
PHYSICAL REVIEW B 103, 245134 (2021)

Anderson localization effects on the doped Hubbard model
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We derive the disorder vs doping phase diagram of the doped Hubbard model via dynamical mean-field
theory combined with typical medium theory, which allows the description of both Mott (correlation driven) and
Anderson (disorder driven) metal-insulator transitions. We observe a transition from a metal to an Anderson-Mott
insulator for increasing disorder strength at all interactions. In the weak correlation regime and rather small
doping, the Anderson-Mott insulator displays properties which are similar to the ones found at half filling. In
particular, this phase is characterized by the presence of empty sites. If we further increase either the doping or
the correlation, however, an Anderson-Mott phase of a different kind arises for sharply weaker disorder strength.
This phase occupies the largest part of the phase diagram in the strong-correlation regime and is characterized
by the absence of the empty sites.
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I. INTRODUCTION

Mott proposed that electronic correlations can drive a sys-
tem through a metal-insulator transition (MIT) [1]. Hubbard
showed that in a half-filled lattice this transition happens
when the local correlation contribution is larger than a critical
value [2]. Large correlations are present when a material has
a narrow valence band, in which case electrons spread less in
the lattice and thus interact more between themselves, favor-
ing the formation of a Mott insulator [3,4]. Transition metal
oxides are examples of materials in which this Mott physics
plays a key role [4–6].

In the opposite limit, i.e., noninteracting electrons, the
presence of disorder can also drive the systems into an insu-
lating phase—the Anderson insulator in this case [7,8]. Even
though there have been improvements in sample growing
techniques, effects of disorder are hardly avoidable. There-
fore, in doped Mott systems too, disorder plays a nontrivial
role, interplaying with doping and correlation. These effects
are hard to analyze from both experimental and theoretical
perspectives.

In experiments, correlation and disorder effects inter-
play, for example, in the MIT observed in doped semi-
conductors, such as Si:P and Si:B [9], and in dilute
two-dimensional electron and hole systems, like silicon metal-
oxide-semiconductor field-effect transistors and semiconduc-
tor heterostructures [10,11]. More recently, the observation of
a disorder-induced insulator to metal transition was reported
in Mott systems, such as layered dichalcogenide 1T -TaS2 [12]
and Ru-substituted Sr3Ir2O7 [13].

From the theoretical viewpoint, the interplay between cor-
relation and disorder can be well described by the Hubbard
model solved within extensions of dynamical mean-field the-
ory (DMFT) [14]. The DMFT description of disorder is

equivalent to that of the coherent potential approximation [15]
and, as such, misses describing Anderson localization
effects [7]. To circumvent this problem, a mean-field treat-
ment of disorder, the so-called typical medium theory (TMT),
has been proposed and proved capable of describing the
disorder-induced localization [16–18]. The combination of
TMT with DMFT has contributed to our understanding of the
nontrivial interplay between correlation and disorder localiza-
tion effects [19–26].

In previous works based on DMFT-TMT, an insulating
phase which is a mixture of Mott and Anderson insulators was
observed at half filling [20,27]. This Anderson-Mott insulator
is characterized by the presence of singly occupied sites, like
in a Mott insulator, but also has doubly occupied and empty
sites, like in an Anderson insulator. We shall hereby refer to
this Anderson-Mott insulator as AMI-0. Here, we extend these
works by investigating the doping-dependent phase diagram
of the disordered Hubbard model.

According to our results, in the weakly correlated regime
and for moderately low doping, disorder induces an AMI-
0 which is similar to the one found in the disorder-driven
Anderson-Mott transition at half filling. As the number of
carriers and/or the electronic correlation increases, however,
the empty sites become occupied, and an Anderson-Mott insu-
lator (AMI) different from the AMI-0 observed at half filling
arises. In the strongly correlated regime, the AMI emerges in
a large part of the disorder versus doping phase diagram at
much weaker disorder strengths than the AMI-0. This result
shows in particular that the doped strongly correlated metal is
more susceptible to Anderson-Mott-induced localization than
a weakly correlated metal.

This paper is organized as follows. In the next section we
define the model and describe the methodology used to solve
it. Section III is devoted to the presentation and discussion
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of the disorder versus doping phase diagrams built for dif-
ferent values of the electronic correlation. In Sec. III A, we
study the AMI-0 region of the phase diagrams, which displays
properties similar to the ones of the AMI-0 known at half
filling. In Sec. IV we explore in detail the results obtained in
the strong-correlation regime U/4t = 3 and characterize the
rising of a different disorder-driven AMI, which has no empty
sites. Finally, Sec. V contains a summary of our conclusions.

II. MODEL AND METHODOLOGY

We focus on the effects of doping the Anderson-Hubbard
model (AHM), which is given by the Hamiltonian

H = −t
∑
〈i j〉σ

(c†
iσ c jσ + c†

jσ ciσ )

+U
∑

i

ni↑ni↓ +
∑

iσ

(εi − μ)niσ , (1)

where c†
iσ (ciσ ) creates (destroys) an electron with spin σ on

site i, niσ = c†
iσ ciσ , t is the hopping amplitude for nearest-

neighbor sites, U is the on-site repulsion, and εi is the random
on-site energy, which follows a uniform probability distribu-
tion P(ε) centered on ε = 0 and of width W . μ is the chemical
potential, which sets the doping according to δ = 2〈niσ 〉av − 1
with respect to the parent compound (δ = 0), which is nom-
inally at half filling 〈niσ 〉av = 1/2; here, 〈· · · 〉av denotes an
arithmetic average over the disorder of the expectation value
of the occupation number operator. We fix here and through-
out the paper the noninteracting bandwidth 4t = 1 as the
energy unit. Temperature is set to T = 0.01. We consider the
paramagnetic solution of the model, observed experimentally,
for example, in V2O3 at high temperatures [28,29].

To be able to describe the correlated Mott transition, we
use DMFT [14]. In this methodology, a clean lattice problem
is mapped onto an auxiliary single-impurity problem, whose
conduction electron bath is determined self-consistently. In
the disordered case, the mapping is onto an ensemble of
impurity problems, each corresponding to a different value of
the parameter that is randomly distributed [on-site energy εi

in Eq. (1)]. DMFT self-consistency involves taking an (arith-
metic) average over this ensemble. However, average values
do not describe well the asymmetric distributions generated
by strong disorder [7]. As a drawback, DMFT is not able
to capture the Anderson transition. By considering the most
probable or typical value over the ensemble, instead of the
average one, TMT treatment of disorder has been proved
capable of describing Anderson localization [16,17]. Here, we
use the combination of DMFT and TMT to solve the AHM
[Eq. (1)] and describe the interplay between correlation and
disorder-induced localization.

Within DMFT-TMT, all the impurities of the ensemble
“see” a typical effective medium, which is self-consistently
calculated, as follows. We start by considering an initial func-
tion �(ω) that describes this effective medium. By solving the
ensemble of single-impurity problems in the presence of this
bath, we obtain the self-energies �i(ω) and the local Green’s
functions

G(ω, εi ) = [ω + μ − εi − �(ω) − �i(ω)]−1, (2)

from which local spectra ρ(ω, εi ) = − 1
π

ImG(ω, εi ) are cal-
culated. In each DMFT-TMT iteration, an effective medium is
calculated: this is given by the typical or most probable value
of local impurity spectrum, estimated by taking a geometric
average over the different impurity problems. Precisely, the
typical density of states (DOS) is obtained by the geometric
average of ρ(ω, ε),

ρtyp(ω) = exp

[∫
dεP(ε)lnρ(ω, ε)

]
. (3)

The typical Green’s function is then calculated through a
Hilbert transform,

Gtyp(ω) =
∫ ∞

−∞
dω′ ρtyp(ω′)

ω − ω′ . (4)

As reference case, we consider the Bethe lattice with an infi-
nite coordination number, which corresponds to a semicircular
DOS in the noninteracting limit [14]. In this particular case,
we close the self-consistent loop by obtaining the new bath
function �(ω) = t2Gtyp(ω).

The typical DOS ρtyp(ω) takes into account only extended
states of the system. It is thus critical at the disorder-induced
transition, as the system states become localized and ρtyp(ω)
is then expected to go to zero. The (arithmetic) average
DOS, which is, for instance, directly detected in spectroscopic
experiments, can also be calculated from the DOS of the
single-impurity problems as follows:

ρav(ω) =
∫

dεP(ε)ρ(ω, ε). (5)

It considers both extended and localized states of the sys-
tem [20] and remains finite at disorder-induced MIT. This
quantity, however, goes to zero around the Fermi level by in-
creasing correlation. This signals the correlation-driven Mott
MIT [14].

Since the DMFT-TMT self-consistent condition is based
on the DOS, it is advantageous to solve the single-impurity
problems on the real axis to avoid an analytic continuation
procedure. Here, we solve these auxiliary problems by us-
ing perturbation theory in U [30,31]. Though this method
is an approximate solution of the impurity problems which
has some well-known drawbacks (e.g., it misses the value
of the Kondo temperature), it provides the correct descrip-
tion of the correlated metal to insulator transition, which is
the goal of this study. Away from half filling, the modified
second-order perturbative contribution in U is given by an
expression that interpolates between the known results at high
frequencies and at the atomic limit [30,31]. Comparisons of
this approximation with exact diagonalization [31] and quan-
tum Monte Carlo [32] results give us confidence in it. Besides
directly providing the spectra, this method has the crucial
advantage of being numerically fast enough to allow us to
build the phase diagram of disordered problems. For each
set of the model parameters, we typically solve hundreds of
single-impurity problems in each DMFT-TMT iterative step.
The single-impurity code used in this work was developed
by Vučičević and Tanasković from the Institute of Physics in
Belgrade, Serbia, and was previously used by one of us in
Ref. [22].

245134-2



ANDERSON LOCALIZATION EFFECTS ON THE DOPED … PHYSICAL REVIEW B 103, 245134 (2021)

0.0 0.2 0.4 0.6 0.8 1.0
δ

0

1

2

3

4

5

W

0.0 0.2 0.4 0.6 0.8 1.0
δ

0

1

2

3

4

5

W

0.0 0.2 0.4 0.6 0.8 1.0
δ

0

1

2

3

4

5

W

AMI

AMI-0

band AMI

MetalMI ←

U = 3

←

←
−

band I

AI

←

AMI-0

Metal

band

U = 1

AMI

AI

band I

←

←

AMI

AMI-0

AMI

band AMI

MetalMI

U = 2

←

←
−

←

AI

band I

←

FIG. 1. Disorder W versus doping δ phase diagram of the doped Anderson-Hubbard model obtained within DMFT-TMT for U = 1, U = 2,
and U = 3 at T = 0.01. “A” stands for Anderson, “M” stands for Mott, and “I” stands for insulator. Inside the Anderson-Mott insulator phase,
we have a region where empty sites are present in the system, identified as AMI-0, and another region where empty sites are absent, referred
to as AMI. A third region inside the Anderson-Mott insulator is that of a band AMI. See the text for a complete description of the different
phases and regions.

When entering into the AMI and AMI-0 regions of the
phase diagram, ρtyp(ω) goes to zero, i.e., �(ω) → 0, which
means that, effectively, the Green’s function in Eq. (2) reduces
to the atomic limit one [33]:

Gdσ (ω) = 1 − 〈ni−σ 〉
ω − εd

+ 〈ni−σ 〉
ω − εd − U

, (6)

where εd = εi − μ is the impurity local energy [see Eq. (1)]
and 〈niσ 〉 depends on the Fermi-Dirac distribution:

〈niσ 〉 = 1/2

1 + e(εd +U )/T
+ 1/2

1 + eεd /T
. (7)

〈niσ 〉 can describe singly occupied sites (typical of a Mott
insulator) as well as doubly occupied and empty sites (typi-
cal of an Anderson insulator); these are the occupations that
can appear in the AMI and AMI-0 regions, according to the
system parameters (U , W , δ), as we mentioned in the Intro-
duction. We shall plug the explicit analytical expressions (6)
and (7) into Eq. (5) to calculate directly ρav(ω) in the AMI and
AMI-0 regions. This prevents eventual spurious oscillations
that could appear from the discrete finite number of impurities
considered and can spoil the correct interpretation of ρav(ω),
especially close to the Fermi level. In the next sections, we
shall analyze both quantities, ρtyp(ω) and ρav(ω), and charac-
terize the phases appearing in the AHM phase diagram.

III. DISORDER VERSUS DOPING PHASE DIAGRAMS

In Fig. 1, we present the disorder W vs doping δ phase dia-
gram of the doped AHM obtained for three different values of
correlation: weak correlation U = 1, intermediate correlation
U = 2, and strong correlation U = 3.

For rather small disorder (W < 3), at half filling the three
cases analyzed in Fig. 1 are different [22]: for U = 1 the
system is in a metallic phase, for U = 3 it is in a Mott in-
sulating phase (represented by the orange line at δ = 0 in the
phase diagram), and U = 2 is an intermediate case since it
is a Mott insulator for small disorder (orange line in Fig. 1)
and a metal for intermediate W . It is well known that in the
correlated case, upon doping the Mott insulator, states appear
at the Fermi level [14]. Thus, for all three values of U in Fig. 1

we observe a correlated metallic phase for a large range of
doping and small disorder.

As disorder increases, a transition to the Anderson-Mott
insulator takes place in the three cases at a critical disorder Wc.
For U = 1 and U = 3 at small and intermediate values of dop-
ing, Wc is practically doping independent. We remark that Wc

is smaller for U = 3 than for U = 1, and in particular for the
former case Wc is smaller than Wc 	 U , the critical disorder
value separating the correlated Mott insulator from the AMI-0
at half filling (end of the orange line in the phase diagram). If
we now look at the results for U = 2, the (red) Wc line shows
a dependence on doping: it is close to the half-filling value
at small doping, and by increasing δ, it decreases towards
the same value observed for U = 3 (compare Wc for U = 2
and U = 3 at δ ≈ 0.7). Wc vs δ for U = 2 thus interpolates
between what is observed for U = 1 and U = 3.

The comparison between the weakly (U = 1) and strongly
(U = 3) correlated phase diagrams described above seems
then to suggest that the metal that appears upon doping the
Mott insulator is more susceptible to disorder-induced local-
ization than the metal which sets at small U . At larger U ,
correlations strongly reduce the quasiparticle bandwidth at
the Fermi level (by a factor of Z , the quasiparticle residue)
by transferring spectral weight from low to high energies.
This forms the well-known Mott-peak-Hubbard-band elec-
tronic structure [14]. In this region of the phase diagram,
the narrow peak indicates that quasiparticles are less itinerant
and therefore more easily localized by disorder. A critical Wc,
smaller than that in the weak-correlation region, is sufficient
to localize quasiparticles. Indeed, if we compare the typical
DOSs for the different values of U at W = 1.5, shown in
Fig. 2, we observe that ρtyp(ω) decreases as U increases. The
transition occurs when ρtyp(ω) vanishes since that indicates
that extended states of the system fully localize (we will
discuss this in more detail in Sec. IV A). This fact lead us to
conclude that the system with U = 3 is closer to the Anderson
MIT than the one with U = 1.

The comparison between U = 1 and U = 3 results indi-
cates that the metal-Anderson-Mott-insulator transition in the
weak-correlation regime, where the AMI-0 arises (see the next
section for details), and the transition in the strong-correlation
regime, where the AMI arises, are sharply different. The AMI,
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FIG. 2. Comparison of the typical DOS as a function of fre-
quency for U = 1, U = 2, and U = 3 at a disorder value chosen such
that the systems are in the metallic phase, (a) δ = 0.2 and (b) δ = 0.4.
Although disorder is W = 1.5 in all cases, as U increases, the system
is closer to the MIT.

in fact, is the by-product of the interplay of disorder with
correlation and doping, which suppress empty sites. We shall
discuss this in more detail in Sec. IV. For even larger U ,
the properties of the system are similar to the ones at U = 3
when we consider the same doping and disorder values (see
Appendix A for details).

Moving now to large doping, a region that we identify
as a band AMI appears for each U value. In this case (see
Sec. IV A for further details), while electronic states are al-
ways present at the Fermi level [ρav(ω = 0) �= 0], the typical
DOS that describes the extended states shifts to negative fre-
quency and acquires a zero value at the Fermi level, ρtyp(ω =
0) = 0, like the DOS of a band insulator typically does.

By further increasing disorder W , in the strong-correlation
regime and for small doping, the system crosses over from the
AMI to the AMI-0, where empty sites are present. This AMI-
0 appears at all values of the interaction U (as displayed in
Fig. 1) at an Anderson-Mott-like MIT in the weak-correlation
regime (U = 1) and as a crossover within the Anderson-Mott
insulating phase in the strong-correlation regime (U = 3). We
discuss the properties of this region in detail in the following
section.

A. The AMI-0 region

We explore in this section how the AMI-0 arises within the
Anderson-Mott insulating phase in the large disorder region
of the U = 3 phase diagram in Fig. 1. This phase is the same
kind of insulator that arises at the Anderson-Mott localization
at half filling (see the results for W = 3.5 in Appendix B), as
we shall show by displaying the spectral function.

In Fig. 3 we show ρav(ω) as a function of frequency for
δ = 0.2 and W = 4, just above the crossover into the AMI-0
region (when coming from smaller values of W for fixed δ).

-4 -2 0 2 4
ω

0.0

0.5

1.0

ρ av
(ω

)

-1 0 1
ε

i

0.0

0.5

<
n

iσ
>

W=4.0

FIG. 3. Average DOS ρav(ω) as a function of frequency for W =
4 and δ = 0.2, that is, for parameters inside the AMI-0 region of the
phase diagram. Inset: occupation number per site and per spin as a
function of the on-site energy. U = 3 and T = 0.01.

The average DOS follows the bare distribution of εi, and it is
simply given, in the low-temperature limit and for W > U , by
the superposition of two rectangles. In this regime in fact, the
DMFT-TMT theory reduces to the superposition of isolated
impurities, as we explained in Sec. II [see Eqs. (5)–(7)], and
an analytical expression can be derived.

The occupation per site and per spin as a function of on-
site energy corresponding to the DOS in Fig. 3 is shown in
the inset. Note that empty sites start to appear in addition
to those which are doubly and singly occupied. We have
analyzed other values of δ for U = 3, as well as results for
U = 1 and U = 2, and concluded that the AMI-0 arises for all
U , as presented in Fig. 1, arising directly from the metal for
small U .

We shall now analyze how the AMI-0 region depends on
doping δ and interaction U . As doping increases, carriers are
added to the system, and more sites become doubly occupied
in comparison with a smaller δ, as can be seen in Fig. 4(a). As
a consequence, more disorder has to be added to the system
[compare the results for W = 4.0 and W = 4.75 in Fig. 4(a)
for δ = 0.3] to empty some sites. The AMI-0 thus appears for
larger values of disorder when the doping δ increases, as we
observe in the phase diagrams of Fig. 1.

We now show in Fig. 4(b) the occupation per site and per
spin for W = 4, δ = 0.4, and the different values of U . Since
single occupation is a characteristic of Mott insulators, the
plateau at 〈niσ 〉 = 0.5 becomes larger as U increases. For the
values of W and δ considered in Fig. 4(b), the empty sites
present for U = 1 and U = 2 become occupied as we move to
U = 3. Thus, empty sites “disappear” with either the increase
of doping or correlations, and for large U , most of the disorder
versus doping phase diagram corresponds to an AMI without
empty sites, as we describe in detail in the following section.

IV. AMI PHASE RESULTS FOR U = 3.0

We shall now study the AMI without empty sites that
appears by increasing interaction U , sandwiched between the
AMI-0 and the metallic phase in a large part of the phase dia-
gram. To this purpose, we consider the U = 3 case [Fig. 1(c)]
and study the Anderson-Mott transition from the disordered
metal by increasing the disorder strength W and various
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0.01. (b) Site occupation per spin as a function of the on-site energy
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dopings δ. We analyze in particular the behavior of typical
and average DOSs.

A. Metal-insulator transitions

The DMFT-TMT results for ρtyp(ω) and ρav(ω) are shown,
respectively, in Figs. 5(a) and 5(b) for fixed δ = 0.2 and
different values of disorder W . Since we have small doping,
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FIG. 5. (a) Typical and (b) average DOSs as a function of fre-
quency for different values of disorder W and fixed doping δ = 0.2.
U = 3, and T = 0.01.
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FIG. 6. Typical DOS at the Fermi level as a function of disorder
for different values of doping. Results for δ = 0.2 correspond to
ρtyp(ω) in Fig. 5(a). U = 3, and T = 0.01.

the typical DOS presents a structure of three peaks: two Hub-
bard bands separated by an energy of the order of U and a
quasiparticlelike peak at the Fermi level ω = 0, as previously
reported in the clean case [30]. According to our results, it
holds for small disorder as well, characterizing the system as
a correlated metal in this region of parameters.

As disorder W increases, Anderson localization starts to
play a role: its effects can be seen by comparing the results
for ρtyp(ω) [Fig. 5(a)] and ρav(ω) [Fig. 5(b)] since the former
takes into account only extended states, while the latter in-
cludes both extended and localized states of the system. As
W increases, states at the band edges localize [15], and we
observe that the bands in the typical DOS become smaller.
For even more disordered systems, ρtyp(ω) vanishes on the
whole frequency axis, signalizing that the system has gone
through a disorder-driven MIT. We notice that disorder acts
differently on different energy scales. In ρtyp(ω) Hubbard-like
bands around larger values of energy shrink faster than the
quasiparticle-like one close to the Fermi level. Notice that
ρav(ω) remains instead finite at the Anderson-Mott transition.
The general effect of disorder appears to be a spreading in
energy of the spectral weight, both in the Hubbard bands and
at the low-energy quasiparticle peak. This spreading is not
symmetrical like at half filling (see the results in Appendix B)
because of the combined effect of disorder and doping.

To determine the critical disorder Wc at which the MIT
takes place, it is easier to track the typical DOS at the Fermi
level as a function of disorder, as we display in Fig. 6 for
different values of doping. This quantity plays the role of
an order parameter for the disorder-induced MIT since it is
different from zero in the metallic region (W < Wc) and is
zero in the Anderson-Mott insulator (W > Wc). Based on the
behavior of ρtyp(ω = 0) as a function of disorder, we have
determined the transition line between the metallic and AMI
phases shown in Fig. 1 (red line with dots). Notice that for
δ = 0.2 the maximum of ρtyp(ω) is close to ω = 0 but not
exactly at ω = 0 (in accordance with the results of Ref. [30]);
this observation explains why ρtyp(ω = 0) ≈ 0.5 for the clean
system in Fig. 6, instead of the maximum value of ≈ 1 for
ρtyp(ω) seen in Fig. 5(a).

A key observation is that there exists only a small de-
pendence of Wc on doping δ. As mentioned in Sec. III and
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FIG. 7. (a) Typical DOS as a function of energy for different
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−∞ ρtyp(ω)dω as a function of disorder
corresponding to the results in (a). U = 3, and T = 0.01.

observed in Fig. 5(a), the transition to the AMI takes place
when all extended states of the system localize. For fixed
U = 3 (look now at Fig. 2), the range in energy where ρtyp(ω)
extends is roughly doping independent. If doping increases,
we observe mainly a transfer of spectral weight from above
the Fermi level to energies below it. This result might justify
the fact that Wc is practically constant for small to moderate
δ. A similar behavior is observed for U = 1, but not in the
intermediate case of U = 2, as we discussed in Sec. III.

More interesting is the fact that Wc for the doped case is
smaller than U , which is the critical disorder at which the
transition from the Mott insulator to AMI-0 is seen at half
filling (end of the orange line in Fig. 1). This means that the
doped Mott insulator is more susceptible to disorder-induced
localization, as we already mentioned in Sec. III. By introduc-
ing carriers into the system, in fact, a narrow band rises within
the gap, as seen in our results in Fig. 5(a). By adding disorder
to the doped system, this narrow band localizes at a disorder
strength which is smaller than the one required to Anderson
localize the Mott insulator, which requires that the wide Mott
gap is filled due to disorder effects. (For details on how the
transition is approached at half filling see Appendix B.) As
mentioned in the previous section, a similar behavior is not
observed for U = 1 and U = 2, probably because for these
values of U the system is in a metallic state at half filling
and the wide Mott gap is replaced by a wide band of itinerant
states around the Fermi level that can Anderson localize only
at higher disorder strengths.

For large doping (0.75 < δ < 1.0), we observe a region
within the Anderson-Mott insulator that, with abuse of lan-
guage, we identify as a band AMI. Starting with the clean
system, ρtyp(ω) shrinks as disorder increases, similar to

-4 -2 0 2 4
ω

0.0

0.5

ρ av
(ω

)

-1 0 1
ε

i

0.0

0.5

<
n

iσ
>

0.0

0.5

1.0

ρ av
(ω

)

-1 0 1
ε

i

0.0

0.5

<
n

iσ
>

(a) W=2.5

(b) W=3.25

FIG. 8. Average DOS as a function of energy for U = 3 and
(a) W = 2.50 and (b) W = 3.25. The insets show the occupation
number per site and per spin as a function of the on-site energy for
the same parameters of the results in the main panels. δ = 0.2 and
T = 0.01.

what happens for small doping. However, for large dop-
ing, ρtyp(ω = 0) becomes zero for a value of disorder (Wc)
smaller than that at which the whole band vanishes (Wc2).
This means that, different from the low-doping case where
the whole ρtyp(ω) vanishes, for Wc < W < Wc2 the system
still has a band of extended states, which is located below the
Fermi energy. This behavior is exemplified in Fig. 7 for the
case of δ = 0.9: Fig. 7(a) shows ρtyp(ω) for different values
of disorder, while Fig. 7(b) presents both ρtyp(ω = 0) and
ζ = ∫ ∞

−∞ ρtyp(ω)dω as a function of W . As we can see, for
this value of doping, the system enters the insulating phase
[ρtyp(ω = 0) = 0] at Wc ≈ 1.1, while all states are localized
(ζ = 0) only at Wc2 ≈ 1.75. This behavior of ρtyp(ω = 0) at
Wc is reminiscent of that of a band insulator, although the
total spectral intensity ρav(ω = 0) remains in all cases finite at
the Fermi level. Note that Wc2 approximately coincides with
the disorder at which the system enters the AMI region for
δ < 0.6, as expected if the vanishing of ζ mainly depends on
the U value.

B. Character of the Anderson-Mott insulator

We want now to characterize the physical properties of the
AMI region. To this purpose, we shall focus on the (arith-
metic) average DOS ρav(ω) [defined in Eq. (5)], which can
be directly connected to spectroscopic experiments. Figure 8
shows two examples of ρav(ω) for δ = 0.2 and U = 3: one for
which the disorder W < U [Fig. 8(a)] and another for which
W > U [Fig. 8(b)]. In both cases the system is in the AMI
region, where all states are localized. Since the typical DOS
is zero, meaning that there is no bath for the impurities to
hybridize, within our TMT approximation impurity sites are
effectively in the atomic limit, and the DOS can be calculated
with Eqs. (5)–(7) described in Sec. II. In this case, in the
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absence of disorder εi the DOS of a single-impurity problem
presents two Dirac δ peaks, one at ω = −U/2 and another
at ω = U/2. As disorder εi is added, these peaks spread in
energy following the flat uniform distribution of the disorder.
If disorder is large enough, these rectangles overlap at small
frequencies, giving rise to the form of the average DOS seen
in Fig. 8.

By looking at the results in Fig. 8(a), for W < U , we
observe that there is a well-defined gap at negative energies
in ρav(ω). This profile for the DOS reminds us of that of
the slightly doped Mott insulator. In the case of W > U
[Fig. 8(b)], on the contrary, a gap is not seen in ρav(ω)
anymore. This reminds us of an Anderson insulator. In the
insets, we show the corresponding occupation 〈niσ 〉 per site
and per spin as a function of the on-site energy εi. In both
cases [27], there are sites that are doubly occupied (〈niσ 〉 = 1),
as in an Anderson insulator, and sites that are singly occupied
(〈niσ 〉 = 0.5), as in a Mott insulator (but no empty site as in
the AMI-0 region). Since the two systems have characteristics
of Anderson and Mott insulators, we identify both cases as
AMI in the phase diagram of Fig. 1. However, we are tempted
to say that in the case of Fig. 8(a) the role played by the Mott
mechanism of localization is stronger than that of Anderson
effects. Indeed, the correlation U is larger than disorder W ,
and a gap is observed in the average DOS. On the other
hand, the Anderson mechanism may dominate over the Mott
one in the case where disorder is larger than correlations
[Fig. 8(b)]. In the phase diagram, the first case is observed
whenever Wc < W < U = 3, while the second corresponds to
W > U = 3. Similar behavior occurs for U = 2 and δ > 0.5,
for which there is a region where Wc < U .

We recall that at half filling (δ = 0) the Mott-dominated
region for W < Wc ≈ U presents only singly 〈niσ 〉 = 0.5
occupied sites, with double occupation 〈niσ 〉 = 1 being ab-
sent [20]. On the other hand, for W > U , there exist doubly
and singly occupied sites, as well as empty ones, and the
average DOS has no gap. The presence of this third kind of
site—the empty ones—gives rise to the AMI-0 region, as we
described in Sec. III A.

In the next section, we discuss how the doped system
crosses over from the AMI region to the AMI-0 one.

C. Crossover to the AMI-0 region

Finally, it is useful to see the behavior of the chemical
potential μ as a function of disorder for fixed doping, shown in
Fig. 9, again for U = 3. In the metallic phase (for small values
of W ), the μ vs W curve is markedly horizontal. By entering
the AMI, above W ≈ 1.75, the μ vs W follows closely a linear
law μ = (δ − 0.5)W + U . By further increasing disorder, the
μ vs W curve displays once again a sharp change in slope
when entering the AMI-0 that presents empty sites. For δ

values in this AMI-0 region, μ always increases with W .
The linear μ vs W behavior in the AMI region allows us to

establish an equation determining the disorder dependence of
the line separating the AMI-0 and AMI regions. We take ad-
vantage again of the fact that within the DMFT-TMT method
in the AMI region each impurity site is in the atomic limit
(as described in Sec. II). In this case, the site is empty if its
on-site energy εd = εi − μ > 0 [Eq. (6)]. The value of the
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FIG. 9. Chemical potential μ obtained to keep the values of δ

fixed as a function of disorder strength. Straight lines correspond to
fittings of the numerical results in the range where a linear behavior
is observed; note that the lines meet at the point μ = U = 3. U = 3,
and T = 0.01.

disorder where the first empty site forms must coincide with
the highest possible value of on-site energy εi = W/2, i.e.,
W/2 = μ. Plugging this value of μ into the μ vs W linear
relation, which holds up to the crossover to the AMI-0 region,
we obtain

W = U

1 − δ
. (8)

Equation (8), which we display in Fig. 1 as a dashed gray
line, well describes the crossover between the AMI and AMI-
0 regions that we establish numerically (brown diamonds in
Fig. 1).

V. CONCLUSION

In this work, we solved the Anderson-Hubbard model in
the doped case by using a combination of dynamical mean-
field theory and typical medium theory. The former describes
the Mott transition, while the latter takes into account Ander-
son localization effects. We built the disorder versus doping
phase diagram for three values of U : U = 1, U = 2, and
U = 3, in units of the clean, noninteracting bandwidth. For
any interaction, there is a region of the phase diagram where
we observe an Anderson-Mott insulator similar to the one that
exists at half filling, with the presence of empty sites in the
system (AMI-0). As doping (and thus the number of carriers in
the system) increases, the empty sites that exist at small dop-
ing become occupied, giving rise to a different Anderson-Mott
insulator. When the electronic interaction becomes stronger,
the AMI wedges between the metallic phase and the AMI-0,
occupying a large part of the phase diagram in the strongly
correlated regime for U = 3. This is a consequence of the fact
that the disorder-driven MIT takes place for a much smaller
disorder strength in the doped, strongly correlated regime than
in the weakly correlated regime or at half filling. An interme-
diate behavior should appear in the intermediate-correlation
regime, with the critical disorder Wc monotonically decreasing
with doping, as portrayed in the phase diagram (Fig. 1) for
U = 2.

Upon doping, the properties of the system are therefore
strongly determined by the combined effect of disorder, inter-
action, and doping to form an insulator presenting at the same
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FIG. 10. Results for large values of the interaction, U = 3, U =
4, and U = 5. (a) Average DOS as a function of frequency when
W = 1.75. (b) Typical DOS at the Fermi level as a function of W ,
showing that the order parameter goes to zero for the same value of
Wc (for U � 3). δ = 0.6, and T = 0.01.

time the Anderson and Mott-Hubbard features. The evolution
of the phase diagram as a function of disorder and doping,
which we presented in this work from the weak to strongly
correlated regimes, should determine the universal properties
of the disorder-driven MIT.
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APPENDIX A: SPECTRA AND METAL-INSULATOR
TRANSITION AT STRONG U > 3

We shall show here that the results for the MIT that we
established for the U = 3 case are qualitatively similar for
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FIG. 11. (a) Typical and (b) average DOSs as a function of en-
ergy for different values of disorder W at half filling. U = 3, and
T = 0.01.

larger interaction U . Interaction has the effect of changing the
position of the DOS bands. In the presence of doping, only
the low-energy band moves proportionally to the U value.
A quasiparticlelike band remains around the Fermi level; its
position does not change by increasing U to keep the doping
δ fixed. In Fig. 10(a), where we display the average DOS
ρav(ω), we can see an example of this behavior: increasing the
interaction does not change the Fermi level band. This causes
the value of Wc not to change, as can be seen in Fig. 10(b).
This phenomenon occurs only when the bands are far apart
(in the Mott regime W < U of the doped AHM).

APPENDIX B: RESULTS FOR U = 3 AT HALF FILLING

The evolution of the typical and average DOSs as disorder
increases for the case of U = 3 and no doping is presented
in Fig. 11. The clean system has a Mott gap, which starts to
become filled with localized states as disorder increases. The
gap eventually closes, and the system becomes an Anderson-
Mott insulator, as illustrated in Fig. 11 for W = 3.5. At half
filling, the Anderson-Mott insulator always presents empty
sites and thus corresponds to the AMI-0 defined in the main
text. This behavior is different from the one presented in
Fig. 5 for the doped case, where the clean system is a
metal.

[1] N. F. Mott, Metal-Insulator Transitions (Taylor and Francis,
London, 1974).

[2] J. Hubbard, Proc. R. Soc. London, Ser. A 281, 401 (1964).

[3] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[4] E. Dagotto, Science 309, 257 (2005).

245134-8

https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1126/science.1107559


ANDERSON LOCALIZATION EFFECTS ON THE DOPED … PHYSICAL REVIEW B 103, 245134 (2021)

[5] D. McWhan, A. Menth, J. Remeika, W. F. Brinkman, and T.
Rice, Phys. Rev. B 7, 1920 (1973).

[6] P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Metcalf, and
J. Honig, Science 302, 89 (2003).

[7] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[8] P. A. Lee and T. Ramakrishnan, Rev. Mod. Phys. 57, 287

(1985).
[9] E. Miranda and V. Dobrosavljević, Rep. Prog. Phys. 68, 2337
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