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Magnetic anisotropy from linear defect structures in correlated electron systems
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Correlated electron systems, particularly iron-based superconductors, are extremely sensitive to strain, which
inevitably occurs in the crystal growth process. Built-in strain of this type has been proposed as a possible
explanation for experiments where nematic order has been observed at high temperatures corresponding to the
nominally tetragonal phase of iron-based superconductors. Strain is assumed to produce linear defect structures,
e.g., dislocations, which are quite similar to O vacancy chainlets in the underdoped cuprate superconductor
YBCO. Here we investigate a simple microscopic model of dislocations in the presence of electronic corre-
lations which create defect states that can drive magnetic anisotropy of this kind, if spin-orbit interaction is
present. We estimate the contribution of these dislocations to magnetic anisotropy as detected by current torque
magnetometry experiments in both cuprates and Fe-based systems.
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I. INTRODUCTION

Defects in strongly correlated electron systems often
behave quite differently from their weakly interacting counter-
parts [1]. In particular, if a system is close to a phase transition,
defects can tip the balance between two competing states.
For example, it is well known that impurities can create local
magnetic states or induce other types of local electronic order.
Similarly, it is well known that strain can tune the competition
between two or more orders [2]. The use of strain as a tool to
tune the electronic properties of correlated materials is rising
quickly, particularly in materials where there is strong cou-
pling between lattice and magnetic degrees of freedom, where
the prospect control of magnetic properties and spin-polarized
currents by strain is a longstanding goal. Applied strain has
been used to study electronic nematic order, which influences
transport currents as well [3,4].

At the same time, interest in ways of studying built-in or
internal strain, which also affects electronic properties, has
grown. In this regard, local probes like scanning tunneling
microscopy (STM) have been particularly powerful. Internal
strain can occur in the crystal growth process, and pin lo-
cal order more efficiently than point defects. One particular
instance where strain has been invoked is in the observa-
tion of nematic order, i.e., breaking of C4 symmetry of the
Fe-based superconductors at temperatures above the global
tetragonal-orthorhombic transition temperature Ts [5]. The
conclusions of these authors were based on torque magne-
tometry experiments on very small, possibly single-domain
orthorhombic platelike crystals glued to sample holders.
Rather than proposing an explanation in terms of extrinsic
strain physics, Kasahara et al. proposed a “meta-nematic”
transition based on a Ginzburg-Landau theory, where, de-
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pending on the magnitude of a phenomenological coupling
between lattice orthorhombicity and electronic nematic order,
a C4 breaking transition could occur at a higher temperature
T ∗ but yield only a very small symmetry-breaking nematic
field until the lower transition Ts detected by x rays. To our
knowledge, there is no microscopic theory justifying such
a picture. Similar signals of nematic order in the Fe-based
superconductor NaFeAs were detected above the structural
transition Ts, but in this case these were indeed attributed to
strain [6].

In cuprates, a very similar situation exists in underdoped
YBa2Cu3O7−δ (YBCO). Strong indications of electronic ne-
maticity have been reported in transport [7] and low-energy
inelastic neutron-scattering experiments [8], in samples where
the lattice orthorhombicity is extremely weak because the
Cu-O chains are highly disordered. The magnetic anisotropy
measured by neutrons, which has a peak around O concentra-
tions of about 6.4, is nevertheless found to correlate strongly
with the remanent b direction of the chains and is thought to
be related to correlation-induced magnetism in the partially
filled chains. The influence of O vacancy “chainlets”, short
vacancy segments in the chains that are inevitably formed in
the doping process [9], was invoked in the transport work [7]
and has been investigated theoretically in connection with the
unusual low-temperature NMR line shape [10].

Recently, torque magnetometry was performed on YBCO,
showing that magnetic anisotropy was directly observable
in experiments and increased sharply below the pseudogap
temperature [11]. Unfortunately, these measurements were
only performed for O dopings where the chains should
be fairly developed, above O6.5. In this region it is be-
lieved that the trivial symmetry breaking in the electronic
structure induced by the chains, together with spin-orbit
coupling, controls the susceptibility anisotropy. Indeed, the
torque magnetometry signal is found to decrease as one
underdopes.
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We expect that the O vacancy chainlets will induce one-
dimensional (1D) local magnetism and thereby control the
nematicity observed at very low O concentrations. These de-
fects have in fact been imaged in STM [12] and observed by
NMR [13]. As discussed in Refs. [10,14,15], as one under-
dopes the correlations increase, thereby leading to enhanced
magnetic effects. These 1D defect structures are therefore a
natural source of magnetic anisotropy.

On the other hand, in neither the Fe-based nor the cuprate
case has there been an attempt to understand how strain or
chain-driven electronic anisotropy can couple to an external
magnetic field, as in, e.g., a torque magnetometry experi-
ment, which measures magnetic susceptibility anisotropy, i.e.,
χxx − χyy. Even in a system with anisotropic (C2 symmet-
ric) electronic structure of whatever origin, local or global,
no torque will be produced unless the electronic anisotropy
couples to the spin response, i.e., there must be significant
spin-orbit coupling to produce a torque.

In other contexts, highly anisotropic emergent linear defect
states arising from pointlike potentials in strongly nematic
superconductors were studied in Ref. [16], and line defects
in unconventional superconductors have been suggested as
generators of 1D topological superconductivity [17]. To our
knowledge, torque magnetometry has not been applied in
these cases, but it is a promising technique to learn about such
systems.

To interpret torque magnetometry and other experiments,
one needs a microscopic theory of how 1D-type defects cre-
ated by built-in strain or in the doping process couple to
nematic or magnetic order and thereby influence the system’s
coupling to external fields. Such uniaxial defect structures are
clearly visible in STM experiments [6], but their magnetic
character has not yet been probed. Our predictions for induced
magnetism in such cases can then be studied on systems with
sufficiently smooth surfaces by spin-polarized STM.

Calculating the local magnetic structure is not sufficient,
however; one needs to understand how spin-orbit coupling
allows an in-plane field to couple to strain. Here we take
a first step towards creating a microscopic theory of linear
defects useful for studying the effect of strain on correlated
electron systems and predicting the magnetic susceptibility
anisotropy necessary to calculate the torque produced by an
in-plane field. We establish simple models of dislocations,
with lattice structure in their vicinity relaxed by molecular dy-
namics, and calculate their magnetic character in the presence
of Hubbard-like electronic correlations. We then calculate the
torque directly in the presence of the spin-orbit interaction.

To avoid the computational complications of multiorbital
systems, we begin by studying a simple one-band model
based on the cuprates. Our hope is to make predictions for
torque magnetometry experiments on the highly underdoped
regime of YBCO, where torque magnetometry has not yet
been attempted. We do not, however, attempt to model any
particular realistic cuprate; rather, we make a simple model
of a dislocation in a correlated system to see what kind of
magnetic states can be created, as well as how they couple to
an external field via the spin-orbit coupling in the crystalline
environment. Since torque magnetometry is evidently able to
detect the nematic effect of the full chain at higher O con-
centrations, we predict that it should be sensitive to the same
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FIG. 1. Schematics of a single dislocation in a two-dimensional
lattice. Away from dislocation, sites are bonded to four nearest
neighbors (NN), as in undistorted lattice. Interstitial space near the
dislocation (not because of extra space, but suitable bond length)
can, however, accommodate additional atoms mediating additional
local bonds and an effective charge accumulation. Color of the dots
represents effective charge accumulation calculated from valence
bond sums [18]. Thicker bonds indicate larger magnitude of hopping.
Nonzero Burgers b vector is shown by brown arrow.

enhanced nematic effects driven by magnetism as detected by
neutrons [8] and transport [7].

Mean-field theory is used to study the effects of the local
Coulomb interaction driving magnetism. While such a method
is known to overestimate magnetic order, it is easily adapted
to inhomogeneous problems like the one at hand. We attempt
then to estimate the magnitude of the torque obtained with
a crystal with a reasonable density of such dislocations and
discuss comparison to experiments on a variety of materials.
Our approach is fairly crude and aims to capture qualitative
effects, but we address how strain-induced dislocations can
give rise to nematic behavior.

II. MODEL

In presence of strain, an otherwise homogeneous lattice
can undergo dislocation in several ways. Figure 1 shows a
schematic diagram of a single edge-dislocation in a two-
dimensional square lattice. In a homogeneous lattice, each
site is connected to four nearest neighbors (NN), but dislo-
cation may lead to space available for interstitial atoms, for
example, excess oxygen atoms in the case of cuprates, which
lead to additional bonds and thereby a corresponding effective
charge formation locally, as shown in the figure. To investigate
the interplay of dislocations and effects of correlations that
might induce local magnetism, we use an effective model
Hamiltonian that describes one electronic state per unit cell
and take two effects of the dislocation into account: (a) the
changes of the effective hopping for electrons moving be-
tween the lattice sites, and (b) possible charge accumulation
leading to an onsite potential.

A. Dislocation pair

Here we consider almost covalent bonds between the atoms
in the nondefective system such that missing atoms lead to a
more ionic electronic configuration. In cuprates, for example,
the Cu-O-Cu bridges mediate the hopping between sites, and
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FIG. 2. Distortion and charge formation for a four-site-long
dislocation-antidislocation pair in a 12 × 12 lattice. Thickness of
the bonds parametrizes the strength of the intralayer hopping matrix
elements t (ri j ), while the color of the dots (shown in the color bar)
at sites represents the effective charge value in units of the electron
charge at sites as determined by valence bond sums. Only hoppings
within a range of |ri j | = 1.5 are shown. Dashed hoppings at the
sample border are periodically continued to the other side of the
lattice.

excess oxygen atoms then lead to an effective charge. These
charge inhomogeneities, which can be calculated crudely by
valence bond sums (see, e.g., Ref. [18]), together with locally
modified hopping amplitudes, can contribute to the nucleation
of local magnetic or other orders. Of course, the charge and
the corresponding potential, as well as the hopping matrix ele-
ments, are not only dependent on the number of bonds but also
on the distance between neighbors. We include these charge
inhomogeneities in the calculations by considering them in
the effective Hamiltonian as onsite potentials. We will refer in
what follows below to a cuprate model and discuss prospects
for observing these effects in cuprates, although the model is
in fact very general and can describe similar phenomena in a
variety of systems.

A solitary edge-dislocation, as shown schematically in
Fig. 1, has a nonzero Burgers vector for any loop surround-
ing the region of dislocation. But in a realistic macroscopic
sample, a second nearby dislocation often cancels the effect
of the first such that the effect of dislocation diminishes
rapidly as one moves away from the defect. As a result it is
useful and much easier computationally to study a dislocation-
antidislocation pair to ensure that the Burgers vector is zero.
Such pairs can occur in other configurations, such as the edge
dislocations discussed in TiN by Yadav et al. [19], which we
do not discuss in this proof-of-principle work.

Figure 2 shows such a dislocation-antidislocation pair.
The lattice site positions ri as a result of dislocation and
subsequent distortion were simulated with a large-scale
atomic/molecular massively parallel simulator (LAMMPS)
[20]. For this, sites in the lattice were assumed to be bonded to
the nearest and next-nearest neighbors via unstretched springs
of the same strength in absence of any dislocations. Then
lattice sites were selectively removed and the system was
allowed to relax under a harmonic potential of the stretched

springs with periodic boundary conditions using a nonlinear
conjugate gradient method [21] (Fig. 2).

This approach gives a reasonable configuration close to
the dislocation but is simpler than usual approaches with pair
potentials. Note that the final result does not depend on the
initial positions of the lattice points. Irrespective of whether
the boundary is kept fixed (which would mean external strain)
or allowed to relax, the effect of interest, i.e., appearance of
local magnetism as described in later sections, remains in
the vicinity of the dislocation. The thickness and color of
the bonds each independently represents the magnitude of
the hopping between sites such that a thicker and greener
bond represents a stronger hopping. Dotted bonds (with the
same thickness scheme and color scheme as solid bonds)
represent hopping at the periodic boundary. The color of the
dots represents the effective accumulated charge due to inter-
stitial atoms calculated via valence bond sums. Sites that are
separated by a distance |ri − r j | = |ri j | < 1.3 (where ri is the
two-dimensional position of the ith site) are accounted for in
valence bond sums, and hoppings of range more than 2.05 are
truncated. The precise protocols adopted for the construction
of these sums and the hoppings t (ri j ) (in plane), t⊥(ri j ) (out
of plane) in the dislocated system are discussed below.

Figure 2 clearly shows how some hoppings are removed
in the vicinity of the dislocated sites due to the increase
in nearest-neighbor distances induced by distortion and how
additional bonds are mediated by interstitial atoms, again ac-
commodated by distortion, that contribute to the valence bond
sums.

B. Homogeneous system: Cuprate bilayer

It is convenient to consider a bilayer rather than a single-
layer system, because it is significantly simpler to introduce
the lattice version of spin-orbit coupling required to create
anisotropy in the magnetic response and thus to make pre-
dictions for torque magnetometry experiments. In addition,
we may then make contact specifically with experiments per-
formed on bilayer cuprates such as YBCO-123 and Bi-2212.
The Hamiltonian for a homogeneous bilayer system includes
intralayer hoppings,

Htb =
∑

|ri j |�2,σ

[t (ri j ) − μδi, j]c
†
i,σ c j,σ , (1)

where i, j are in a single layer, and we have taken nonzero
hopping up to next-next-nearest neighbors (NNNN), i.e., the
in-plane vector |ri j | = 1,

√
2, 2, within the same layer. The

NN, NNN, and NNNN intralayer hoppings for the homoge-
neous lattice are respectively t = −0.15 eV, t ′ = 0.044 eV,
t ′′ = −0.002 eV. The interlayer hopping terms are given by

H⊥
tb =

∑
|ri j |�2,σ

t⊥(ri j )c
†
i,σ c j,σ , (2)

where now the amplitude t⊥ includes the hopping from the
NN of i in the other plane, and we include terms hopping
to NN, NNN, and NNNN sites, with corresponding values
t⊥(1, 0, 0.5, 0.25) with t⊥ = 0.012 eV. In Fourier space these
terms give the usual interlayer dispersion ∝ (cos kx − cos ky)2
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FIG. 3. Fermi surface of the homogeneous bilayer system in
the presence of spin-orbit coupling. The bilayer hybridization splits
each of the four Fermi surfaces into two in a momentum-dependent
way, keeping the fourfold degeneracy of the electronic states intact
at four points in the (|kx|, |ky|) = (π, π ) directions. The spin-orbit
term increases the splitting and lifts the degeneracy from fourfold to
twofold at the (|kx|, |ky|) = (π, π ) directions.

[22]. These choices describe a cuprate-like Fermi surface with
small bilayer splitting of the two bands, as shown in Fig. 3.

The spin-orbit interaction in the bilayer [22],

HSO = (−1)νγ

⎧⎨
⎩

∑
〈i, jy〉

i
(
c†

i,↑c jy,↓ − c†
jy,↑ci,↓

)

+
∑
〈i, jx〉

(
c†

i,↑c jx,↓ − c†
jx,↑ci,↓

)} + H.c., (3)

is also included in the homogeneous system, with suitably
chosen γ (here taken to be 4.5 meV in our calculation), where
〈i, jx/ jy〉 represents intralayer nearest neighbors of ith site
along +x or +y direction, and ν = 0, 1 is the layer index.
When transformed into a momentum space representation,
this spin-orbit term can be interpreted as an in-plane mo-
mentum dependent magnetic field with components hx,eff =
2(−1)νγ sin(ky) and hy,eff = 2(−1)νγ sin(kx ) which flips sign
from one layer to the other.

C. Electronic structure of dislocation

In a lattice distorted because of dislocation, the distinction
among NN, NNN, and NNNN is blurred, and one needs to
obtain both intralayer and interlayer hoppings as continu-
ous functions of in-plane vector distance between sites ri j =
ri − r j , i.e., as t (ri j ) and t⊥(ri j ). These maps are shown in
Fig. 4. The map for t (ri j ) has been generated by computing
the expectation value of the kinetic energy −∇2/(2m∗) for
overlapping atomic dx2−y2 orbitals, and the effective mass m∗
adjusted such that the NN and NNN hoppings for the ho-
mogeneous lattice agree roughly with those found in cuprate

FIG. 4. Map, as discussed in model section, of (a) intralayer
hopping integrals t (ri j ) as a function of the distance ri j = (xi j, yi j )
calculated from the overlap of atomic dx2−y2 orbitals at sites and
then renormalized to match cuprate t , t ′, t ′′ model [23] (b) inter-
layer hopping integrals t⊥(ri j ), as a function of the distance ri j =
(xi j, yi j ), interpolated from what would be t⊥(ri j ) in undistorted
lattice [22]. The circles represent range of hoppings retained in
numerical calculations.

materials [23]. While this approach does not capture all details
of wave functions on neighboring atoms, unlike, e.g., the
Slater-Koster method, it does generate hopping elements as
a function of ri j with the right symmetry and angle depen-
dence. Both intralayer and interlayer hoppings in the distorted
lattice are truncated beyond |ri j | = 2.05 for the numerical
calculations presented here, since these are small in magnitude
beyond the the dashed circles in Fig. 4.

The spin-orbit term also undergoes modification because
new NN bonds are formed which were neither “x-neighbors”
or “y-neighbors” in the undistorted lattice. A neighbor in the
distorted system is considered x-neighbor or y-neighbor if it
is closer to the x or y axis, respectively. So the spin-orbit part
of the Hamiltonian in the distorted system looks like

HSO =
∑

|ri j |<1.3,σ

(−1)νγi jc
†
i,σ c j,σ̄ , (4)

where |γi j | = γ , with sign decided by the proximity to the x
or y axis, as just described, and the spin index, by analogy to
Eq. (3).

Finally, dislocation contributes an effective onsite potential
in the Hamiltonian:

HQ =
∑
i,σ

Veff Qic
†
i,σ ci,σ . (5)

An effective potential of Veff = 1.5 eV was used in our cal-
culation. The effective charge Qi at the ith site, accumulating
due to change in neighborhood and neighborhood distances
ri j caused by dislocation, was calculated via valence bond
sums [18]

Qi = QCu + A
∑

|ri j |<1.3

QO exp(−|ri j |2/λ2), (6)

where QCu, QO are copper and oxygen charges at the ith site
in the case of cuprates. QO was taken to be −2, and QCu

was taken to be +4, representing the effective charge of the
copper ion along with the charge reservoir layers. A and λ are
two constants adjusted in such a way that Qi vanishes in the
undistorted lattice.

Thus the Hamiltonian used to study the dislocation is iden-
tical in form to Eqs. (1)–(3), except for the distorted lattice
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positions {ri}, the ranges of the hoppings allowed, and the sign
modifications of a small number of short bonds in the spin-
orbit coupling. In addition, it contains onsite potential terms
due to charge-transfer effects. We have verified that results do
not depend sensitively on small changes in the hopping and
charging truncation ranges.

D. Electronic correlations

As discussed in the Introduction, defects can play an ex-
traordinary role in correlated electron systems in proximity to
competing ordered phases. We consider here the situation, ex-
plored extensively in the cuprates [1,14,15], where defects can
freeze antiferromagnetic spin fluctuations locally in magnetic
islands or other structures. We account for the short-range
Coulomb repulsion with a spin-rotationally invariant mean-
field decoupling HU of the usual Hubbard interaction:

HU = U
∑

i

{〈c†
i,↑ci,↑〉c†

i,↓ci,↓ + 〈c†
i,↓ci,↓〉c†

i,↑ci,↑

− 〈c†
i,↓ci,↓〉〈c†

i,↑ci,↑〉 − 〈c†
i,↑ci,↓〉c†

i,↓ci,↑

− 〈c†
i,↓ci,↑〉c†

i,↑ci,↓ + 〈c†
i,↓ci,↑〉〈c†

i,↑ci,↓〉}. (7)

One should note that the constant mean-field terms, which are
sometimes discarded for studying the dynamics, are important
here to compare the energy of various states.

Finally, placing the system into an in-plane magnetic field
B will induce a Zeeman term in the Hamiltonian,

HB = −
∑

i

{hx(c†
i,↑ci,↓ + c†

i,↓ci,↑)

+ hy(−i)(c†
i,↑ci,↓ − c†

i,↓ci,↑)

+ hz(c†
i,↑ci,↑ − c†

i,↓ci,↓)}, (8)

where h = gμBB with the gyromagnetic ratio g and the Bohr
magneton μB. Thus the full Hamiltonian that we consider is

H = Htb + H⊥
tb + HQ + HSO + HU + HB. (9)

III. RESULTS

A. Phase diagram of homogeneous system

As discussed above, the intralayer and interlayer hoppings,
together with the spin-orbit interaction, produce in the homo-
geneous system the standard low-energy electronic structure
of a bilayer cuprate (Fig. 3). The interlayer hoppings in-
duce a momentum-dependent splitting (the violet and cyan
lines) of the Fermi surface of the monolayer system main-
taining the fourfold degeneracy at the four nodal points in
the (|kx|, |ky|) = (π, π ) directions. Further introduction of the
spin-orbit term increases the splitting overall and lifts the de-
generacy from fourfold to twofold at the (|kx|, |ky|) = (π, π )
directions.

The tight-binding density of states for the homogeneous
monolayer system, important in determining the ultimate
magnetic response of the system we construct, is shown in
Fig. 5. The critical Hubbard repulsion Uc for long-range AFM
order in the homogeneous lattice in the absence of any dis-
location or/and charge buildup is located at 0.37 eV for this
particular choice of parameters, as seen in the figure.

FIG. 5. Average staggered magnetization Ms in the homoge-
neous monolayer 30 × 30 system as a function of Hubbard repulsion
U at a filling of n = 0.80 and temperature kT = 0.015 eV. The
orange solid curve in the inset is the DOS for the homogeneous
monolayer, with hoppings as discussed in the text, at filling n = 0.80.

Note that the choice of interactions and filling of the model
considered here does not correspond to any specific cuprate.
While disorder-induced magnetism has been observed, e.g.,
in La2−xSrxCuO4 (LSCO) up to approximately 15% doping,
of the same order as the doping chosen here, the exact values
of these parameters are not particularly important. Our aim is
simply to generate a magnetic state by choosing U sufficiently
close to the critical U for homogeneous magnetism, as shown
in Fig. 5. Note further that the quantity U in mean-field theory,
which generally overestimates magnetic order, is an effective
parameter [24], not to be compared to bare U values from
Hubbard model simulations.

B. Local dislocation-induced magnetic states

We expect that local defect-induced magnetic states, if
stable, will be nucleated for correlations slightly less than
this value. Note that the position of the chemical potential
above the van Hove singularity is important within the current
model, as the buildup of excess charge around the defect
reduces the chemical potential locally and therefore drives
the system towards the van Hove singularity and through
the Stoner instability. We believe that a treatment of the
disorder-induced magnetic effects beyond mean field would
not require this fine tuning, but the current approach is simple,
transparent, and one of the few methods applicable to treat
inhomogeneous systems.

By choosing a U that is below but sufficiently close
(0.34 eV) to Uc, we can study local AFM order both in
monolayer and bilayer distorted lattices. Figure 6 shows
the configuration of magnetization direction, magnitude, and
electron charge for one layer of a bilayer lattice in the presence
of both interlayer hybridization and spin-orbit coupling for a
dislocation of ten sites. In our model, including spin-orbit cou-
pling, the second layer is related to the first by reversing the
direction of the effective (in-plane) magnetic field; thus with-
out external field, the in-plane magnetization of the converged
systems is also just reversed and therefore not presented here.
In Fig. 6 one can see that although the magnetization is
highly localized, there is some weak oscillating large-distance
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FIG. 6. Dislocation induces a local magnetization for a repulsion strength just below Uc with a system energy of E = −2.040 367 3 ×
10−1 eV: layer ν = 1, kT = 0.015 eV, U = 0.34 eV, n = 0.8, N = 30, h = 0. (a) Magnetization (the arrows and the color scale show
magnetization parallel and normal to the lattice, respectively), |M|xy,max = 0.254 26, avg. M = (−5.6119 × 10−8, −1.4211 × 10−6, 9.6084 ×
10−9). (b) Magnitude of magnetization, |M|max = 0.254 29, and (c) density.

component of magnetization normal to the plane. This may
possibly reflect some finite-size effect, due to the interference
of the defect state with its periodically repeated copies. One
can eliminate this effect by working at significantly larger
lattices; however, in a real system with a high concentration of
defects with an interdefect distance comparable to the system
size shown, such interference will certainly exist.

It is interesting to examine how the magnetic state induced
by a localized nonmagnetic perturbation here differs from the
usual picture of an impurity-induced magnetic “puddle” or
“island”[1]. As shown in Fig. 7(a), already for a single site
defect, the response in our model differs substantially from
the response of the metallic system to a strong impurity placed
on the regular lattice. In the absence of a gap in the system,
a single strong impurity does not produce a bound state due
to its coupling to the metallic continuum, and this renders
the formation of magnetic islands quite unlikely. Clusters
of strong impurities on regular lattices are known to create
localized defect states and magnetism, however [15]. In our
model the lattice relaxes around the central missing site and
creates an extended one-body perturbation of the homoge-
neous Hamiltonian in both hoppings and onsite potentials.
This is analogous to the cluster of potentials on the regular
lattice, and so indeed a magnetic state is created. Figures 7(b)

and 7(c) show further how this magnetic state evolves as sites
are removed along a line. It is important to note that the range
of the magnetic impurity state is several times larger than the
length of the dislocation itself.

C. Response to Zeeman field

Even if the magnetic structures shown in Figs. 6 and 7
break C4 symmetry in the case of dislocation of length >1,
the system exhibits anisotropy in the response to an external
magnetic field only if the spin-orbit interaction is present. The
magnetic response and corresponding energy on application
of an in-plane magnetic field both normal and parallel to the
line of dislocation are shown in Figs. 8 and 9. In the figures we
show only the configuration of layer ν = 1, but they are based
upon calculations for a bilayer; we give the energies for the
entire system. The layer ν = 0 exhibits again a magnetization
that would correspond to that of layer ν = 1 if additionally the
in-plane direction of the external field was flipped. The local
magnetic structure without any field has inversion symmetry
and also mirror symmetry w.r.t. both x and y axes within
the layer as far as the magnitude of the magnetization is
concerned. For a magnetic field applied normal to the line
of dislocation, one can see that the mirror symmetry is lifted

FIG. 7. Evolution of the magnitude of the magnetization as dislocation length increases (layer ν = 1): kT = 0.015 eV, U = 0.34 eV, n =
0.8, N = 30: (a) point dislocation, (b) five-site dislocation, and (c) six-site dislocation. The case of a point dislocation (removed site, with
accompanying relaxation of the lattice and charging) is C4 symmetric.
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FIG. 8. Perturbing the locally magnetic configuration with a magnetic field along the x axis leads to a system energy of Ehx =
−2.040 478 0 × 10−1 eV: layer ν = 1, kT = 0.015 eV, U = 0.34 eV, n = 0.8, N = 30, h = (0.002, 0, 0) eV. (a) Magnetization
(the arrows and the color scale show magnetization parallel and normal to the lattice, respectively), |M|xy,max = 0.267 54, avg. M =
(0.015 133, −8.6289 × 10−6, 1.3013 × 10−8). (b) Magnitude of magnetization, |M|max = 0.267 63. A slight enhancement of the magnetic
order normal to the plane is visible in the top-right and bottom-left part of the magnetic region in (a). Magnetic order parallel to the plane
enhances slightly at the top-left and bottom-right part, also reflected in the magnetization magnitude in (b).

slightly but the inversion symmetry still persists. The small but
observable difference in total energies in the presence of same
magnetic field in x and y directions will result in a detectable
torque in magnetometry experiments.

IV. COMPARISON WITH EXPERIMENTS

Our goal here is to estimate whether magnetic structures
created by such defects, e.g., in Fe-based superconductors, can
for a reasonable defect density create an observable effect in
torque magnetometry experiments. To estimate the torque, we
consider the energy difference 	E = Ehx − Ehy of the systems
converged in presence of magnetic fields applied along x and
y directions and divide this by the rotation angle of π/2
to get an average torque for one dislocation in our system
of 30 × 30 lattice points. If a 30 × 30 lattice, which spans
∼12 nm × 12 nm, contains one dislocation, as we assumed in
our simulation, a thin film of size ∼100 μm × 100 μm, which
is in the typical range [25] for thin-film torque magnetometry,
would have ∼108 dislocations that would crudely give rise

to more than 2.2 × 10−17 N m/rad of torque per bilayer, i.e.,
∼2.2 × 10−13 N m/rad in the entire sample well within the
measurable range [26]. In most of the cuprate phase diagram,
however, the conditions to realize the magnetic state may not
be present. Our calculations may apply best to bilayer systems
like YBCO or Bi2Sr2CaCu2O8+x (BSCCO) in the so-called
spin-glass state between the Mott insulator and the onset of
superconductivity, where μSR experiments have reported sig-
nals of considerable magnetic disorder.

One dislocation per 100 nm2 is also roughly the con-
centration of the linear defects visible in conductance maps
of NaFeAs [6] above the tetragonal-orthorhombic transition
Ts. This is an unusually large density of dislocations in a
simple metal but may be more generally realistic in some
Fe-based systems, where strong magnetoelastic couplings are
known to exist [3]. If we assume similar defects are present in
BaFe2(As1−xPx )2 in similar concentrations and account also
for the fact that spin-orbit energies are an order of magnitude
larger in FeSC than in cuprates, it is clear that a single-
domain sample of ∼100 μm × 100 μm with strain-induced

(a) (b)

FIG. 9. Perturbing the locally magnetic configuration with a magnetic field along the y axis, leading to a system energy of Ehy =
−2.040 511 8 × 10−1 eV: layer ν = 1, kT = 0.015 eV, U = 0.34 eV, n = 0.8, N = 30, h = (0, 0.002, 0) eV. (a) Magnetization,
|M|xy,max = 0.255 05, avg. M = (−3.3947 × 10−6, 0.015 442, 1.4112 × 10−8). (b) Magnitude of magnetization, |M|max = 0.255 05.
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dislocations may indeed account for the measurements. Al-
though these estimates are crude, our main goal in this work
was to check the plausibility of the strain scenario, and it
appears as though it cannot be ruled out. More measurements
and visualization methods of the defects present are needed to
clarify this explanation in the systems where nematic behavior
above Ts has been reported.

Let us now estimate the torque to be expected on an under-
doped cuprate sample with in-plane lattice constant ∼0.4 nm
and typical dimensions 250 × 50 μm3 [11]. For example, a
chain in a YBa2Cu3O7−x sample with x = 0.7 is expected
to have a cumulative length of ∼1.87 × 105 lattice constants
of a remnant single Cu-O chain (assuming all the oxygen
removal happens from the Cu-O chain during doping). NMR
studies suggest a minimum chainlet defect length of 50 lattice
constants [27], leading to an estimated ∼7 × 108 number of
chainlet defects in a single layer of the sample. Since within
a unit cell of c-axis dimension 11.68 Å there are two chain
layers, a sample of thickness 50 μm having ∼8.56 × 104

layers would therefore contain ∼6 × 1013 chainlet defects. If a
single chainlet defect is assumed to give rise to similar torque
as a single dislocation, as found in our calculation (i.e. ∼2 ×
10−6 eV ≈ 3.2 × 10−25 N m), the entire sample film should
experience a torque of ∼1.19 × 10−11 N m, which agrees
roughly with the observed torque response range [11]. The
susceptibility anisotropy η = Myy−Mxx

Myy+Mxx
≈ 1.011 × 10−2 (where

Mxx, Myy are magnetization normal and parallel to the line de-
fect, see Figs. 8 and 9, for the same perturbing field strength),
although slightly large, is also in agreement in order of mag-
nitude. Thus we expect magnetic chainlet vacancy defects for
x less than �0.5 to produce a torque of magnitude equal to or
larger than the observed torque signal at higher doping despite
the near depletion of one of the chains.

V. CONCLUSIONS

In summary, we have discussed how linear defects in cor-
related electron systems can create C2 symmetric localized
magnetic states, which can then couple to an external field via
spin-orbit interaction. We presented concrete calculations for
a bilayer model of the cuprates appropriate for YBCO-123,
where oxygen vacancy chainlets are known to produce such

magnetic states [10], and estimated the torque magnetome-
try signal to be observed in experiments. First we simulated
a dislocation–antidislocation pair in a periodic lattice with
molecular dynamics. Next we determined the critical Hubbard
repulsion Uc in the corresponding homogeneous lattice with
suitable filling in absence of any kind of dislocation. For
correlation strengths U � Uc, localized magnetic dislocation
states with symmetry lower than C4 are nucleated and couple
via spin-orbit coupling to an external magnetic field. These
states are rather interesting in their own right and may be
detected on systems with atomically smooth surfaces by spin-
polarized STM. Our calculations are crudely consistent with
existing torque magnetometry signals detected in YBCO [11];
moreover, we predict enhanced nematic signals as doping is
lowered further beyond those dopings studied in experiment,
to O6.3–6.4 concentrations, where strong nematic signals
have been detected in neutron scattering [8] and transport [7].

We further believe our calculations are also highly relevant
for issues of nematicity that arise in the Fe-based super-
conductivity field. In particular, we have shown that built-in
strain in a two-dimensional lattice can create localized mag-
netic dislocation states with symmetry lower than that of
the surrounding lattice and thereby give rise to signals of
nematic behavior in the system, even if the system is in a
nominal tetragonal phase. Our estimates of the torque mag-
netometry signal arising from such defects confirm the earlier
suggestion [6] of strain as a possible explanation for nematic
signals observed above the tetragonal-orthorhombic transition
in Fe-based superconductors, in the presence of spin-orbit
interaction, and place it on a concrete foundation. While we
have not yet performed realistic multiorbital calculations, our
one-band calculations will be straightforward to generalize.
The torque on a sample containing a single domain of aligned
dislocations, such as apparently observed by STM in the
Fe-based superconductor NaFeAs, was estimated from the
one-band result and found to be easily detectable by current
torque magnetometry techniques.
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