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Quantum-critical properties of the long-range transverse-field Ising model from
quantum Monte Carlo simulations
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The quantum-critical properties of the transverse-field Ising model with algebraically decaying interactions
are investigated by means of stochastic series expansion quantum Monte Carlo, on both the one-dimensional
linear chain and the two-dimensional square lattice. We extract the critical exponents ν and β as a function
of the decay exponent of the long-range interactions. For ferromagnetic Ising interactions, we resolve the
limiting regimes known from field theory, ranging from the nearest-neighbor Ising to the long-range Gaussian
universality classes, as well as the intermediate regime with continuously varying critical exponents. In the
long-range Gaussian regime, we treat the effect of dangerous irrelevant variables on finite-size scaling forms. For
antiferromagnetic and therefore competing Ising interactions, the stochastic series expansion algorithm displays
growing autocorrelation times leading to a reduced performance. Nevertheless, our results are consistent with the
nearest-neighbor Ising universality for all investigated interaction ranges both on the linear chain and the square
lattice.
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Currently quantum phase transitions in systems with long-
range interactions receive a lot of interest, since they display
remarkable quantum critical properties which become more
and more accessible in experimental setups. In particular,
Ising-type interactions with algebraically decaying coupling
constants are well realized in quantum optical platforms
like trapped Rydberg atoms [1] or cold ions [2–15]. Fur-
thermore, long-range interactions can also play an essential
role in understanding exotic collective phenomena of mate-
rial properties in condensed matter physics, e.g., materials
with dipolar interactions like the so-called spin-ice mate-
rials [16,17] or the dipolar ferromagnet LiHoF4 [18,19].
Long-range transverse-field Ising models are therefore one of
the most paradigmatic systems to investigate quantum phe-
nomena which originate from the long-range nature of the
interaction.

The microscopic treatment of the long-range transverse-
field Ising model (LRTFIM) is challenging and a variety of
numerical methods were developed to tackle such systems.
This includes series expansions [20–22], tensor-network ap-
proaches [23–26], quantum Monte Carlo simulations [27–30],
and the functional renormalization group [31]. The ferromag-
netic LRTFIM is of particular interest, both in one and two
dimensions. From field theory, we expect the universality
class of the quantum phase transition between the high-field
polarized and the low-field symmetry broken phase to change
as a function of the range of interactions, from short-range
to being described by a long-range Gaussian theory [31–35].
A regime with continuously varying critical exponents is ex-
pected to connect those well-known limits. Precise values for
the critical exponents in this intermediate interaction regime
are the subject of current research. In particular, the transition
to the nearest-neighbor criticality is only poorly understood.

Further, long-range interactions can provide a path to explore
the physics of phase transitions above the upper critical di-
mension in low-dimensional systems [36,37].

The quantum critical properties of the antiferromagnetic
LRTFIM are known to be distinct from its ferromagnetic
counterpart. Only in the nearest-neighbor limit on bipartite
lattices, there is an exact duality between the ferromagnetic
and antiferromagnetic case, and the quantum critical prop-
erties coincide. Otherwise, one has to distinguish, on one
hand, antiferromagnetic LRTFIMs on lattices with a strong
degree of geometrical frustration in the nearest-neighbor limit
like the triangular, kagome, or pyrochlore lattice and, on
the other hand, antiferromagnetic long-range Ising interac-
tions on bipartite lattices so that the nearest-neighbor limit
is unfrustrated. In the first case, the interplay of frustration
and long-range interactions represents a formidable challenge.
Rich phase diagrams are known to occur [21,25,28,38], but a
full understanding is still in its infancy. In the second case,
the antiferromagnetic long-range interactions induce com-
peting interactions so that several studies indicate that the
universality of the quantum phase transitions remains in the
nearest-neighbor universality class in a large range of interac-
tions [21,24,39]. Deviations might only occur in the regime of
ultra-long-range interactions [23,40].

In this paper, we focus on the zero-temperature limit of
the LRTFIM. We use the stochastic series expansion (SSE)
quantum Monte Carlo (QMC) algorithm [27] to simulate on
the order of 1000 spins with either ferromagnetic or antiferro-
magnetic couplings, both on the linear chain and the square
lattice. We demonstrate that critical properties such as the
critical field values hc, and the critical exponents β and ν

of the quantum phase transition can be extracted from our
unbiased simulations by means of finite-size scaling. For the
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ferromagnetic case, we extract the scaling power ỹr of the
tuning parameter r = |h/hc − 1| at the quantum phase tran-
sition which is normally associated with the critical exponent
ν. In the long-range Gaussian regime, this correspondence is
modified by dangerous irrelevant variables. Inspired by the
recently proposed Q-finite-size scaling method [37,41–43],
we provide a consistent way to calculate ν from ỹr for the
LRTFIM on the linear chain and on the square lattice in the
long-range Gaussian regime.

The paper is structured as follows: We start by defining
the model and summarizing the available numerical results as
well as the current status of the field-theoretical description
of the quantum criticality in Sec. I. In Sec. II we introduce
the methods used to generate and evaluate the Monte Carlo
data. This includes a brief review of the basic idea of the
SSE QMC method (see Sec. II A), the implementation of the
long-range coupling on the finite lattice via Ewald sums (see
Sec. II B), the protocol we used to extract zero-temperature
results (see Sec. II C), the observables we determined (see
Sec. II D) as well as finite-size scaling below and above the
upper critical dimension (see Sec. II E), followed by the de-
tails of the application of the scaling to our data in Sec. II F
and the extraction of the critical exponent ν in Sec. II G.
Section III contains the finite-size scaled results of the sim-
ulations of the ferromagnetic as well as the antiferromagnetic
model on the one-dimensional linear chain as well as on the
two-dimensional square lattice, including a discussion of our
findings and comparisons with other available numerical data.
Finally, we conclude our work in Sec. IV.

I. MODEL

We investigate the LRTFIM given by

HLRTFIM = J

2

∑
i �=j

1

|i − j|d+σ
σ z

i σ z
j − h

∑
j

σ x
j , (1)

with Pauli matrices σ
x/z
i describing spins 1/2 located on

the lattice sites i. The transverse field is tuned by the pa-
rameter h > 0. The Ising interaction is ferromagnetic for
J < 0 and antiferromagnetic for J > 0. The positive parame-
ter (d + σ ) governs the decay of the coupling constants, from
a nearest-neighbor model for σ = ∞ to an all-to-all coupling
for d + σ = 0. By separating the spatial dimension d = 1, 2
of the system from the decay exponent, we can treat one- and
two-dimensional systems on an equal footing. Let us note
that some of the literature instead use the decay exponent
α ≡ d + σ .

We investigate the Hamiltonian on finite linear chains of
length L and finite L × L patches of the square lattice. In both
cases, we use periodic boundary conditions. The simulations
are performed using the SSE QMC algorithm (see Sec. II A).
We focus on the limit T → 0 and L → ∞ to contribute to the
understanding of the quantum criticality of the LRTFIM.

There are several numerical studies concerning the
quantum-critical properties of the LRTFIM on the one-
dimensional spin chain [22–24,26,39,40,44,45]. For the
antiferromagnetic chain, the established picture is that there
is a phase transition of 2D Ising type between the high-field
polarized phase and the low-field antiferromagnetic phase for

all σ � 1.25 [22,24,39,40]. In the regime of ultra-long-range
couplings, recent finite-size density-matrix renormalization
group findings suggest that the Ising universality holds for
any σ > −1 [24]. On the other hand, earlier results using ma-
trix product states generalizing the time-dependent variational
principle [40] indicate that critical exponents may vary for
σ < 1.25 and that the area law for the entanglement entropy
may be violated. The stability of the low-field phase reduces
for σ → −1 [23,24,39,40].

The ferromagnetic chain shows a phase transition between
the field-polarized and the ferromagnetic phase with three
different regimes [22,39,44]. First, for σ > 2, the transition is
of 2D Ising type with the well-known short-range exponents.
For small σ < 2/3, the exponents are those of the long-range
Gaussian theory [35]. In between, for 2/3 < σ < 2, there is a
regime of monotonously varying critical exponents that con-
nects these two limits. Multiplicative logarithmic corrections
to scaling are expected at the boundary of the long-range
Gaussian regime (σ = 2/3) [22,35,39].

In two dimensions, the LRTFIM is numerically much more
demanding. The model has been studied on semifinite trian-
gular cylinder geometries [25,38] and on the triangular lattice
[21,28]. The LRTFIM on the square lattice as studied in this
work has been investigated so far with series expansions [21].
For the antiferromagnetic case, a 3D Ising phase transition
between the polarized high-field phase and 2D antiferromag-
netic order is found for all accessible σ . Very small σ < 0.5
cannot be well described by the series expansion. The crit-
ical field hc is expected to vanish in the limit σ → −2. In
full analogy to the ferromagnetic chain, the square lattice
with ferromagnetic interactions shows three regimes for the
phase transition between the field-polarized phase and the
ferromagnetic phase [21]. For σ > 2, the square lattice shows
3D Ising nearest-neighbor criticality, while for σ < 4/3, the
model is governed by long-range Gaussian theory [46]. In the
intermediate regime, for 4/3 < σ < 2, there are again con-
tinuously varying critical exponents and likewise for σ = 4/3
multiplicative logarithmic corrections to scaling are expected
[21,35].

The analogous three regimes for the ferromagnetic LRT-
FIM in one and two dimensions can be understood using
a field-theoretical description of the quantum critical point
[31,35]. For ferromagnetic d-dimensional systems with alge-
braically decaying Ising interactions 1/|r|d+σ with distance
|r| between the spins, the quantum critical point can
be described by the real one-component quantum rotor
action,

A = 1

2

∫
q,ω

G̃−1
0 (q, ω)φ̃q,iωφ̃−q,−iω + u

∫
x,τ

φ4
x,τ (2)

using

G̃−1
0 (q, ω) = g̃ω2 + aqσ + bq2 + r (3)

with a, b > 0 and r, u being the mass and coupling term [35].
Note, the notation in Eq. (2) is taken from Ref. [47]. For
σ � 2 the leading terms in q recover the nearest-neighbor φ4

Ising action of the (d + 1)-dimensional Ising criticality [48].
By scaling analysis of the Gaussian theory for σ < 2, it is
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possible to derive the long-range Gaussian critical exponents

γ = 1, ν = 1

σ
, η = 2 − σ, z = σ

2
. (4)

The largest σ for which the long-range Gaussian the-
ory correctly describes the critical behavior is found from
d = duc(σ ), where d is the spatial dimensionality of the sys-
tem and duc is the upper critical dimension of the model
(which depends on the decay exponent of the coupling). By
inserting the Gaussian exponents into the hyperscaling rela-
tion duc(σ ) can be derived,

2 − α = ν(d + z)
α=0−−−−−→

ν= 1
σ
,z= σ

2

duc = 3σ

2
. (5)

Dutta et al. [35] performed perturbative renormalization-
group calculations around duc and confirmed the stability
of the Gaussian fixed point above the upper critical dimen-
sion. Therefore the Gaussian exponents hold for σ < 2/3
in one and σ < 4/3 in two dimensions. Using an ε expan-
sion, perturbative corrections to the Gaussian exponents for
d < duc may be computed [35,48]. At the upper critical
dimension multiplicative logarithmic corrections to scaling
occur [32,35,49,50].

The precise behavior at the crossover to the short-
range universality has been under debate for a long
time [31–35,51,52]. Recently, it has been argued that the
regime change is not exactly at σ = 2 but at σ = 2 − ηSR,
with ηSR the anomalous dimension of the short-range
transition [31].

II. METHODS

A. SSE quantum Monte Carlo

The SSE method we use is a finite-temperature QMC ap-
proach pioneered by A. Sandvik to sample transverse-field
Ising models with arbitrary (in particular long-range) inter-
actions on arbitrary graphs [27,53–55]. In this section we will
briefly recapitulate and summarize the most important ideas
in order to capture the essential aspects of the method. For an
in-depth understanding, we recommend Refs. [27,55].

The starting point for the SSE approach is a representation
of the Hamiltonian

H = −
∑
a,b

Ha,b (6)

as a sum of operators Ha,b. The choice of an orthonormal
computational basis {|α〉} such that 〈γ |Ha,b|β〉 � 0 for all
|β〉, |γ 〉 ∈ {|α〉} avoids the sign problem. Furthermore, the
so-called no-branching rule

Ha,b|β〉 ∝ |γ 〉 ∀|β〉 ∈ {|α〉} with |γ 〉 ∈ {|α〉} (7)

must be satisfied for the chosen decomposition of the Hamil-
tonian and the computational basis. The partition function is
rewritten as

Z = Tr{e−βH} =
∑

α

∞∑
n=0

∑
Sn

βn

n!
〈α|

n∏
l=1

Ha(l ),b(l )|α〉 (8)

with Sn an ordered sequence of n operator-index pairs

Sn = {[a(1), b(1)], [a(2), b(2)], ..., [a(n), b(n)])} (9)

and the sum over all states of the computational basis |α〉. Two
indices a, b are commonly used for the LRTFIM [27,28].

The SSE method approximates the series (8) by neglecting
operator sequences Sn longer than some appropriately chosen
L. This leads to an efficient sampling scheme with an expo-
nentially small error [27]. We adjust the fixed sequence length
L during the thermalization of our simulations according to
the protocol described in Ref. [27]. For a given system the
required sequence length scales linearly with the reciprocal
temperature β. Sequences with less than L operator-index
pairs are padded to length L by randomly inserting iden-
tity operators. To compensate, one divides the partition
function by the binomial coefficient L!/(n!(n − L)!) to
obtain

Z =
∑

α

∑
SL

βn (L − n)!

L!
〈α|

L∏
l=1

Ha(l ),b(l )|α〉

=
∑

α

∑
SL

w(α, SL). (10)

The direct product {|α〉} × {SL} is the configuration space of
the SSE method. Expectation values of observables are com-
puted by Markov-chain Monte Carlo, in which the weights
w(α, SL) describe the stationary distribution on the configu-
ration space. The weights are non-negative by virtue of the
non-negative matrix elements of the operators Ha,b constitut-
ing the Hamiltonian.

For the LRTFIM, it is suitable to use the σ z basis as the
computational basis and to decompose the Hamiltonian as

HLRTFIM = −
N∑

a=0

N∑
b=1

Ha,b − C (11)

where C is a constant and

H0,0 = 1 (12)

Ha,0 = hσ x
�(a) (13)

Ha,a = h1 (14)

Ha,b = |J�(a),�(b)| − J�(a),�(b)σ
z
�(a)σ

z
�(b). (15)

Here, a, b > 0, and a �= b in Eq. (15). For the operator indices
like a or b there is a bijective mapping � to the corresponding
lattice site i.

This configuration space is sampled according to the
weights w(α, SL). The SSE method introduces two types
of Monte Carlo moves. First, the diagonal updates replace
the constant-field operators, Eq. (14), and bond operators,
Eq. (15), at sequence position p with identity operators at the
same position and vice versa,

[a, b]p ↔ [0, 0]p with a, b �= 0. (16)

Second, the off-diagonal updates replace pairs of [a, a] oper-
ators at positions p1 and p2 at lattice site �(a) in the sequence
with two transverse-field operators [a, 0],

[a, a]p1 [a, a]p2 ↔ [a, 0]p1 [a, 0]p2 with a �= 0 (17)
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and vice versa. Off-diagonal updates can be performed using
local update schemes or quantum cluster updates [27].

In our simulations, one Monte Carlo sweep consists of
two steps. First, we iterate through the operator sequence,
performing the diagonal updates for each position 1, . . . ,L
in the operator sequence. Each update is individually accepted
or rejected with an acceptance probability satisfying detailed
balance that results from the ratio of weights before and
after the update [27]. Second, for the off-diagonal update,
we use Sandvik’s quantum cluster update [27]. The quantum
cluster update identifies clusters in the Monte Carlo state in
real space and imaginary time. Clusters are bounded in the
imaginary-time direction by transverse-field operators (13)
and constant-field operators (14) but linked in real space by
bond operators (15). Clusters can be flipped by flipping the
spin states and interchanging transverse-field and constant-
field operators at the edge of the cluster at no change of
weight. The two updates together suffice for the Monte Carlo
algorithm to explore the entire {|α〉} × {SL} configuration
space [27].

B. Long-range coupling

To optimally represent the thermodynamic limit on the
finite-system simulation, we use Ewald-corrected couplings
[29,30,56]. In the case of the one-dimensional chain, the cor-
rected couplings have a closed form

1

|i − j|1+σ
−→

∞∑
k=−∞

1

|i − j + kL|1+σ

= 1

L1+σ

[
ζ

(
1 + σ,

|i − j|
L

)

+ ζ

(
1 + σ, 1 − |i − j|

L

)]
(18)

using the Hurwitz ζ function

ζ (s, q) =
∞∑

n=0

1

(q + n)s
with �(s) > 1 ∧ �(q) > 0.

(19)

For the square lattice, we truncate the infinite series, and the
couplings are

1

|i − j|2+σ
−→

Nc∑
k,l=−Nc

1

|i − j + kLex + lLey|2+σ
(20)

with Nc being a cutoff value. We use Nc = 104 for α � 4 and
Nc = 105 for α < 4. By imposing the modified couplings we
reduce finite-size effects due to neglecting interacting partners
not included in the finite segment of the lattice.

C. Simulation parameters for the zero-temperature sampling

To find the temperature Teff,0(L, h/J, σ ) at which we effec-
tively sample the zero-temperature properties of the system,
we use an empirical scheme inspired by the beta-doubling
method [57]. For two different linear system sizes L1 > L2,
one finds Teff,0(L1, h/J, σ ) < Teff,0(L2, h/J, σ ) as the finite-
size gap decreases with increasing system size. Therefore,
a larger system size requires a lower simulation temper-
ature. The finite-size finite-temperature crossover point is

100 101 102 103

β

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈m
2 L
〉/
〈m

2 L
(β

m
a
x
)〉

L = 128

L = 180

L = 256

L = 360

L = 512

L = 724

L = 1024

FIG. 1. Behavior of the squared magnetization normalized by
〈m2

L (βmax)〉 with βmax = 2048 for the linear chain in the short-range
regime (σ = 2.5) with z = 1, as the reciprocal temperature β is
increased. All systems larger than L > 1024 were discarded from the
analysis since they have not yet converged to the ground state of the
system.

expected to scale as Lz where z is the dynamical corre-
lation length exponent [29,48,58]. To ensure that we are
sampling zero-temperature order parameter properties, we
require the squared (staggered) magnetization curve of the
largest system to converge in temperature. To probe this con-
vergence, we successively halve the simulation temperature
Tn = const. × 1

2n . To enhance convergence towards the
ground-state space, we perform in the final simulations a
stepwise cooling over all Tn > Teff,0.

Figure 1 shows an example of this procedure. We plot the
squared magnetization for the ferromagnetic LRTFIM with
σ = 2.5 on the linear chain for different system sizes L. We
choose a transverse-field value of h = 1.25 in the vicinity
of the quantum critical point [hc = 1.25001(2)] as we are
interested in the convergence of the magnetization at criti-
cality and because the finite-size gap should be the smallest
at criticality. As expected from theory, the magnetization con-
verges faster to the zero-temperature limit β → ∞ for smaller
system sizes, in accordance with the scaling Lz=1.

D. Observables

As the static properties of a second-order phase transi-
tion are investigated, the main focus lies on the examination
of the order parameter, the (staggered) magnetization of the
symmetry-broken phase,

mL,q = 1

Ld

∑
j

σ z
j eiq·j. (21)

The ordering momentum q of the symmetry-broken phase is
q = (0, 0) for ferromagnetic couplings and q = (π, π ) for
antiferromagnetic couplings on the square lattice (q = 0 and
q = π on the linear chain). We define the mean magnetization
for a system of linear system size L as ML,q = 〈mL,q〉. We will
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extract critical exponents from the data collapse of the squared
magnetization 〈m2

L,q〉.
To locate the phase transition we also calculate the Binder

cumulant [59–61]

UL,q = 3

2

(
1 −

〈
m4

L,q

〉
3
〈
m2

L,q

〉2
)

. (22)

Due to the scaling behavior of the magnetization at the crit-
ical point, the Binder cumulant becomes independent of the
system size up to corrections (see Sec. II E). Therefore, the
intersection points of the Binder cumulants for different L
can be used to locate the critical point. The prefactors in
Eq. (22) are chosen such that UL,q → 1 in the ordered phase
and UL,q → 0 in the paramagnet. In the following, we will
always set q to the ordering momentum of the system and
drop it from the notation.

E. Finite-size scaling below and above the upper
critical dimension

We rely on the scaling hypothesis [62–67] to extract
infinite-system critical properties from our finite simula-
tions. We assume that an observable O with a divergence
O(r, T = 0) ∼ |r|ω satisfies the scaling relation

O(r, T = 0) = b−ωyrO(rbyr , T = 0) (23)

in the vicinity of the phase transition [48,58], with
r = |h/hc − 1| the distance from the critical point, ω the crit-
ical exponent of O, b the scaling parameter, and yr = 1/ν

the scaling power of r. We are, however, investigating finite
systems such that the observable OL(r, T = 0) we measure
depends on the linear system size L. Following the argumen-
tation of Ref. [68] including L−1 as a variable of the scaling
form with a scaling power of one and using b = L/L0 one
finds

OL(r, T = 0) = (L/L0)−ωyrOL0 (r(L/L0)yr , T = 0)

= L−ωyr �O(rLyr , T = 0), (24)

where we introduced the L-independent scaling function �O
and absorbed L0 into its definition. Equation (24) is the finite-
size scaling (FSS) form [59,61,69–71].

From the field theory of the ferromagnetic LRTFIM it is
known that the upper critical dimension is lowered by de-
creasing σ [35]. Thus, by Eq. (5), there is a σ ∗ at which
duc becomes equal to the physical dimension d . For σ < σ ∗,
hyperscaling is no longer valid, and the phase transition is de-
scribed by the long-range Gaussian theory [35]. In this regime
the φ4-coupling u becomes a dangerous irrelevant variable
[37,41–43,61,72].

When dangerous irrelevant variables like the coupling u
with a scaling power yu are present, these have to be taken
into account in generalized homogeneous scaling functions
and are usually treated by modifying the other scaling powers
[58,61,72] such that Eq. (24) becomes

OL(r, T = 0) = L−ωy∗
r �O(rLy∗

r , T = 0). (25)

The modified scaling power y∗
r = yr + pryu absorbs the effect

of dangerous irrelevant variables, and it does not coincide with

the reciprocal correlation length exponent anymore. Histori-
cally, the main approach to such problems was to introduce
another length scale l with a divergence l ∼ |r|−1/y∗

r replacing
the correlation length ξ ∼ |r|−1/yr as the characteristic length
scale of the system [61,72].

A more recent approach developed for thermal phase tran-
sitions is called Q finite-size scaling (Q-FSS) [37,41–43].
The key idea is to include the effect of dangerous irrele-
vant variables to the correlation sector and from this allow
the finite-size correlation length to scale as ξL ∼ L , where

= y∗
r /yr above duc and = 1 otherwise [37,41–43]. By im-

posing the generalized scaling of the correlation length the
scaling form is modified to

OL(r) = L−ω /ν�O(rL /ν ). (26)

Note, here r is the tuning parameter of the thermal
phase transition. For classical systems Q-FSS predicts

= max(1, d/duc) [41,42]. Unfortunately, the same line of
reasoning does not directly apply to the quantum case. In
order to avoid confusion with the classical case, we use for
the LRTFIM

OL(r, T = 0) = L−ωỹr �O(rLỹr , T = 0), (27)

by introducing a generalized scaling power

ỹr =
{

yr for d < duc

y∗
r for d > duc

(28)

and therefore unifying Eqs. (24) and (25).

F. Extraction of critical properties

The critical transverse field hc is most conveniently ex-
tracted from the crossing points of the Binder cumulants,
Eq. (22), for different system sizes [61]. The Binder cumulant
U is an observable with a scaling power of zero, i.e.,

UL(r, T = 0) = �U (rLỹr , T = 0), (29)

and thus becomes independent of L for r = 0 to leading order.
Thus, pairwise intersections of UL(h) and UbL(h) for different
system sizes L and bL (b > 1) give an estimate for hc. These
intersections can be extrapolated for families of L towards
b → ∞ in order to take into account leading corrections to
scaling [61]. Similar extrapolation methods for critical expo-
nents are described in Ref. [61]. For critical properties we find
a self-consistent data collapse of squared (staggered) mag-
netization curves to be more stable than these extrapolation
methods. In our simulations, the increased stability outweighs
the value of including corrections. All the results reported in
the paper come from the data collapse method described in the
following.

In the vicinity of the critical point, due to the general-
ized FSS form Eq. (27), the transformations r → rLỹr and
OL → OLLωỹr will collapse the data OL(r, T = 0) for dif-
ferent system sizes onto the scaling function. We use this
behavior to determine ỹr , ω, and hc. In practice, we achieve
this by fitting the whole set of data points O(X ) with
X = (L, h) for all L simultaneously to the function

F (X ) = L−ωỹr p[(h − hc)Lỹr ], (30)
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where p(x) = a0 + a1x + · · · + anxn is a polynomial with
coefficients a = (a0, a1, . . . , an) approximating the scaling
function. For the data collapse we used the mean squared mag-
netization 〈m2

L,q〉 such that ω = 2β and the fit thus determines
the parameter set hc, ỹr, β, and a. Note that we can determine
β independently of ỹr and therefore β can be directly extracted
both below and above the upper critical dimension. We discuss
the extraction of ν based on ỹr in Sec. II G.

In principle, hc is already determined to good accuracy
from the crossing points of the Binder cumulants. However,
in the known limits of short-range and Gaussian critical ex-
ponents, we find better values for the exponents when hc is a
free fit parameter than when we fix the value from the Binder
cumulant crossings. This shows that the fit is very sensitive to
the precise value of hc. On this basis, we present the results
from fitting with free hc.

To determine the set of critical exponents for one choice
of the decay exponent σ , we sample a set of squared magne-
tization curves for several system sizes and then determine
the optimal data collapse, see figures in appendix. In this
work, obtaining the raw data for each set of critical exponents
consumed about 5000 CPUh. We provide all the raw data used
in this work as well as all the obtained critical field values and
critical exponents as a data set in Ref. [73].

G. Extraction of ν from ỹr

From the data collapse of the calculated observables we are
able to obtain an estimate for the critical point hc, the critical
exponent ω of the respective observable as well as the scaling
power ỹr of r in the generalized homogeneous scaling func-
tion. Below the upper critical dimension, ỹr = yr = 1/ν and
we obtain ν directly from the data collapse. Above the upper
critical dimension ỹr no longer coincides with the reciprocal
correlation length exponent and it is a priori not clear how to
extract ν.

In Fig. 2 we present the extracted values for ỹr . In both
dimensions the scaling power seems to level off at the value
of the scaling power at the upper critical dimension ỹr = σuc

predicted from the long-range Gaussian theory. We therefore
find for the ratio y∗

r /yr = σuc/σ = d/duc above the upper crit-
ical dimension. It is noteworthy that even though there are
subtle differences to the classical Q-FSS approach [37,41–
43] due to the appearance of z in the scaling form of the
free energy, we arrive at the same ratio y∗

r /yr = d/duc for the
scaling powers.

With this we are able to obtain estimates for ν in the long-
range Gaussian regime through

ν = d

duc

1

y∗
r

. (31)

We are aware that a good agreement with the predictions
from the long-range Gaussian theory is to be expected
as the conversion is constructed such that it fulfills these
expectations. Nevertheless, the consistency between both di-
mensions as well as the analogy to the Q-FSS support this
approach.

0 2 4 6 8 10
σ

0.8

1.0

1.2

1.4

1.6

ỹ r

2d

1d

FIG. 2. Scaling power ỹr for the ferromagnetic LRTFIM on the
linear chain (1d) and square lattice (2d) extracted from the self-
consistent data collapse of the mean squared magnetization. In both
dimensions ỹr appears to level off above the upper critical dimension.

III. RESULTS AND DISCUSSION

A. Ferromagnetic coupling

The ferromagnetic LRTFIM behaves qualitatively the same
on the linear chain and on the square lattice (see Sec. I). We
present the critical-field values hc and critical exponents β and
ν for both dimensionalities in Fig. 3.

The top panels of Fig. 3 show that the critical field hc

diverges as σ → 0. This behavior is intuitively explained by
the fact that a decreasing σ increases the excitation cost in
the low-field phase. On the other hand, a smaller σ increases
the mobility of the high-field excitations, therefore leading
to a larger hc. Over the whole range of σ , our results are in
very good agreement with the findings from series expansions
[21,39] (see also insets in Fig. 3), with differences of around
0.1%. We find that the SSE method reaches the same level
of accuracy as the series expansion. The one-dimensional hc

values are also consistent with the findings of Ref. [44], also
shown in the inset.

The center and bottom panels of Fig. 3 show the critical
exponents ν and β. Both in the nearest-neighbor regime and
in the long-range Gaussian regime, the exponents agree very
well with field theory predictions. In the short-range regime,
exponents are systematically underestimated by 1–2% as
compared to the known 2D/3D-Ising short-range exponents.
These deviations are due to slow logarithmic convergence of
the finite-size scaling. Note that we observe a similar shift for
the antiferromagnetic systems.

In the intermediate regime, the critical exponents increase
monotonously as σ decreases. For even lower values of σ ,
the exponents track the predictions from long-range Gaussian
field theory with high fidelity. In the long-range regime, the
dynamical critical exponent vanishes as z = σ/2, and thus the
finite-size gap decreases more slowly. Somewhat counterin-
tuitively, this allows us to access larger system sizes in the
long-range regime than in the z = 1 nearest-neighbor case.
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FIG. 3. Critical field values hc and critical exponents ν, β for the ferromagnetic phase transition on the linear chain (left column) and
the square lattice (right column). Top row: The critical field hc. The inset shows the relative difference to the series expansion results from
Refs. [21,39] (green diamonds) and to the density-matrix renormalization group results from Ref. [44] (DMRG, blue pluses). We define
�hc = 100% · (hc − href

c )/hc. Center and bottom row: The critical exponents ν and β, respectively. The dashed lines depict the expected
nearest-neighbor values in the large σ regime [74,75] and long-range Gaussian exponents at small σ values. For the ν values in one dimension
we also present the density-matrix renormalization group results from Ref. [44] (DMRG, blue pluses) and in one and two dimensions the
functional renormalization group results from Ref. [31] (Functional RG, cyan circles).

The boundaries between the three different regimes are
not sharp. Reasons for this include insufficient system sizes
as well as multiplicative logarithmic corrections [32,35] at
the upper critical dimension that we have not attempted to
correct for. In one dimension, we were able to simulate larger
linear system sizes and find considerably less rounding and
shifting of the boundaries between the regimes. A comparison
with data from available functional renormalization group

calculations [31] shows a similar behavior in the intermediate
regime, but we were not able to resolve the shift from σ = 2
to σ = 2 − ηSR due to the rounding of the boundary. Finally,
we stress that the conversion between the scaling power ỹr

and the correlation length exponent ν as shown in Eq. (31)
appears to be applicable to the quantum phase transition of
the LRTFIM and finds the correct Gaussian exponents above
the upper critical dimension.
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FIG. 4. Critical field values hc and critical exponents ν, β for the antiferromagnetic phase transition on the linear chain (left column) and
the square lattice (right column). Top row: The critical field hc. The inset shows the relative difference to the series expansion results from
Refs. [21,39] (green diamonds) and to the density-matrix renormalization group results from Ref. [24] (DMRG, purple pluses). We define
�hc = 100% · (hc − href

c )/hc. Center and bottom row: The critical exponents ν and β, respectively. Dashed lines indicate the known critical
exponents for the short-range 2D and 3D Ising model [74,75]. For the one-dimensional chain we also present the ν values from Ref. [24]
(DMRG, purple pluses) as well as values for ν and β obtained by collapsing curves of the same small system sizes as for the three smallest σ

(small gray crosses).

B. Antiferromagnetic coupling

The top row of Fig. 4 depicts the critical field values for the
phase transition in the antiferromagnetic LRTFIM, between
the x-polarized high-field phase and the symmetry-broken
antiferromagnetic low-field phase. The critical field hc de-
creases for decreasing σ , in agreement with previous series
expansion results [21,39]. Quantitatively, the series expansion
predicts somewhat smaller critical fields than our SSE results.
The series expansion converges better at large fields; at low

fields, the DlogPadé extrapolation tends to underestimate the
critical field hc. We thus expect that the antiferromagnetic hc
obtained from SSE are more accurate than the results from
Refs. [21,39]. We are not aware of other previous results
for the 2D system. For the linear chain, the other available
hc values [23,24,40] are in good agreement with our results
where applicable. For very small σ < 1, the autocorrelation
times of the SSE Monte Carlo dynamics increase as more
and more bond operators are present in the operator sequence
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and the field operators diffuse only slowly. In this regime, we
cannot extract critical exponents from SSE simulations.

The center and bottom rows of Fig. 4 display our results for
the critical exponents ν and β, respectively. Current literature
does not predict a change from the universality class of the
nearest-neighbor transverse-field Ising model for σ � 1.25.
Possible deviations from the nearest-neighbor criticality are
only reported for the one-dimensional chain [23,40]. Follow-
ing the findings of Refs. [21,24,39] we expect to find 2D and
3D Ising critical exponents (dashed lines, Refs. [74,75]) over
the investigated range of σ .

On the square lattice (right column in Fig. 4), for both ν and
β, our SSE results are systematically below the short-range
exponents by about 3–6%. As in the ferromagnetic system,
this systematic shift towards smaller critical exponents is
present even at large σ , where the nearest-neighbor criticality
must be recovered (see above). Again, we conclude that this
shift represents slow convergence of the finite-size scaling.
For all antiferromagnetic two-dimensional systems, we used
the same maximum system size of N = 900 spins.

On the linear chain, we observe a somewhat smaller shift
of 2–3% from the expected short-range values for σ > 4
(left column in Fig. 4). Systems of L = N = 1024 spins are
accessible in this range. For longer-range interactions, we
experience greater difficulty: The antiferromagnetic chain has
a smaller finite-size gap and requires much lower temperatures
in the SSE simulation to reproduce the ground-state physics.
This leads to a strong increase of the autocorrelation times of
the Monte Carlo dynamics and to poor data quality. For the
three smallest σ values considered, systems no larger than
L = 64 can be accessed. We find that the underestimation
of critical exponents worsens in this range, consistent with
the hypothesis that the systematic error with respect to short-
range exponents is due to insufficient system sizes. Indeed,
when we constrain the maximum system size to L � 64 for
all σ , the critical exponents are underestimated by the same
magnitude over the whole range of σ (see the small gray
crosses for the linear chain in Fig. 4). Thus, our findings are
compatible with the short-range Ising universality classes for
σ > 1 both in one and two dimensions.

IV. CONCLUSION

We study the LRTFIM on the linear chain and the square
lattice using SSE QMC, both for ferromagnetic and antifer-
romagnetic Ising interactions, to investigate static properties
of the zero-temperature quantum criticality. We extract the
critical fields hc and the critical exponents β and ν by means
of finite-size scaling. Above the upper critical dimension,
we use a conversion inspired by the recent Q-FSS approach

[37,41–43]. The obtained critical values hc match state-of-the
art series expansion values [21,39] and are consistent with
other available values in the literature [23,24,40,44]. For the
ferromagnetic LRTFIM, the calculated exponents β and ν

display the expected three regimes very well in both di-
mensions. There is a slight mismatch at the borders of
the intermediate regime, but besides these minor deviations
caused by multiplicative corrections to scaling at the upper-
critical dimension and probably the systematic limitations to
finite systems the main features of the critical properties are
captured well by the finite-size scaling analysis.

In the antiferromagnetic case increasing autocorrelation
times make it hard to simulate for small σ . This im-
pacts the linear chain more than the square lattice, as
lower temperatures are necessary to obtain effective zero-
temperature results due to the larger linear system sizes
simulations. For the two-dimensional square lattice we find
within error bars the same critical exponents throughout the
entire investigated σ > 1 range with systematic errors of
about 3–6% deviation to the nearest-neighbor critical val-
ues. As we find the same exponents in the known limit
σ → ∞, this makes us confident that the nearest-neighbor
criticality spans across the investigated range.

Regarding the antiferromagnetic LRTFIM, algorithmic de-
velopments in order to tackle the competing interactions will
become necessary. Overall, the interplay between geometrical
frustration and long-range interactions as for the LRTFIM on
the triangular lattice represents a major challenge and cer-
tainly deserves further attention in future research.
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APPENDIX: DATA COLLAPSE OF m2

In Figs. 5–11 we present the optimal data collapses of the
squared magnetization which were used to determine the crit-
ical properties presented in Figs. 3 and 4. The raw data of the
squared magnetization, as well as the Binder cumulants and
the extracted critical coupling and exponents, are available in
Ref. [73].
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FIG. 6. Data collapse of the squared magnetization curves for different system sizes on the linear chain with ferromagnetic coupling.
Around σ = 2 small systems were discarded in order to reduce rounding of the exponents at the border between the intermediate and the
nearest-neighbor Ising regime.
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FIG. 7. Data collapse of the squared magnetization curves for different system sizes on the linear chain with ferromagnetic coupling.
Around σ = 2 small systems were discarded in order to reduce rounding of the exponents at the border between the intermediate and the
nearest-neighbor Ising regime.
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FIG. 8. Data collapse of the squared magnetization curves for different system sizes on the square lattice with ferromagnetic coupling.
Small system sizes with L < 20 were discarded in order to reduce the effect of corrections to scaling.
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FIG. 9. Data collapse of the squared magnetization curves for different system sizes on the square lattice with ferromagnetic coupling and
on the linear chain with antiferromagnetic coupling. Regarding the simulations with ferromagnetic couplings on the square lattice small system
sizes with L < 20 were discarded in order to reduce the effect of corrections to scaling.

245135-14



QUANTUM-CRITICAL PROPERTIES OF THE LONG-RANGE … PHYSICAL REVIEW B 103, 245135 (2021)

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.9

1.0

1.1

1.2

1.3

1.4

collapsed with:
ν = 0.9012
β = 0.1160

hc = 0.75641

antiferromagnetic 1d, σ = 1.25

Lmin = 16
Lmax = 64

−1.0 −0.5 0.0 0.5

0.9

1.0

1.1

1.2

1.3

collapsed with:
ν = 0.9103
β = 0.1153

hc = 0.78925

antiferromagnetic 1d, σ = 1.5

Lmin = 16
Lmax = 64

−1.0 −0.5 0.0 0.5

1.0

1.1

1.2

1.3

collapsed with:
ν = 0.9218
β = 0.1202

hc = 0.84264

antiferromagnetic 1d, σ = 2.0

Lmin = 32
Lmax = 102

−1.0 −0.5 0.0 0.5

0.9

1.0

1.1

1.2

collapsed with:
ν = 0.9563
β = 0.1206

hc = 0.91396

antiferromagnetic 1d, σ = 3.0

Lmin = 50
Lmax = 160

−0.50 −0.25 0.00 0.25 0.50 0.75

0.90

0.95

1.00

1.05

1.10

1.15

1.20

collapsed with:
ν = 0.9914
β = 0.1229

hc = 0.98762

antiferromagnetic 1d, σ = 6.0

Lmin = 64
Lmax = 512

−0.4 −0.2 0.0 0.2 0.4 0.6

0.95

1.00

1.05

1.10

1.15

collapsed with:
ν = 0.9879
β = 0.1240

hc = 0.99842

antiferromagnetic 1d, σ = 9.0

Lmin = 128
Lmax = 512

FIG. 10. Data collapse of the squared magnetization curves for different system sizes on the linear chain with antiferromagnetic coupling.
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FIG. 11. Data collapse of the squared magnetization curves for different system sizes on the square lattice with antiferromagnetic coupling.
Here no further scheme of omitting small linear system sizes could be applied due to poor data quality. The overall spread of data points
increases for decreasing decay exponents σ . Nevertheless, the optimization procedure used to determine β, ν, and hc provides similar optimal
values for all investigated decay exponents α.
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