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Probing charge density wave phases and the Mott transition in 1T -TaS2 by inelastic light scattering
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We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge
density wave (CDW) regimes in 1T -TaS2 single crystals, supported by ab initio calculations. Our analysis of
the spectra within the low-temperature commensurate (C-CDW) regime shows P3̄ symmetry of the system,
thus excluding the previously proposed triclinic stacking of the “star-of-David” structure, and promoting
trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase
directly project the phonon density of states due to the breaking of the translational invariance, supplemented
by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from
both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate
(NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the
stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW
phase. We determine the size of the Mott gap to be �gap ≈ 170–190 meV, and track its temperature dependence.
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I. INTRODUCTION

Quasi-two-dimensional transition metal dichalcogenides
(TMDs), such as the various structures of TaSe2 and TaS2,
have been in the focus of various scientific investigations over
the last 30 years, mostly due to the plethora of charge density
wave (CDW) phases [1,2]. Among all TMD compounds 1T -
TaS2 stands out because of its unique and rich electronic phase
diagram [3–6]. It experiences phase transitions at relatively
high temperatures, making it easily accessible for investi-
gation and, mainly for the hysteresis effects, attractive for
potential applications such as data storage [7], information
processing [8], or voltage-controlled oscillators [9].

The cascade of phase transitions as a function of temper-
ature includes the transition from the normal metallic to the
incommensurate CDW (IC-CDW) phase, the nearly commen-
surate CDW (NC-CDW) phase, and the commensurate CDW
(C-CDW) phase occurring at around TIC = 554 K, TNC =
355 K, and in the temperature range from TC↓ = 180 K to
TC↑ = 230 K, respectively. Recent studies indicate the possi-
bility of yet another phase transition in 1T -TaS2 at TH = 80 K,
named the hidden CDW state [10–12]. This discovery led to a
new boost in attention for 1T -TaS2.

Upon lowering the temperature to TIC = 554 K, the normal
metallic state structure, described by the space group P3̄m1
(Dd

3d ) [13], transforms into the IC-CDW state. As will be
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demonstrated here, the IC-CDW domains shrink upon further
temperature reduction until they gradually disappear, giving
place to the C-CDW ordered state. This region in the phase
diagram between 554 and roughly 200 K is characterized by
the coexistence of the IC-CDW and C-CDW phases and is
often referred to as NC-CDW. At the transition temperature
TC , IC-CDW domains completely vanish [14] and a new lat-
tice symmetry is established. There is a general consensus
about the formation of “star-of-David” clusters with in-plane√

13a × √
13a lattice reconstruction, whereby 12 Ta atoms

are grouped around the 13th Ta atom [15,16]. In the absence of
any external strain fields, this can be achieved in two equiva-
lent ways (by either clockwise or counterclockwise rotations)
thus yielding domains [17]. Despite extensive investigations,
both experimental and theoretical, it remains an open ques-
tion whether the stacking of star-of-David clusters is triclinic,
trigonal, hexagonal, or a combination thereof [15,16,18–20].
The C-CDW phase is believed to be an insulator [3,21–23]
with a gap of around 100 meV [13]. Very recent theoretical
studies based on density-functional theory (DFT) find an ad-
ditional ordering pattern along the crystallographic c axis. The
related gap has a width of approximately 0.5 eV along kz and
becomes gapped at the Fermi energy EF in the C-CDW phase
[24,25].

Nearly all of the previously reported results for opti-
cal phonons in 1T -TaS2 are based on Raman spectroscopy
on the C-CDW phase and on temperature-dependent mea-
surements in a narrow range around the NC-CDW to
C-CDW phase transition [13,15,18–20]. In this paper we
present temperature-dependent polarization-resolved Raman
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measurements in the temperature range from 4 to 370 K
covering all three CDW regimes of 1T -TaS2. Our analysis
of the C-CDW phase confirms the symmetry to be P3̄, while
the NC-CDW phase is confirmed as a mixed regime of com-
mensurate and incommensurate domains. The Raman spectra
of the IC-CDW phase mainly project the phonon density of
states due to the breaking of translation invariance and sizable
electron-phonon coupling. The growth of the CDW gap upon
cooling, followed by the opening of the Mott gap, is traced via
the initial slope of the symmetry-resolved spectra. The size of
170–190 meV and the temperature dependence of the Mott
gap are directly determined from high-energy Raman data.

II. EXPERIMENTAL AND NUMERICAL METHODS

The preparation of the studied 1T -TaS2 single crystals
is described elsewhere [26–29]. Calibrated customized Ra-
man scattering equipment was used to obtain the spectra.
Temperature-dependent measurements were performed with
the sample attached to the cold finger of a He-flow cryostat.
The sample was cooled down to the lowest temperature and
then heated. In either case the rates were less than ±1 K/min.
All measurements were performed in a high vacuum of ap-
proximately 5 × 10−5 Pa.

The 575-nm laser line of a diode-pumped Coherent GEN-
ESIS MX-SLM solid state laser was used as an excitation
source. Additional measurements with the 458- and 514-nm
laser lines were performed with a Coherent Innova 304C
argon ion laser. The absorbed power was set at 4 mW. All
spectra shown are corrected for the sensitivity of the instru-
ment and the Bose factor, yielding the imaginary part of
the Raman susceptibility Rχ ′′, where R is an experimental
constant. An angle of incidence of �i = 66.0 ± 0.4◦ and
atomically flat cleaved surfaces enable us to measure at ener-
gies as low as 5 cm−1 without a detectable contribution from
the laser line since the directly reflected light does not reach
the spectrometer. The corresponding laser spot has an area of
roughly 50 × 100 μm2 which prevents us from observing the
possible emergence of the domains [17,30]. The inelastically
scattered light is collected along the surface normal (crystal-
lographic c axis) with an objective lens having a numerical
aperture of 0.25. In the experiments presented here, the linear
polarizations of the incident and scattered light are denoted as
ei and es, respectively. For ei horizontal to the plane of inci-
dence there is no projection on the crystallographic c axis. For
the low numerical aperture of the collection optics es is always
perpendicular to the c axis. Low-energy data up to 550 cm−1

were acquired in steps of �� = 1 cm−1 with a resolution
of σ ≈ 3 cm−1. The symmetric phonon lines were modeled
using Voigt profiles where the width of the Gaussian part is
given by σ . For spectra up to higher energies the step width
and resolution were set at �� = 50 cm−1 and σ ≈ 20 cm−1,
respectively. The Raman tensors for the D3d point group are
given in Table I. Accordingly, parallel linear polarizations
project both A1g and Eg symmetries, while crossed linear
polarizations only project Eg. The pure A1g response then can
be extracted by subtraction.

We have performed DFT calculations as implemented in
the ABINIT package [31]. We have used the Perdew-Burke-
Ernzerhof (PBE) functional, an energy cutoff of 50 Ha for the

TABLE I. Raman tensors for trigonal systems (point group D3d ).

A1g =
⎛
⎝a 0 0

0 a 0
0 0 b

⎞
⎠ 1Eg =

⎛
⎝c 0 0

0 −c d
0 d 0

⎞
⎠ 2Eg =

⎛
⎝ 0 −c −d

−c 0 0
−d 0 0

⎞
⎠

plane-wave basis, and we have included spin-orbit coupling
by means of fully relativistic Goedecker pseudopotentials
[32,33], where Ta-5d36s2 and S-3s23p4 states are treated as
valence electrons. The crystal structure was relaxed so that
forces on each atom were below 10 μeV/Å and the total
stress on the unit cell below 1 bar, yielding lattice parame-
ters a = 3.44 Å and c = 6.83 Å. Subsequently, the phonons
and the electron-phonon coupling (EPC) were obtained from
density-functional perturbation theory (DFPT) calculations,
also within ABINIT [34]. Here, we have used an 18 × 18 × 12
k-point grid for the electron wave vectors and a 6 × 6 × 4
q-point grid for the phonon wave vectors. For the electronic
occupation we employed Fermi-Dirac smearing with broaden-
ing factor σFD = 0.01 Ha, which is sufficiently high to avoid
unstable phonon modes related to the CDW phases.

III. RESULTS AND DISCUSSION

A. Lattice dynamics of the charge-density wave regimes

Temperature-dependent symmetry-resolved Raman spec-
tra of 1T -TaS2 are presented in Fig. 1. It is obvious that their
evolution with temperature is divided into three distinct ranges
(IC-CDW, NC-CDW, and C-CDW) as indicated. The lattice
dynamics for each of these ranges will be treated separately in
the first part of the section. In the second part we address the
electron dynamics.

1. C-CDW phase

At the lowest temperatures 1T -TaS2 exists in the com-
mensurate C-CDW phase. Here, the atoms form so-called
star-of-David clusters. Different studies report either triclinic
stacking of these clusters leading to P1̄ unit cell symme-
try [16], or trigonal or hexagonal stacking and P3̄ unit cell
symmetry [15,18–20]. A factor group analysis predicts 57
Ag Raman-active modes with an identical polarization de-
pendence for P1̄ unit cell symmetry, and alternatively 19
Ag+19 Eg Raman-active modes for P3̄ unit cell symmetry [13]
Our polarized Raman scattering measurements at T = 4 K,
measured in two scattering channels, together with the cor-
responding cumulative fits are shown in Fig. 2. As it can be
seen, we have observed modes of two different symmetries in
the related scattering channels. This result indicates trigonal or
hexagonal stacking of the star-of-David clusters. The symmet-
ric phonon lines can be described by Voigt profiles, the best fit
of which is shown as blue (for parallel light polarizations) and
red (crossed polarizations) lines. After fitting Voigt profiles
to the Raman spectra, 38 phonon modes were singled out.
Following the selection rules for Ag and Eg symmetry modes,
19 were assigned as Ag and 19 as Eg symmetry, meaning all
expected modes could be identified. The contribution from
each mode to the cumulative fit is presented in Fig. 2 as green
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FIG. 1. Symmetry-resolved Raman spectra of 1T -TaS2 at tem-
peratures as indicated. Both C-CDW (blue lines) and IC-CDW (red
lines) domains yield significant contributions to the Raman spectra
of the NC-CDW phase (green lines).

TABLE II. A1g and Eg Raman mode energies experimentally
obtained at T = 4 K.

no ωAg (cm−1) ωEg (cm−1)

1 62.6 56.5
2 73.3 63.3
3 83.4 75.3
4 114.9 82.0
5 121.9 90.5
6 129.5 101.1
7 228.7 134.8
8 244.1 244.0
9 271.9 248.9
10 284.2 257.5
11 298.6 266.6
12 307.2 278.3
13 308.2 285.0
14 313.0 292.9
15 321.2 300.5
16 324.2 332.7
17 332.0 369.2
18 367.2 392.6
19 388.4 397.7
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FIG. 2. Raman spectra at T = 4 K, i.e., in the C-CDW phase,
for parallel and crossed light polarizations. Red and blue solid lines
represent fits of the experimental data using Voigt profiles. Spectra
are offset for clarity. The short vertical lines depict central frequen-
cies obtained from the data analysis. The exact energy values are
presented in Table II.

lines, whereas the complete list of the corresponding phonon
energies can be found in Table II.

2. IC-CDW phase

At the highest experimentally accessible temperatures 1T -
TaS2 adopts the IC-CDW phase. Data collected by Raman
scattering at T = 370 K, containing all symmetries, are shown
as a blue solid line in Fig. 3. As 1T -TaS2 is metallic in this
phase [25] we expect the phonon lines to be superimposed on
a continuum of electron-hole excitations which we approxi-
mate using a Drude spectrum shown as a dashed line [35,36].

Since the IC-CDW phase arises from the normal metallic
phase, described by space group P3̄m1 [13,37], it is inter-
esting to compare our Raman results on the IC-CDW phase
to an ab initio calculation of the phonon dispersion in the
normal phase, shown as an inset in Fig. 3. Four different
optical modes were obtained at �: Eu at 189 cm−1 (double
degenerate), Eg at 247 cm−1 (double degenerate), A2u at 342
cm−1, and A1g at 346 cm−1. A factor group analysis shows
that two of these are Raman active, namely Eg and A1g [13].

We observe that the calculated phonon eigenvalues of the
simple metallic phase at � do not closely match the observed
peaks in the experimental spectra of the IC-CDW phase.
Rather, these correspond better to the calculated phonon
density of states (PDOS), depicted in Fig. 3. There are es-
sentially three different ways to project the PDOS in a Raman
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FIG. 3. Raman response for parallel light polarizations in the IC-
CDW phase at 370 K (blue line). The dashed line depicts the possible
electronic continuum. The contributions of the Ta (dark brown) and
S atoms (light brown) to the calculated PDOS (gray area) are shown
below. The inset shows the calculated phonon dispersion of 1T -TaS2

in the simple metallic phase, with the electron-phonon coupling (λ)
of the optical branches indicated through the color scale.

experiment and to overcome the q ≈ 0 selection given by the
small momentum of visible light: (i) scattering on impurities
[38], (ii) enhanced electron-phonon coupling [39], and (iii)
breaking of the translational symmetry in the IC-CDW phase.
(i) We rule out chemical impurity scattering, expected to exist
at all temperatures, as the low-temperature spectra (Fig. 2)
show no signs thereof. (ii) The additional scattering channel
may come from the electron-phonon coupling (EPC). The
calculated EPC, λ, in the optical modes (inset of Fig. 3) is
limited, yet not negligible, reaching maxima of ∼0.2 in the
lower optical branches around the Brillouin zone (BZ) points
� and A. The calculated atom-resolved PDOS shows the
acoustic modes to be predominantly due to Ta and the optical
modes due to S, as a result of their difference in atomic mass.
The acoustic modes display several dips that are signatures of
the latent CDW phases, for which the EPC cannot be reliably
determined. Significant EPC in the optical modes of 1T -TaS2

is furthermore supported by experimental results linking a
sharp increase in the resistivity above the IC-CDW transition
temperature to the EPC [37]. It also corroborates calculated
[14] and experimentally obtained [13] values of the CDW
gap, which correspond to intermediate to strong EPC [37].
(iii) Although EPC certainly contributes we believe that the
majority of the additional scattering channels can be traced
back to the incommensurate breaking of the translational in-

variance upon entering IC-CDW. Thus the “weighted” PDOS
is projected into the Raman spectrum [see Figs. 1(a) and 1(b)].
These “weighting” factors depend on the specific symmetries
along the phonon branches as well as the “new periodicity”
and go well beyond the scope of this paper.

3. NC-CDW phase

The nearly commensurate phase is seen as a mixed phase
consisting of regions of commensurate and incommensurate
CDWs [40,41]. This coexistence of high- and low-temperature
phases is observable in our temperature-dependent data as
shown in Fig. 1. The spectra for the IC-CDW (red curves) and
C-CDW phase (blue curves) are distinctly different, as also
visible in the data shown above (Figs. 2 and 3). The spectra of
the NC-CDW phase (235 K < T < 352 K) comprise contri-
butions from both phases. As 352 K is the highest temperature
at which the contributions from the C-CDW phase can be
observed in the spectra, we suggest that the phase transition
temperature from IC-CDW to NC-CDW phase is somewhere
in between 352 and 360 K. This conclusion is in good agree-
ment with experimental results regarding this transition [4–6].

B. Gap evolution

The opening of a typically momentum-dependent gap in
the electronic excitation spectrum is a fundamental prop-
erty of CDW systems which has also been observed in
1T -TaS2 [13,37,42]. Here, in addition to the CDW, a Mott
transition at the onset of the C-CDW phase leads to an
additional gap opening in the bands close to the � point
[21,43]. Symmetry-resolved Raman spectroscopy can provide
additional information here using the momentum resolution
provided by the selection rules. To this end, we look at the
initial slopes of the electronic part of the spectra.

As shown in Figs. 4(a)–4(c), different symmetries project
individual parts of the BZ [36,44]. The vertices given by the
hexagonal symmetry of 1T -TaS2 are derived in Appendix C.
The A1g vertex mainly highlights the area around the � point
while the Eg vertices predominantly project the BZ bound-
aries. The opening of a gap at the Fermi level reduces NF,
leading to an increase of the resistivity in the case of 1T -TaS2.
This reduction of NF manifests itself also in the Raman spectra
which, to zeroth order, are proportional to NF [35,44]. As
a result, the initial slope changes as shown Figs. 4(d) and
4(e), which zoom in on the low-energy region of the spec-
tra from Fig. 1. The initial slope of the Raman response is
R lim�→0

∂χ ′′
∂�

∝ NFτ0, where R incorporates only experimen-
tal factors [44]. The electronic relaxation �∗

0 ∝ (NFτ0)−1 is
proportional to the dc resistivity ρ(T ) [45]. If a gap opens up
there is vanishing intensity at T = 0 below the gap edge for an
isotropic gap. At finite temperature there are thermally excited
quasiparticles which scatter. Thus, there is a linear increase at
low energies [35]. The black lines in Figs. 4(d)–4(g) represent
the initial slopes and their temperature dependences. The lines
comprise carrier relaxation and gap effects, and we focus only
on the relative changes.

Starting in the IC-CDW phase at T = 370 K [Fig. 4(d)]
the initial slope is higher for the Eg spectrum than for A1g

symmetry. While the CDW gap started to open already at
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FIG. 4. Evolution of the gaps. (a)–(c) Squared Raman vertices
and Fermi surface of 1T -TaS2 for the indicated symmetries in the
normal phase above TIC. The derivation of Raman vertices is pre-
sented in Appendix C. (d)–(g) Low-energy Raman spectra for A1g

symmetry (blue) and Eg symmetries (red) at temperatures as indi-
cated. The spectra shown are zooms on the data shown in Fig. 1. The
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ingly colored spectrum. (i) Temperature dependence of the Mott gap
�μ (μ = A1g, Eg).

554 K around the M points [43], which are highlighted by the
Eg vertex, the Fermi surface projected by the Eg vertex contin-
ues to exist. Thus, we may interpret the different slopes as a
manifestation of a momentum-dependent gap in the IC-CDW
phase and assume overall intensity effects to be symmetry
independent for all temperatures. At T = 352 K [Fig. 4(e)]
the slope for Eg symmetry is substantially reduced to below
the A1g slope due to a strong increase of the CDW gap in the
commensurate regions [43] which emerge upon entering the
NC-CDW phase. Further cooling also decreases the slope for
the A1g spectrum, as the Mott gap around the � point starts
to open within the continuously growing C-CDW domains
[40,41]. Below T = 270 K the initial slopes are identical for
both symmetries and decrease with temperature. Apparently,
the Mott gap opens up on the entire Fermi surface in direct
correspondence with the increase of the resistivity by ap-
proximately an order of magnitude [3]. Finally, at the lowest
temperature close to 4 K the initial slopes drop to almost zero
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FIG. 5. Raman spectra up to high energies for (a) parallel and
(b) crossed polarizations of the incident and scattered light at tem-
peratures as given in the legend.

[Fig. 4(g)], indicating vanishing conductivity or fully gapped
bands in the entire BZ.

Concomitantly, and actually more intuitive for the opening
of a gap, we observe the loss of intensity in the Raman spectra
below a threshold at an energy �gap. Below 30 cm−1 the in-
tensity is smaller than 0.2 counts(mW s)−1 [Fig. 4(g)] and still
smaller than 0.3 counts(mW s)−1 up to 1500 cm−1 [Fig. 4(h)].
For a superconductor or a CDW system the threshold is given
by 2�, where � is the single-particle gap, and a pileup of in-
tensity for higher energies, � > 2� [44]. A pileup of intensity
cannot be observed here. Rather, the overall intensity is further
reduced with decreasing temperature as shown in Figs. 5 and
6 in Appendixes A and B. In particular, the reduction occurs
in distinct steps between the phases and continuous inside the
phases with the strongest effect in the C-CDW phase below
approximately 210 K (Fig. 5). In a system as clean as 1T -TaS2

the missing pileup in the C-CDW phase is surprising and
argues for an alternative interpretation.

In a Mott system, the gap persists to be observable but
the pileup is not a coherence phenomenon and has not been
observed yet. In fact, the physics is quite different, and the
conduction band is split symmetrically about the Fermi en-
ergy EF into a lower and a upper Hubbard band. Thus in
the case of Mott-Hubbard physics the experimental signa-
tures are more such as those expected for an insulator or
semiconductor having a small gap, where at T = 0 there
is a range without intensity and an interband onset with a
band-dependent shape. At finite temperature there are ther-
mal excitations inside the gap. For 1T -TaS2 at the lowest
accessible temperature, both symmetries exhibit a flat, nearly
vanishing electronic continuum below a slightly symmetry-
dependent threshold (superposed by the phonon lines at low
energies). Above the threshold a weakly structured increase is
observed. We interpret this onset as the distance of the lower
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peak appears at different Raman shifts depending on the wavelength
of the laser light. At T = 4 K the spectra are identical up to 1600
cm−1 for all laser light wavelengths.

Hubbard band from the Fermi energy EF or half of the dis-
tance between the lower and the upper Hubbard band, shown
as vertical dashed lines at 1350–1550 cm−1 ≡ 170–190 meV
[Fig. 4(h)]. The energy is in good agreement with gap obtained
from the in-plane angle-resolved photoemission spectroscopy
(ARPES) [43], scanning tunneling spectroscopy [46], and
infrared spectroscopy [13] which may be compared directly
with our Raman results measured with in-plane polarizations.
Upon increasing the temperature the size of the gap shrinks
uniformly in both symmetries [Fig. 4(i)] and may point to
an onset above the C-CDW phase transition, consistent with
the result indicated by the initial slope. However, we cannot
track the development of the gap into the NC-CDW phase as
an increasing contribution of luminescence (see Appendix B)
overlaps with the Raman data.

Recently, it was proposed on the basis of DFT calcula-
tions that 1T -TaS2 orders also along the c axis perpendicular
to the planes in the C-CDW state [24,25]. This quasi-one-
dimensional (1D) coupling is unexpectedly strong and the
resulting metallic band is predicted to have a width of ap-
proximately 0.5 eV. For specific relative ordering of the star
of David patterns along the c axis this band develops a gap of
0.15 eV at EF [25], which is intriguingly close to the various
experimental observations. However, since our light polariza-
tions are strictly in plane, we have to conclude that the gap

observed here (and presumably in the other experiments) is
an in-plane gap. Our experiment cannot detect an out-of-plane
gap. Thus, neither a quasimetallic dispersion along the c axis
nor a gap in this band along kz may be excluded in the C-CDW
phase. However, there is compelling evidence for a Mott-like
gap in the layers rather than a CDW gap.

IV. CONCLUSIONS

We have presented a study of the various charge den-
sity wave regimes in 1T -TaS2 by inelastic light scattering,
supported by ab initio calculations. The spectra of lattice
excitations in the commensurate CDW (C-CDW) phase de-
termine the unit cell symmetry to be P3̄, indicating trigonal or
hexagonal stacking of the “star-of-David” structure. The high-
temperature spectra of the incommensurate CDW (IC-CDW)
state are dominated by a projection of the phonon density
of states caused by either a significant electron-phonon cou-
pling or, more likely, the superstructure. The intermediate
nearly commensurate (NC-CDW) phase is confirmed to be a
mixed regime of commensurate and incommensurate regions
contributing to the phonon spectra below an onset tempera-
ture TNC ≈ 352–360 K, in good agreement with previously
reported values. At the lowest measured temperatures, the
observation of a virtually clean gap without a redistribution
of spectral weight from low to high energies below TC argues
for the existence of a Mott metal-insulator transition at a
temperature of order 100 K. The magnitude of the gap is found
to be �gap ≈ 170–190 meV and has little symmetry, thus
momentum, dependence, in agreement with earlier ARPES
results [37]. At 200 K, on the high-temperature end of the C-
CDW phase, the gap shrinks to ∼60% of its low-temperature
value. Additionally, the progressive filling of the CDW gaps
by thermal excitations is tracked via the initial slope of the
spectra, and indicates that the Mott gap opens primarily on
the parts of the Fermi surface closest to the � point.

Our results demonstrate the potential of using inelastic
light scattering to probe the momentum dependence and en-
ergy scale of changes in the electronic structure driven by
low-temperature collective quantum phenomena. This opens
perspectives to investigate the effect of hybridization on col-
lective quantum phenomena in heterostructures composed of
different 2D materials, e.g., alternating T and H monolayers
as in the 4Hb-TaS2 phase [47].
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APPENDIX A: RAW DATA

Figure 5 shows Raman spectra at temperatures ranging
from T = 4 to 370 K for parallel [Fig. 5(a)] and crossed
[Fig. 5(b)] in-plane light polarizations. The spectra were
measured in steps of �� = 50 cm−1 and a resolution of
σ ≈ 20 cm−1. Therefore neither the shapes nor the positions
of the phonon lines below 500 cm−1 may be resolved. All
spectra reach a minimum in the range from 500 to 1600
cm−1. At energies above 500 cm−1 the overall intensities are
strongly temperature dependent and decreasing with decreas-
ing temperature. Three clusters of spectra are well separated
according to the phases they belong to.

In the C-CDW phase (T � 200 K, blue lines) the spectra
start to develop substructures at 1500 and 3000 cm−1. The
spectra at 200 K increase almost linearly with energy. The
spectra of the NC- and IC-CDW phases exhibit a broad max-
imum centered in the region of 2200–3200 cm−1 which may
be attributed to luminescence (see Appendix B). For clarifi-
cation we measured a few spectra with various laser lines for
excitation.

APPENDIX B: LUMINESCENCE

Figure 6 shows Raman spectra measured with parallel light
polarizations for three different wavelengths λi of the incident
laser light. Figures 6(a) and 6(b) depict the measured inten-
sity I (without the Bose factor) as a function of the absolute
frequency ν̃ of the scattered light.

At high temperature [T = 330 K, Fig. 6(a)] a broad peak
can be seen for all λi which is centered at a fixed frequency
of 15 200 cm−1 of the scattered photons (gray shaded area).
The peak intensity decreases for increasing λi (decreasing en-
ergy). Correspondingly, this peak’s center depends on the laser
wavelength in the spectra shown as a function of the Raman
shift [Fig. 6(c)]. This behavior indicates that the origin of this
excitation is likely to be luminescence where transitions at
fixed absolute final frequencies are expected.

At low temperature [Fig. 6(b)] we can no longer find a
structure at a fixed absolute energy. Rather, as already in-
dicated in the main part, the spectra develop additional, yet
weak, structures which are observable in all spectra but are
particularly pronounced for blue excitation. For green and yel-
low excitation the spectral range of the spectrometer, limited
to 732 nm, is not wide enough for a deeper insight into the
luminescence contributions (at energies different from those
at high temperature) and no maximum common to all three
spectra is observed. If these spectra are plotted as a function
of the Raman shift, the changes in slope at 1500 and 3000
cm−1 are found to be in the same position for all λi, values
thus arguing for inelastic scattering rather than luminescence.
Since we do currently not have the appropriate experimental

tools for an in-depth study, our interpretation is preliminary
although supported by the observations in Fig. 6(d).

As shown in the inset of Fig. 6(d) we propose a sce-
nario on the basis of Mott physics. In the C-CDW phase the
reduced bandwidth is no longer the largest energy and the
Coulomb repulsion U becomes relevant [22] and splits the
conduction band into a lower and upper Hubbard band. We
assume that the onset of scattering at 1500 cm−1 corresponds
to the distance of the highest energy of the lower Hubbard
band to the Fermi energy EF. The second onset corresponds
then to the distance between the highest energy of the lower
Hubbard band and the lowest energy of the upper Hubbard
band. An important question needs to be answered: Into which
unoccupied states right above EF does the first process scatter
electrons? We may speculate that some DOS is provided by
the metallic band dispersing along kz or by the metallic do-
main walls between the different types of ordering patterns
along the c axis observed recently by tunneling spectroscopy
[46]. These quasi-1D domain walls would provide the states
required for the onset of scattering at high energy but are
topologically too small for providing enough density of states
for a measurable intensity at low energy [Fig. 4(g)] in a
location-integrated experiment such as Raman scattering.

APPENDIX C: DERIVATION OF THE RAMAN VERTICES

Phenomenologically, the Raman vertices can be derived
based on lattice symmetry, which are proportional to the Bril-
louin zone harmonics. They are a set of functions that exhibit
the symmetry and periodicity of the lattice structure proposed
by Allen [48]. These functions make the k-space sums and
energy integrals more convenient than that of the Cartesian
basis or the spherical harmonics basis, especially for those
materials who have anisotropic and/or multiple Fermi pock-
ets. The three Cartesian components of the Fermi velocity
vk are recommended to generate this set of functions since
they inherit the symmetry and periodicity of the crystal lattice
naturally. However, in most cases, we do not know the details
of band dispersion. A phenomenological method is needed to
construct such a set of basis functions. Here, we demonstrate
a method based on the group theory. The Brillouin zone har-
monics can be obtained by the projection operation on specific
trial functions.

For a certain group G with symmetry elements R and sym-
metry operators P̂R, it can be described by several irreducible
representations �n, where n labels the representation. For each
irreducible representation, there are corresponding basis func-
tions �

j
�n

that can be used to generate representation matrices
for a particular symmetry. Here, j labels the component or
partner of the representations. For an arbitrary function F , we
have

F =
∑
�n

∑
j

f �n
j �

j
�n

. (C1)

According to the group theory, we can always define a projec-
tion operator by the relation [49]

P̂�n = d

N

∑
R

χ�n (R) ∗ P̂R, (C2)
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TABLE III. Symmetry operations P̂R and corresponding charac-
ter table of theD3d point group.

P̂R x′ y′ z′ χ�n (R)

A1g Eg

E x y z 1 2
C1

3 − 1
2 x +

√
3

2 y −
√

3
2 x − 1

2 y z 1 −1
C−1

3 − 1
2 x −

√
3

2 y
√

3
2 x − 1

2 y z 1 −1
C′

2 x −y −z 1 0
C′′

2 − 1
2 x +

√
3

2 y
√

3
2 x + 1

2 y −z 1 0
C′′′

2 − 1
2 x −

√
3

2 y −
√

3
2 x + 1

2 y −z 1 0
I −x −y −z 1 2
S1

6
1
2 x −

√
3

2 y
√

3
2 x + 1

2 y −z 1 −1
S−1

6
1
2 x +

√
3

2 y −
√

3
2 x + 1

2 y −z 1 −1
σ ′

v −x y z 1 0
σ ′′

v
1
2 x −

√
3

2 y −
√

3
2 x − 1

2 y z 1 0
σ ′′′

v
1
2 x +

√
3

2 y
√

3
2 x − 1

2 y z 1 0

that satisfies the relation

P̂�n F =
∑

j

f �n
j �

j
�n

, (C3)

where d is the dimensionality of the irreducible representation
�n, N is the number of symmetry operators in the group, and
χ�n (R) is the character of the matrix of symmetry operator R
in irreducible representation �n. By projection operation on a
certain irreducible representation �n, we can directly get its
basis functions �

j
�n

.
The basis functions are not unique. In specific physical

problems, it is useful to use physical insight to guess an appro-
priate arbitrary function to find the basis functions for specific

problems. 1T -TaS2 belongs to the D3d point group. There are
12 symmetry operators in this group, i.e., E , C1

3 , C−1
3 , C′

2, C′′
2 ,

C′′′
2 , I , S1

6, S−1
6 , σ ′

v , σ ′′
v , σ ′′′

v . The coordinate transformations
after symmetry operations and the corresponding character
table are listed in Table III.

In order to simulate the periodicity of the Brillouin zone,
trigonometric functions are used as trial functions. According
to the parity of the irreducible representations, we can choose
an appropriate trigonometric function, e.g., a sine function for
odd parity representation and cosine function for even parity
representation. The combinations of them are also available.

Here, we use F = cos(kxa) as a trial function, where a is
the in-plane crystal constant. The basis function of A1g can be
derived as

�A1g(k) = 1

3

[
cos(kxa) + 2 cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
.

(C4)

With the same method, we obtain a basis function of Eg as

�E1
g
(k) = 2

3

[
cos(kxa) − cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
.

(C5)

Since the Eg is a two-dimensional representation, the projec-
tion operation provides only one of the two basis functions
of the corresponding subspace. The second function is found
based on the subspace invariance under the symmetry opera-
tions (e.g., if we operate �E1

g
with C1

3 symmetry, the result can
be presented as a linear combination of �E1

g
and �E2

g
). Thus

we obtain

�E2
g
(k) = 2 sin

(
1

2
kxa

)
sin

(√
3

2
kya

)
. (C6)
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