
also be created by applying (ζ(α)

v )2 in a fractal pattern

mobile e2 :
∏

v∈fractal

(
ζ(α)

v

)2
,
(
ζ(α)

v

)2 =
∏

e(α)←v

Ze. (66)

Therefore e2 is a mobile charge.
Next, we define operators that create the flux excitations.

First, to create a loop excitation, we apply ξe on edges with
intersect a surface S ′ in the dual lattice.

mobile loop m :
∏
e⊥S ′

ξp. (67)

The boundary of this surface is charged −1 under B . Fur-
thermore, we find that depending on the shape of S , the loop

is also sporadically charged i,−1, or −i under various Bv

operators at the boundary.
Finally, applying X (α)

v for α = 1, 2 violates four Bv terms,
and creates flux fracton excitations m2.

fracton m2 :
∏

v∈fractal

X (α)
v . (68)

The fusion follows from the definition of the operators
above. A fusion of two charge fractons e results in a mobile
particle e2. Furthermore, a fusion of two m-loops results in
a number of m2 flux fractons sporadically placed around the
loop depending on its shape. For example, the fusion of two
m-loops on a square in the yz plane is shown in Fig. 13.

Braiding is very similar to the hybrid X-cube models. In
addition to the usual e2 and m particle-loop braiding as in
the toric code, an m-loop can also braid around the fracton
e to give a phase of i. Unfortunately, we are unaware of well-
defined braiding processes between e fracton and m2 fracton

FIG. 13. Loop fusion in the hybrid Haah’s code. Fusing two
identical m loops positioned at the dashed square in the yz plane
results in fractons (m2) at the positions shown in blue.
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in Haah’s code. Such types of braiding, if they exist, could
give further braiding processes in this model as well.

VI. HYBRID PHASES AS PARENT ORDERS FOR TORIC
CODE AND FRACTON ORDERS

In this section, we argue that the hybrid orders introduced
in this paper are natural parent states for both liquid and
fracton topological orders. We tailor the discussion in this
section towards the fractonic hybrid X-cube model in Sec. III,
and demonstrate that driving a phase transition that condenses
an appropriate set of excitations in this hybrid order can yield
either the Z2 toric code or the Z2 X-cube model. While we
focus on this particular example here, similar arguments can
be drawn for all the other models presented in this work. All
of the models described in this paper are proximate to the
Z2 toric code or a Z2 fracton order through a similar phase
transition.

We may study phases proximate to the fractonic hybrid
X-cube model by adding perturbations to the Hamiltonian
HHybrid in Eq. (10). We first add longitudinal and transverse
fields which act as hopping terms for the mobile charge e2

and the lineon m2 in the hybrid order.

H = HHybrid − te2

∑
e

Ze − tm2

∑
p

Xp. (69)

First, let te2 = 0 and consider the limit of large tm2 . Since the
operator Xp hops a lineon (m2), the lineons “condense” in the
limit of large tm2 . As a consequence, the fractons e, ē, which
braid nontrivially with the lineons are confined5. The only
remaining topological excitations are e2 created by Ze, which
is charged −1 under Av , and the m-loop, created by (26).
Therefore the m2-lineon condensate is in the same topological
phase as the 3d toric code.

Indeed, we can derive the effective Hamiltonian in this
limit by imposing the constraint that Xp = 1 on HHybrid. The
operator Bc,r does not commute with this constraint and, as
a result, does not contribute to the effective Hamiltonian at
leading order in perturbation theory in 1/tm2 . The other terms
in the Hamiltonian reduce to

Av →
∏
e⊃v

Xe, (70)

B → B =
∏
e∈

Ze, (71)

AXC
v → 1. (72)

The simplification of the first term follows from the fact that

CNOTe,p = X
1−Ze

2
p → 1

1−Ze
2 = 1. (73)

The effective Hamiltonian in this subspace, obtained by the
replacements in Eq. (70), exactly yields the 3d toric code.

5The energy cost to separate a set of fractons now grows linearly
in their separation. This is in contrast to the constant (logarithmic)
energy barrier to separate these excitations in a Type I (II) hybrid
order.

Next, we consider the limit that tm2 = 0 and te2 → +∞. In
this limit, the mobile charge e2 is condensed, as the operator
Ze hops the mobile e2 particle. As a result, the loop excitation
m, which braids nontrivially with e2 is no longer a topological
excitation, and we are left with the fracton e and the lineon
m2. They are exactly the excitations in the X-cube fracton
order. More explicitly, we may again obtain the effective
Hamiltonian by projecting into the subspace in which Ze = 1.
The operator Av brings us out of this constrained subspace
and does not contribute to the effective Hamiltonian at leading
order. The remaining operators reduce to

B → 1, (74)

AXC
v → AXC

v =
∏
p⊃v

Xp, (75)

Bc,r →
∏

p∈cr ,c′
r

Zp. (76)

The simplification of the last line follows from

Se = i
1−Ze

2 → i
1−1

2 = 1. (77)

Therefore the remaining stabilizers are exactly those of the X-
cube model, and the ground-state exhibits the X-cube fracton
order.

Finally, we can consider te2 , tm2 → ∞. In this case both e2

and m2 are condensed, since e and m have nontrivial braiding
with the above set of excitations, there are no topological exci-
tations left. The phase is a trivial confined phase. A schematic
phase diagram is shown in Fig. 14.

We may derive some properties of the phase transition
between the fractonic hybrid X-cube and X-cube orders by
observing that the operator Ze hops the mobile e2 excitation
and commutes with all of the terms in the fractonic hybrid
X-cube Hamiltonian, except for Av . Furthermore, the Xp term,
which hops a lineon, commutes with all terms in the fractonic
hybrid X-cube Hamiltonian, except for Bc,r . As a result, we
may study the Hamiltonian in Eq. (69) within a constrained
Hilbert space, within which there are no m flux loop ex-
citations, or e fracton excitations, as enforced by B = 1
and AXC

v = A2
v = 1. Projecting the Hamiltonian into this con-

strained subspace yields

PHP = −
∑

v

Av − te2

∑
e

Ze −
∑
c,r

Bc,r − tm2

∑
p

Xp, (78)

with P denoting the projection. Here, we have also used the
fact that PA†

vP = Av and PBc,rP = Bc,r .
When tm2 = 0, the lineons are nondynamical, and we may

further set Bc,r = 1. The algebra satisfied by Av and Ze is
precisely the algebra between the “star” operator in a 3d toric
code, which measures the Z2 charge, and a transverse field,
which has the effect of hopping the charge excitation. As
a result, the phase transition between the fractonic hybrid
X-cube order and the X-cube order is precisely related to
the Higgs transition in a three-dimensional Z2 gauge theory,
which is driven by the condensation of the Z2 charge. This
transition is known to be direct and continuous, and dual
to an Ising symmetry-breaking phase transition in (3+1)-
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FIG. 14. Schematic phase diagram. For the fractonic hybrid X-
cube model, condensing the mobile charge (e2) or the lineon (m2)
drives a phase transition into the X-cube fracton order or a 3d toric
code topological order, respectively, as obtained by studying the
Hamiltonian (69). The phase transition between the hybrid order and
the X-cube order in this phase diagram is continuous and in the same
universality class as the Higgs transition in a three-dimensional Z2

gauge theory, near the line tm2 = 0, as described in the text. The na-
ture of the phase transition between the hybrid and toric code orders
is not known. We note that the geometry of the phase boundaries
shown here is not meant to be exact, and we are unaware if other
intermediate phases can arise in the “interior” of the phase diagram.
A similar phase diagram is obtained for the hybrid Haah’s code in
Appendix F.

dimensions [56], if the dynamical Z2 flux excitations are
forbidden.

The generic nature of the transition between the fractonic
hybrid X-cube and X-cube orders, when other excitations
(fractons or lineons) are allowed is not known. We may show,
however, that the phase transition remains continuous when
tm2 is turned on. In this case, lineons may be created, though
they are highly “massive” excitations when tm2 is small, and
we may integrate out the lineon excitations to obtain an ef-
fective description of the critical point. To leading order in
perturbation theory, the effective Hamiltonian describing the
system when tm2 � 1 may be obtained from Eq. (78) as

Heff = −
∑

v

Av − te2

∑
e

Ze −
∑
c,r

Bc,r − K
∑

v

A2
v + · · ·

(79)

to leading order in perturbation theory in tm2 , where K ∼
O(t12

m2 ). Since A2
v and Bc,r commute with the effective Hamil-

tonian, the critical point separating the fractonic hybrid
X-cube order and the X-cube model is unchanged at this order
in perturbation theory, and the transition remains continuous,
and admits a description as a Higgs transition in a three-
dimensional Z2 gauge theory.

In Appendix F, we demonstrate through a similar deriva-
tion that the Hybrid Haah’s code is a parent state for both the
toric code and Haah’s code. Namely, a condensation of the
fracton m2 drives the system into the toric code phase, and a

condensation of the mobile charge e2 drives the system into
the Haah’s code phase.

VII. DISCUSSION

In this work, we introduced exactly solvable models of
hybrid fracton phases, which consists of excitations with both
mobile and immobile excitations. As phases of matter, they
are distinct from a tensor product of a fracton phase with
a liquid topological ordered phase because of its unusual
fusion and braiding properties. Our work raises a challenge
to classify gapped quantum phases in terms of liquids and
nonliquids.

Although in this paper, we focused on Abelian hybrid mod-
els, an exactly solvable model can in fact be constructed for an
arbitrary finite gauge group, which is presented in follow-up
work [45].

In the following, we present some interesting directions for
further studies of Abelian hybrid fracton models.

Twisted hybrid fracton models. In this paper, our hybrid
fracton models are obtained by starting with a product state
and gauging the (G, N ) symmetry. If we instead start with
a subsystem symmetry protected topological (SSPT) state
protected by G subsystem symmetry[31,57,58], and break the
symmetry explicitly to (G, N ) it should be possible to obtain
more exotic twisted hybrid models after gauging. One might
also be interested in finding phases protected directly by the
(G, N ) symmetries. This can be broadly searched by studying
consistency conditions of the symmetry defects [59].

Fermionic (G, N ) symmetries. The current construction
can be straightforwardly generalized to fermionic symmetries.
One can start with a charge-2n superconductor, which is in a
atomic insulating phase and impose an extra fermion parity
symmetry on subregions. Then, one can gauge the fermionic
subsystem symmetry [60,61] to obtain a Z2 fracton model
enriched by a Zn global symmetry and study whether the sym-
metry enrichment is different from its bosonic counterpart. If
so, further gauging the Zn global symmetry will give rise to a
different hybrid model.

Subsymmetry-enriched topological (SSET) phases. Our hy-
brid fracton models can be used to construct SSET phases [39]
by condensing the particle m2 along with charges of an Ising
model with the same restricted mobility (or equivalently by
gauging the higher-rank symmetry associated to the Wilson
operator of m2). In particular, using the models introduced in
this paper, we expect the resulting model to be a Z2 toric code
enriched by Z2 subsystem symmetries. It would be particu-
larly interesting to investigate the properties a Z2 toric code
enriched by the fractal symmetry of Haah’s code.

Error correcting codes. The exotic mix of immobile and
mobile excitations in these models might be useful for quan-
tum error correction. Indeed, the absence of stringlike logical
operators (topologically nontrivial Wilson loops) in Type II
fracton orders is intimately related to their improved ability to
act as a self-correcting quantum memory [43]. In the hybrid
Haah’s code, the presence of a loop excitation as well as
a conjugate fracton excitation that precisely resembles the
fractons in Haah’s code may lead to improved performance
as a quantum memory, which deserves further study.
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Recently, it has been shown that the topological orders
that are Calderbank-Shor-Steane (CSS) codes6, such as the
3d toric code, X-cube model, or Haah’s code do not sur-
vive at finite temperature, diagnosed by either the topological
entanglement entropy [62,63] or the entanglement negativity
[64]. On the other hand, the fractonic hybrid X-cube model
introduced in this paper is not a CSS code. It is therefore
interesting to see whether the topological order of this model
can survive at finite temperature.

Emergent symmetries. The excitations of the fractonic hy-
brid X-cube model in Sec. III seem to have a cubic symmetry,
even though the Hamiltonian does not. It would be interesting
to see whether the Hamiltonian can be written in a form that
preserves the cubic symmetry as well, or whether the cubic
symmetry can only emerge at low energies.

Nonliquid orders beyond hybrid models. As a third prox-
imate phase to the hybrid models, as discussed in Sec. VI,
it would be interesting to consider condensing the composite
excitation e2m2 in the hybrid model. Such a phase may poten-
tially realize a nonliquid phase that is not a hybrid between a
topological order and a fracton order.
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APPENDIX A: ABELIAN 2-SUBSYSTEM SYMMETRIES

In this Appendix, we give a proper definition of the (G, N )
symmetry which act as the gauge group for the hybrid fracton
models. Here, we focus on Abelian (G, N ) symmetries and
give a proper definition for a general group G in Ref. [45].

1. Definition

The hybrid fracton models derived in this paper can be
thought of as the result of gauging a paramagnet with a par-
ticular mix of global and subsystem symmetries, which we
term a 2-subsystem symmetry. This name is an homage to
2-group symmetries [65–68], which can be thought of as a
particular extension of global (0-form) symmetries by 1-form
symmetries. Likewise, the relevant 2-subsystem symmetries
in this paper can be thought of as a global Z2 symmetry
extended by a subsystem symmetry corresponding to the un-
derlying fracton order. The hybrid fracton orders can therefore
be understood as a “2-subsystem gauge theory.”

An Abelian 2-subsystem symmetry can be defined given
the following data.

6A CSS code is given by a Hamiltonian composed of operators that
are either a product of Pauli X operators, or Pauli Z operators.

(1) An Abelian global symmetry group G.

(2) A normal subgroup N�G.

(3) The type of region on which N acts as a subsystem
symmetry (e.g., 1-foliated, 3-foliated, fractal,. . . ).

To realize the 2-subsystem symmetry in a lattice model, we
first define Rg

v an onsite representation of g ∈ G at each vertex
v. The global G symmetry is defined as

∏
v Rg

v . Furthermore,
for a group element n in the normal subgroup N the N sub-
system symmetry is defined as

∏
v∈sub Rn

v , where “sub” is a
subregion specified by the type of subsystem symmetry.

Let us first emphasize two important points. First, since N
is a subgroup of G, the N subsystem symmetry is not an inde-
pendent symmetry from the global symmetry. For example, if
the subsystem symmetry is 1-foliated, then a product of all N
planar symmetries is a global N symmetry, a subgroup of the
global G symmetry.

Second, a 2-subsystem symmetry contains both global
symmetries and subsystem symmetries as limiting cases. For
example, a pure global G symmetry can be written as (G,Z1)
since it only has a trivial subgroup acting as a subsystem
symmetry. Furthermore, a pure N subsystem symmetry can be
denoted (N, N ). It is worth nothing that gauging the symme-
tries in these two examples will lead to 3d topological orders
and fracton orders, respectively, which are not hybrid models.
Therefore the 2-subsystem symmetries we are interested in,
are those for which N is a strict but nontrivial normal subgroup
of G. For example, the gauge group corresponding to the
Hybrid toric code layers in Sec. II is a 1-foliated (Z4,Z2)
subsystem symmetry.

Mathematically, if we neglect the input geometry of the
subsystem symmetry (which specifies the region on which the
subsymmetry acts), then (G, N ) has a structure of an Abelian
group. Starting with Abelian groups G and N , the central
extension

1 → N −→ G −→ Q → 1 (A1)

is given uniquely by specifying a representative cocycle ω of
H2(Q, N ), where Q = G/N is the quotient group.

Now, let L be the number of independent N subsystem
symmetries. The group (G, N ) is then formally given by the
central extension

1 → NL −→ (G, N ) −→ Q → 1, (A2)

where NL ≡ N1 × · · · × NL is a product of L identical copies
of N . The extension can be specified by a representative co-
cycle ω′ of H2(Q, NL ) chosen to be ω′ = ∏L

l=1 ιl ◦ ω, where
ιl : N → NL is the embedding of N to the lth copy of NL.

It is important to note that even though (G, N ) is a finite
Abelian group, and therefore can be written as a product of
cyclic groups, specifying the group extension (A2) encodes
information about which subgroup of (G, N ) acts as subsys-
tem symmetries.

2. Gauging 2-subsystem symmetries

The process of gauging a 2-subsystem symmetry to obtain
a hybrid fracton model can be broken into two steps, as
shown in Fig. 15. We start by first gauging the subsystem
symmetry N , to obtain a fracton model [5,69–74] (with gauge
group N). After gauging, the global symmetry G is reduced
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FIG. 15. Summary of the gauging process to obtain the Abelian hybrid fracton models in this paper.

to the quotient group Q = G/N . Nevertheless, because of the
interdependence of the global and subsystem symmetries, the
remaining global symmetry Q enriches the fracton phase. In
particular, for Abelian 2-subsystem symmetries, Q fractional-
izes on the gauge charge (which has restricted mobility) of the
fracton model. The fractionalization implies that these gauge
charges can fuse into charges of Q. Now, since gauging Q
promotes the charges of Q into gauge charges, the result is
a gauge theory where gauge charges with restricted mobility
can fuse into fully mobile gauge charges. This is precisely our
hybrid fracton model. Furthermore, consistency with braiding
implies that the flux loops should also square into various
fluxes with restricted mobility. These properties are demon-
strated explicitly in our exactly solvable lattice models.

The explicit process of gauging 2-subsystem symmetries
is omitted from the main text. Instead, we give a detailed
calculation of gauging a 2-subsystem symmetry that gives the
(fractonic) hybrid X-cube model of Sec. III in Appendix B.

APPENDIX B: DERIVATION OF THE FRACTONIC
HYBRID X-CUBE MODEL

In this Appendix, we present details of the derivation of
the fractonic hybrid X-cube model. We first present the form
of the corresponding Ising model with (Z4,Z2) symmetry.
We then gauge the symmetry to obtain the corresponding
gauge theory. We note that the final model we obtain given
in Eq. (B31) is slightly different from Eq. (10) in the main
text, but only differs in the energetics. That is, the stabilizers
of the two models are the same. A prescription for gauging a
general 2-subsystem symmetry is presented in Ref. [45].

1. Ising model

We begin with a cubic lattice with an additional diagonal
edge added to each plaquette as shown in Fig. 4. The addi-
tional edge, though not essential to the construction, is for
convenience. Namely, it makes the minimal coupling to the
global symmetry unambiguous. In addition, it will also make
the resulting terms after gauging are nonPauli stabilizers of
the groundstate subspace. Lastly it will make the form of the
Wilson operators apparent.

On each vertex v, we place a Z4 qudit associated to clock
and shift operators Eq. (2) reproduced here

Z =

⎛
⎜⎝

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

⎞
⎟⎠, X =

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠. (B1)

The Hamiltonian is the following transverse-field Potts model:

H = −
∑

v

1 + Xv + X 2
v + X 3

v

4

− hE

∑
e=(i f )

1 + �e

2
− hP

∑
p=(i jkl )

1 + �p + �2
p + �3

p

4

(B2)

where there are two type of Ising terms: one on each edge, and
one on each square plaquette

�e = Z2
i Z2

f , (B3)

�p = ZiZ†
j ZkZ†

l . (B4)

The Hamiltonian has a global Z4 symmetry generated by∏
v Xv , and a planar Z2 symmetry

∏
v∈plane X 2

v . We note that
without �e, the model would instead have a larger symmetry,
namely a Z4 symmetry generated by

∏
v∈plane X for each

plane.
When hE, hP � 1, the model is in the paramagnetic phase.

For simplicity, we will now analyze the model in the limit
where hE = hP = 0. In this limit, gapped charged excitations
to the ground state are created by applying �e, and �p, the
nature of which has been described in the main text.

2. Gauging Z2 planar symmetries

To gauge the symmetry, it is helpful to first rewrite each
vertex as a tensor product of two qubits.7 From the expres-
sions in Eq. (B1), notice that

Z = Z ⊗ S, X = (1 ⊗ X ) × CNOT2,1, (B5)

Z2 = 1 ⊗ Z, X 2 = X ⊗ 1. (B6)

where

CNOT2,1 =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠ (B7)

is the CNOT gate controlled by the second qubit and targetted
at the first qubit. Therefore we see that the planar symmetry∏

v∈plane X 2
v in this basis is just a product of Pauli X operators

in the first qubit, and we can perform a generalized Kramers-
Wannier duality [5,73,74] on the first qubit to gauge the Z2

7A similar mapping which differs by a Hadamard on the first qubit
was pointed out in Ref. [31]. In Ref. [45], we generalize the mapping
presented to any group extension described by a factor system.
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planar symmetries and obtain the X-cube model. Under the
duality, the first qubit is mapped to qubits on plaquettes of the
cubic lattice, while the second qubit remains on each vertex.
At the level of operators, it is defined as

(Z ⊗ I )i(Z ⊗ I ) j (Z ⊗ I )k (Z ⊗ I )l → Zp, (B8)

(X ⊗ I )v →
∏
p⊃v

Xp. (B9)

Note that only operators that commute with the planar sym-
metries will be mapped to local operators. The result of this
mapping on the symmetric operators is

�e → ζ̃e = ZiZ f , (B10)

�p → ζ̃p = ZpSiS
†
j SkS†

l , (B11)

X → Ãv = Xv ×
∏
p⊃v

CNOTv,p, (B12)

X 2 → Ã2
v =

∏
p⊃v

Xp. (B13)

Here, we note the operators with tildes because the remaining
global symmetry action is not written in an onsite manner. We
will momentarily fix this via a basis transformation and denote
operators in the new basis without tildes.

Now, because a product of four �p operators around a cube
is the identity, we also must enforce constraints

B̃c,r =
∏
p∈c′

r

ζ̃ †
p

∏
p∈cr

ζ̃p =
∏

p∈cr ,c′
r

Zp = 1, (B14)

where c′
r and cr are the set of plaquettes surrounding a cube

defined in Fig. 5. This can be enforced energetically via a
projector. Therefore the Hamiltonian after gauging the planar
subsystem symmetries is

HSEF = −
∑

v

1 + Ãv + Ã2
v + Ã3

v

4

−
∑

p

∑
r=x,y,z

1 + B̃c,r + B̃2
c,r + B̃3

c,r

4
. (B15)

Looking at the terms defined only on plaquettes, given by Ã2
v

and B̃c,r one notices that these are indeed just the terms that
appear in the X-cube model. However, the model is coupled
to a Z2 matter field living on vertices in a nontrivial manner.8

Nevertheless, the model has a global symmetry that
enriches the X-cube fracton order, thus realizing a symmetry-
enriched fracton (SEF) model. Since we have gauged the Z2

planar symmetries, the Z4 global symmetry is now reduced
to a Z2 global symmetry, generated by

∏
v Ãv (the reason it

has order two is because
∏

v Ã2
v is just the identity). However,

written in the current basis, the symmetry is not onsite because
Ãv acts both on the vertex v as well as nearby plaquettes, and
therefore is not a local symmetry action. Indeed, this property
allows us to demonstrate that this Z2 symmetry fractionalizes

8To elaborate, the term Ãv is not a minimally coupled term between
the X-cube model and a Z2 matter field since Ãv has order four.

on the fracton excitation, which we will now prove. Consider
a fracton excitation at a vertex v0, which is a charge Ã2

v0
= −1

of the vertex term of the X-cube model. If we consider a local
action of the Z2 symmetry in a region R, denoted

∏
v∈R Ãv

such that only this fracton excitation is in the region R, then
the local symmetry action squared is

∏
v∈R Ã2

v = −1. This
shows that the fracton is indeed fractionalized under the global
Z2 symmetry.

3. Gauging the global Z2 symmetry

Our next goal is to gauge the remaining Z2 global sym-
metry. However, in its current form, the global symmetry∏

v Ãv is not onsite. Therefore we have to perform a basis
transformation to make the symmetry onsite. That is, a basis
where the local symmetry action is Xv instead of Av . Our basis
transformation is the following unitary:

U =
∏

p

X
1+Zi

2

(
1−Z j

2 + 1−Zk
2 + 1−Zl

2

)
p . (B16)

Using this unitary to conjugate all operators, we find that
the operators in the new basis (now written without tildes) are

Av =
∏

p|v= j,k,l

X
1−ZiZv

2
p × Xv

∏
p|v=i

X
1−ZvZ j

2 + 1−ZvZk
2 + 1−ZvZl

2
p , (B17)

A2
v =

∏
p⊃v

Xp, (B18)

Bc,r =
∏
p∈cr

ζp, (B19)

ζe = ZiZ f , (B20)

ζp = Zp(SiCZi jS j )(SiCZikSk )†(SiCZil Sl ). (B21)

In particular, the global Z2 symmetry now acts as
∏

v Av =∏
v Xv , which is onsite, since all the Xp factors cancel in the

product.
We can now perform the Kramers-Wannier duality to

gauge the global Z2 symmetry. This maps the remaining qubit
on each vertex, to qubits on each edge. At the level of opera-
tors, the map is given by

ZiZ f → Ze, (B22)

SiCZi f S f → Se, (B23)

Xv →
∏
e⊃v

Xe. (B24)

The gauged operators are now denoted in bold, and are

Av =
∏

p|v= j,k,l

X
1−Ziv

2
p ×

∏
e⊃v

Xe

∏
p|v=i

X
1−Zv j

2 + 1−Zvk
2 + 1−Zvl

2
p , (B25)

A2
v =

∏
p⊃v

Xp, (B26)

Bc,r =
∏
p∈cr

ζp, (B27)

ζe = Ze, (B28)

ζp = ZpSi jS
†
ikSil . (B29)
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We remark that X
1−Ze

2
p = CNOTe,p. Therefore defining ξe as in

Eq. (15), we realize that Av can be rewritten as in Eq. (11).
Enforcing a fluxless condition using for each triangle

on the lattice using B energetically, we finally obtain the
Hamiltonian for the (Z4,Z2) gauge theory

H = −
∑

v

1 + Av + A2
v + A3

v

4
−

∑ 1 + B

2
(B30)

−
∑

c

∑
r=x,y,z

1 + Bc,r + B2
c,r + B3

c,r

4
, (B31)

This Hamiltonian has the same ground state and types of
excitations as that of the fractonic hybrid X-cube model in
Eq. (10), and only differs in the energetics. In particular, we
can identify A2

v with ATC
v in the main text.

APPENDIX C: DERIVATION OF THE LINEONIC HYBRID
X-CUBE MODEL

In this Appendix, we derive the lineonic hybrid X-cube
model. However, instead of deriving this model from gauging
a SRE state with particular symmetry like in Appendix B,
we will show that Lineonic hybrid X-cube model can in fact
be alternatively be derived via p-string condensation [28].
We start with the hybrid toric code layers of Sec. II (where
the layers are in the xy planes) tensored with stacks of 2d
toric codes along the xz and yz planes. The stabilizers of this
stacked model are

A(1)
v =

XI

XII

XII

XI B(1)
pxz

=
ZII

ZI

ZI

ZII

A(2)
v = XI

IXI

XI

IXI

B(2)
pyz

=
ZI

IZI

ZI

IZI

A(3)
v = IX †IX †

IX
IX

IIX

IIX

B(3)
pxz

=
IIZ

IZ2

IZ2

IIZ

B(3)
pyz

=
IZ2

IIZ IIZ

IZ2

B(3)
pxy

= IZ
IZ†

IZ
IZ†

(C1)

Next we perform a p-string condensation, by enforcing the
constraint

(XX 2)e = 1 (for x, y edges), (C2)

(XXI )e = 1 (for z edges). (C3)

This condenses the particle-string composed of the m anyons
of the toric code stacks in the xz and yz planes, along with the
m2 planon of the hybrid toric code layers.

The constraint above reduces the size of the Hilbert space.
We can define effective Pauli operators which commutes with
the above constraints and satisfy the same algebra as the
original ones. For x and y edges, we choose

IX ≡ X , IX 2 = XI ≡ X 2, ZZ ≡ Z, (C4)

and on z edges, we choose

XII = IX I ≡ XI, IIX ≡ IX, ZZI ≡ ZI, IIZ ≡ IZ.

(C5)

We can now derive the effective stabilizers in this subspace
by restricting to only product of the stabilizers in Eq. (C1)
that commutes with the constraints. The stabilizers restrict to
the following stabilizers of the lineonic hybrid X-cube model
under the substitution

A(1)
v → AXC

v,x , (C6)

A(2)
v → AXC

v,y , (C7)(
A(3)

v

)2 → AXC
v,z , (C8)

A(3)
v → Av,, (C9)

B(3)
pxz

→ Bpxz , (C10)

B(3)
pyz

→ Bpyz , (C11)(
B(3)

pyz

)2 → Bpxy . (C12)

Now, although B(1)
pxz

, B(2)
pyz

, and B(3)
pxy

do not commute with
the constraints, the product of such operators around the six
plaquettes surrounding a cube does commute. The restriction
of such cube operators is exactly Bc in the lineonic model.
Therefore we have shown that the effective Hamiltonian after
the condensation realizes the lineonic hybrid X-cube model as
desired.

We remark that the lineonic (Z2
4,Z

2
2) hybrid model pre-

sented in Appendix E can similarly be derived by starting
with a product three copies of the hybrid 1-foliated model
presented in Sec. II, oriented in the three directions. The
condensate is a product of the three m-loops of each model.
Interestingly, since m-loops of the 1-foliated model square to a
product of m2 planons in each layer, the square of the term that
condenses the three m-loops is exactly the term that induces a
p-string condensate of the m2 planons. A further study of the
relation between flux loops and p-strings could shed further
light on the relation between higher-form symmetries and
their foliated versions [75].

APPENDIX D: GROUND-STATE DEGENERACY

In this Appendix, we calculate the groundstate degeneracy
of the hybrid fracton models introduced in the paper. We first
perform explicit calculations for the hybrid toric code layers
and the fractonic hybrid X-cube model on a torus, and then
prove generally that the groundstate degeneracy of the hybrid
model is equal to that of the tensor product model.
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1. Hybrid toric code layers

The Hamiltonian (3) has a Z2 qubit and two Z4 qubits per
unit cell. Therefore

log2(dim H) = 5LxLyLz. (D1)

Since the Hamiltonian is a commuting projector, the ground-
state subspace are eigenstates for which we set all the
stabilizers to one

Av = A2d
v = B3d

p = Bpxy = 1. (D2)

Let us count how many constraints this imposes on the Hilbert
space.

First, there is one Av operator per unit cell. Since Av

has eigenvalues ±1 and ±i, restricting to Av = 1 divides
the size of the Hilbert space by four, meaning it produces
two constraints per vertex, and so it imposes 2LxLyLz con-
straints in total. Not all such constraints are independent. For
each xy plane, we have the identity

∏
v∈xy A2

v = 1. There are
Lz such identities. Furthermore, we also have the constraint∏

v Av = 1. Note that
∏

v A2
v = 1 is already accounted for by

the previous identities. Therefore we have

2LxLyLz − Lz − 1 (D3)

constraints from Av . We note that since A2
v = A2d

v , there are
no further constraints from setting A2d

v = 1.
Next, there are three B3d

p operators per unit cell. The eigen-
values of B3d

p are ±1, so this produces 3LxLyLz constraints.
We subtract by LxLyLz − 1 for each cube where a product of
six B3d

p operators around the cube is the identity; the extra
one is because of overcounting all the cubes, and we subtract
by three for the product of B3d

p around the three 2-cycles
of the torus being identity. The number of independent B3d

p
constraints is therefore

3LxLyLz − (LxLyLz − 1) − 3 = 2LxLyLz − 2. (D4)

Finally, there is one Bpxy operator per unit cell, which has
eigenvalues ±1 and ±i. However, B2

pxy
= B3d

pxy
, so this only

imposes LxLyLz further constraints. For each plane, we have
the identity

∏
v∈xy Bpxy = 1, so subtracting the redundancies,

there are only

LxLyLz − Lz (D5)

additional constraints
Putting everything together, the groundstate degeneracy is

given by

log2 GSD = 5LxLyLz − (2LxLyLz − Lz − 1)

− (2LxLyLz − 2) − (LxLyLz − Lz )

= 2Lz + 3, (D6)

which is the same as the GSD of Lz layers of 2d toric codes
tensored with a 3d toric code.

Let us construct these logical operators explicitly. First, in
each layer, we can tunnel the e planon around the x cycle of
the 2d torus using

W e
x,l =

∏
ex,y=y0,z=l

Ze (D7)

for some fixed y0. There are Lz such operators for each layer
l = 1, . . . , Lz. This anticommutes with

W m2

y,l =
∏

ex,x=x0,z=l

X 2
e (D8)

for some fixed x0. This operators that tunnels the m2 planon
around the y cycle of the 2d torus in the layer l . Each pair
spans a Hilbert space of dimension two, therefore so far they
fit in a Hilbert space of dimension 2Lz .

In addition, we can also consider tunneling the m loop
around the yz 2-cycle of the 3d torus:

W m
yz =

∏
ex,x=x0

Xe. (D9)

This commutes up to a phase i with W e
l for each l . Note that(

W m
yz

)2 =
∏

l

W m2

y,l . (D10)

It turns out that we can minimally extend the size of the
Hilbert space by a single qubit to accomodate this operator.
That is, the algebra of these operators fit in a Hilbert space of
dimension 2Lz+1. Explicitly, we can express the above opera-
tors using Lz + 1 qubits as

W e
x,l = ZlSLz+1, (D11)

W m
yz = XLz+1

∏
l

CNOTLz+1,l , (D12)

W m2

y,l = Xl , (D13)

which satisfies the same algebra. Note that there is another
set of operators constructed identically by swapping x and y,
independent of this set of operators.

Finally, we can tunnel the e2 mobile particle in the z direc-
tion using

W e2

z =
∏

ez,x=x0,y=y0

Ze. (D14)

This anticommutes with

W m
xy =

∏
ez,z=z0

Xe, (D15)

which tunnels m around the 2-cycle in the xy plane. This pair
generates a Hilbert space of dimension two independent of
the two aforementioned sets. Putting everything together, the
Hilbert space dimension of the logical subspace is

log2(dim Hlogical ) = 2(Lz + 1) + 1 = 2Lz + 3 (D16)

in agreement with our groundstate degeneracy.

2. Fractonic hybrid X-cube

The Hamiltonian has nine qubits per unit cell, and therefore
lives in a Hilbert space with log2(dim H) = 9LxLyLz. Since
the Hamiltonian is a commuting projector, the groundstate
subspace are eigenstates for which we set all the stabilizers
to one

Av = ATC
v = B = Bc,r = 1. (D17)
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First, there is one Av per unit cell, but since it has eigen-
values ±1 and ±i, restricting to Av = 1 divides the size of
the Hilbert space by four, meaning it produces two constraints
per vertex, and so it imposes 2LxLyLz constraints in total. Not
all such constraints are independent. Similarly to X-cube, we
subtract by Lx + Ly + Lz − 2 because

∏
plane A2

v = 1 for each
xy, yz, and xz plane; the overcount of two is because the
product over all parallel planes is

∏
v A2

v . Then, analogously
to the toric code, we subtract by one because

∏
v Av = 1

(
∏

v A2
v = 1 already being accounted just earlier). To conclude

there are

2LxLyLz − (Lx + Ly + Lz − 1) (D18)

independent Av constraints. Since A2
v = ATC

v , there are no
further constraints from setting ATC

v = 1
Next, there are six B operators per unit cell. The eigen-

values of B are ±1, so this produces 6LxLyLz constraints.
We subtract by LxLyLz − 1 for each cube where a product of
twelve B ’s around the cube is the identity; the extra one
is because of overcounting all the cubes, and we subtract
by three for the product of B around the three 2-cycles
of the torus being identity. The number of independent B
constraints is therefore

6LxLyLz − (LxLyLz − 1) − 3. (D19)

Finally there are two independent Bc,r operators per unit
cell, each of which has eigenvalues ±1 and ±i. Thus there are
4LxLyLz constraints. We need to subtract by Lx + Ly + Lz − 1
because

∏
plane Bc,r = 1 for each r perpendicular to the plane,

the extra one for overcounting the product over all possible
planes being identity. Furthermore, each Bc squares to a prod-
uct of four B operators, meaning we have to further subtract
by 2LxLyLz. Therefore the independent constraints of Bc,r up
to B operators is

2LxLyLz − (Lx + Ly + Lz − 1) (D20)

Putting everything together, the groundstate degeneracy is
given by

log2 GSD =9LxLyLz − [2LxLyLz − (Lx + Ly + Lz − 1)]

− [6LxLyLz − (LxLyLz − 1) − 3]

− [2LxLyLz − (Lx + Ly + Lz − 1)]

= 2(Lx + Ly + Lz ) (D21)

which is consistent with the number of logical operators
counted in the main text.

3. General calculation

Let us now show in general that a hybrid model between
a Z2 toric code and a Z2 fracton model will have the same
groundstate degeneracy on any manifold. To warm up, let us
calculate the groundstate degeneracy in the stacked model. We
have stabilizers

(ATC )2 = (BTC )2 = (Afrac)2 = (Bfrac)2 = 1. (D22)

We omit the cell which each stabilizers is defined on for
simplicity. The dimension of the Hilbert space is given by

log2 dim Hstack = log2 dim HTC + log2 dim Hfrac. (D23)

The stabilizers of the toric code ATC and BTC imposes
log2 dim HTC − 3 independent constraints while those of the
fracton model Afrac and Bfrac will impose log2 dim Hfrac −
log2 GSDfrac constraints. Therefore the groundstate degener-
acy of the stacked model is

log2 GSDstack = log2 GSDfrac + 3. (D24)

We now argue that the groundstate degeneracy in the hybrid
model must be the same. The dimension of the Hilbert space
in the hybrid model is equal to that of the stacked model, while
the stabilizers satisfy

(ATC )2 = Afrac,

(Bfrac)2 =
∏

BTC,

(Afrac)2 = (BTC )2 = 1 (D25)

where
∏

is an appropriate product of toric code plaquette
terms, depending on the hybrid model. Because of this, the
number of constraints that Afrac and BTC impose are un-
changed, while the additional constraints that ATC and Bfrac

impose (up to Afrac and BTC terms) are also the same as before.
This implies that the groundstate degeneracy of the hybrid
model is the same as that of stacked model.

It is important to note that the above result does not imply
that the logical operators of the hybrid model satisfy the same
algebra to those in the stacked model. Though this is indeed
the case in the hybrid X-cube model, we have demonstrated
that the algebra is different in the case of the hybrid toric code
layers; some logical operators in the hybrid model have order
four, while all logical operators have order two in the stacked
model.

APPENDIX E: A HYBRID OF X-CUBE AND TWO TORIC
CODES

In this Appendix, we introduce an isotropic version of
the lineonic hybrid X-cube model presented in Sec. IV. This
model is more involved, because it is a hybrid between the
X-cube model and two 3d toric codes. Nevertheless, all the
lineons in this model will square to mobile charges. Descrip-
tively, let ex, ey, ez be the lineons in the X-cube model and
e1, e2 be the mobile charges of the toric code. Then the fusion
rules are given by

e2
x = e1 e2

y = e2, e2
z = e1e2. (E1)

Because of the gauge group underlying this model, we will
call it a lineonic (Z2

4,Z
2
2) gauge theory.

1. Paramagnet

First, we describe the paramagnet with a (Z2
4,Z

2
2) 2-

subsystem symmetry. The paramagnet is on cubic lattice with
two Z4 qudits per vertex

H = −
∑

v

1 + X Iv + X 2Iv + X 3Iv
4

1 + IXv + IX 2
v + IX 3

v

4
.

(E2)

The global Z2
4 symmetry has three Z4 subgroups of in-

terest, generated by
∏

v X Iv ,
∏

v IX †
v , and the diagonal
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FIG. 16. Lattice model for the lineonic (Z2
4,Z

2
2) gauge theory: Visualization of the operators in the Lineonic (Z2

4,Z
2
2) gauge theory. Here,

1, 2, 3 = IX,X I,X †X (magenta), 1, 2, 3 = IX,X †I,XX (orange), red = X 2I , 1, 2, 3 = Z2I, IZ,Z2Z (blue), cyan = ZI , and purple = Z†I .

∏
v X †Xv . Furthermore, there are three Z2 planar symmetries∏
v∈xz X 2Iv ,

∏
v∈yz IX 2

v ,
∏

v∈xy X 2X 2
v . The product of all pla-

nar symmetries in a particular direction is respectively the Z2

subgroup of the three Z4 global symmetries.
The operators that create charged excitations that commute

with the above symmetry are defined on each edge eρ , where
ρ = x, y, z and depends on the direction of the edge:

�ex = (ZI )i (Z†I ) f , (E3)

�ey = (IZ )i (IZ†) f , (E4)

�ez = (Z†Z†)i (ZZ ) f . (E5)

We note that the convention of the generators and hopping
operators above have been carefully chosen such that the end
point i of �ex is charged 1, i,−i under the three Z4 generators,
and charged 1,−1,−1 under the planar Z2 symmetries. This
makes the charges at the endpoint a lineon excitation. Further-
more, the product �ex �ey�ez which shares the same endpoint
i has no charge at site i. In the corresponding gauged model,
this means that the three lineons mobile in the three directions
fuse to the vacuum.

2. Hybrid order

The hybrid model is defined on a 3d cubic lattice. For each
edge, we place a Z4 qudit and a Z2 qubit. The Hamiltonian of
the hybrid model is

HHybrid = −
∑

r=x,y,z

[∑
v

1 + Av,r + A2
v,r + A3

v,r

4

+
∑

p

1 + Bp,r

2

]
−

∑
c

1 + Bc + B2
c + B3

c

2
, (E6)

where

Av,r =
∏
e→v

ξ†
e,r

∏
e←v

ξe,r, (E7)

A2
v,r =

∏
e⊃vr

(X 2I )e, (E8)

Bp,r =
∏
e∈p

ζe,r (E9)

Bc =
∏
e∈c′

(ZI )e

∏
e∈c

(ZI )e. (E10)

Here, e → v and e ← v denote edges entering and exiting the
vertex v as in the main text. This is shown in Fig. 16 as orange
and magenta respectively. Furthermore, e ∈ c′ and e ∈ c refer
to the purple and cyan edges of a cube c in the figure.

To define ξe,r and ζe,r , we note that its definition depends
on the orientation of the link e. Therefore we have to define
it separately for ex, ey, and ez. For simplicity in defining these
operators, we substitute x, y, z with 1,2,3 so that we can define

ξeρ ,r =
⎧⎨
⎩

IX ; r − ρ ≡ 0 (mod 3)
X I ; r − ρ ≡ 1 (mod 3)
X †X ; r − ρ ≡ 2 (mod 3)

, (E11)

ζeρ ,r =
⎧⎨
⎩
Z2I ; r − ρ ≡ 0 (mod 3)
IZ ; r − ρ ≡ 1 (mod 3)
Z2Z ; r − ρ ≡ 2 (mod 3)

. (E12)

Note that for a fixed edge e, ξe,xξe,yξe,z = 1, and ζe,xζe,yζe,z =
1. In particular, this implies that Av,xAv,yAv,z = 1. Further-
more, we would like to point out that ξe,r and ζe,r′ commutes
for r = r′ and otherwise anticommutes.

We can see that the above model is a hybrid between
two toric codes and the X-cube model in the following way.
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Suppose the terms ξe,r and ζe,r were instead Pauli matrices

ξeρ ,r =
⎧⎨
⎩

IX ; r − ρ ≡ 0 (mod 3)
XI ; r − ρ ≡ 1 (mod 3)
XX ; r − ρ ≡ 2 (mod 3)

, (E13)

ζeρ ,r =
⎧⎨
⎩

ZI ; r − ρ ≡ 0 (mod 3)
IZ ; r − ρ ≡ 1 (mod 3)
ZZ ; r − ρ ≡ 2 (mod 3)

. (E14)

Then the pair Av,r and Bp,r forms two copies of the toric
code (note that there are three terms for r = x, y, z but only
two are independent). Furthermore, the pair A2

v,r and Bc are
stabilizers for the X-cube model. However, by promoting the
first variable into a Z4 variable, the models are coupled in such
a way that the vertex term of each toric code now squares
to the vertex term (that detects the lineon) in the X-cube
model, and the cube term which detects the fracton squares
to a product of plaquette terms of the two toric codes. This is
illustrated in Fig. 16.

a. Summary of excitations, fusion and braiding

Because the model is exactly solvable, we can explicitly
write down the excitations. The operator ZI on a rigid string
in the direction ρ violates the vertex terms Av,r for r �= ρ. In
particular, the end points are charged ±i under the operator
Ac,r , and −1 under A2

v,r , and are therefore lineons. It com-
mutes with all Bcr and B ’s. We will label the corresponding
lineon eρ , where ρ = x, y, z is the direction of the rigid
string Lρ .

lineon eρ, ēρ :
∏

eρ∈Lρ

ZIeρ
. (E15)

Similarly, the end points of Z2I creates excitations which
are charged −1 under two of the three Av,r operators. so
the point excitation e2

ρ is created. However, this excitation is
mobile. To hop e2

ρ in the direction r we use a flexible string L
of ζe,r in Eq. (E12). Note that in for r = ρ, ζe,r is just equal to
Z2I as expected.

mobile e2
ρ :

∏
e∈L

ζe,r, (E16)

Next, we define operators that violate Bp,r and Bc, but
commute with Av,r . The first kind are loop excitations labeled
mr for r = 1, 2, 3, and satisfy m1 × m2 × m3 = 1. The loop
mr is created by acting with ξe,r on all edges intersecting
a given surface S ′ on the dual lattice. This creates a loop
excitation at the boundary of that surface. Without loss of
generality, let us choose the S ′ to intersect the edges in a single
direction ρ. Because of the commutation relations between
ξe,r and ζe,r′ , the loop excitation are charged −1 under Bp,r′

at the boundary of S if r �= r′. Furthermore, ξeρ ,r commutes
with (ZI )eρ

if r = ρ, otherwise they commute up to a phase
±i. The result of this is that the corners of the loop excitation
are charged ±i under Bc only for r �= ρ. In other words, for a
given r, the loop excitation mr are charged under Bc in two of
the three directions.

mobile loop mr :
∏
e⊥S

ξe,r, (E17)

=

m3 m2 (fracton)

=

m2(loop) m2 (fracton)

=

m1(loop) m2 (fracton)

(loop)

FIG. 17. Loop fusion in the Lineonic (Z2
4,Z

2
2) gauge theory.

Fusion of two identical mr loops results in fracton excitations (m2)
at the corners if at least one of the two loop segments meeting at the
corner points in the r direction.

Lastly, the fracton excitation is a violation of Bc. Four
fractons can be created at the corners of the operator (X 2I )e.

fracton m2 :
∏
e⊥S

(X 2I )e. (E18)

The fusion rules can be seen from the explicit form of the
operators. The lineons eρ mobile in the ρ direction fuse into
e2
ρ which are mobile particles.

On the other hand, the loop excitation mr is mobile.
However, we notice that ξ2

eρ ,r is equal to (X 2I )e for r �= ρ.
Therefore the loop excitation fuses with itself to fractons at
the corner in two of the three directions as shown in Fig. 17.

The braidings that differ from a stack of two toric codes
and an X-cube model is a braiding between the lineon eρ and
the loop mr . Using the commutation relations of ZI , which
creates the lineon and ξ which creates the loop, one finds that
the braiding phase is⎧⎨

⎩
1 ; r − ρ ≡ 0 (mod 3)
i ; r − ρ ≡ 1 (mod 3)
−i ; r − ρ ≡ 2 (mod 3)

. (E19)

APPENDIX F: HYBRID HAAH’S CODE AS A PARENT
ORDER

In this Appendix, we give an identical argument to Sec. VI
that the hybrid Haah’s code is a parent state for both the toric
code and Haah’s code.
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We add the following perturbations to the Hybrid Haah’s
code Hamiltonian HHybrid in Eq. (60):

H = HHybrid − te2

∑
e

Ze − tm2

∑
α=1,2

∑
v

X (α)
v , (F1)

First, we derive the effective Hamiltonian for te2 = 0 and
tm2 → ∞ which is the condensate of the fractonic fluxes m2

by setting X (α)
v = 1 for α = 1, 2. We discard Bv since it brings

us out of the subspace. The other terms in the Hamiltonian
reduce to

Av →
e⊃v

Xe

B → B =
e∈

Ze

AXC
v → 1

(F2)

Therefore the effective Hamiltonian in this subspace has sta-
bilizers of the 3d toric code.

Next, we consider tm2 = 0 and te2 → ∞, which is the con-
densate limit of the mobile charge e2. By restricting to the
subspace where Ze = 1, the operator Av is discarded, since
it brings us out of the subspace. The remaining stabilizers
reduce to

B → 1, (F3)

AHC
v → X (1)

v X (1)
v−x̂X (1)

v−ŷX (1)
v−ẑX

(2)
v X (2)

v−x̂−ŷX (2)
v−ŷ−ẑX

(2)
v−ẑ−x̂,

Bc,r → Z (1)
v Z (1)

v+x̂+ŷZ (1)
v+ŷ+ẑZ

(1)
v+ẑ+x̂Z (2)

v Z (2)
v+x̂Z (2)

v+ŷZ (2)
v+ẑ.

Therefore the remaining stabilizers are those of Haah’s code.
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