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A different variational approach is proposed at zero temperature for a finite density of charge carriers in
order to study ground-state features of the Fröhlich model including electron-electron and electron-phonon
interactions. Within the intermediate electron-phonon coupling regime characteristic of large polarons, the
approach takes into account on the same footing polaron formation and polaron-polaron correlations which play
a relevant role going from low to high charge densities. Including fluctuations on top of the variational approach,
the electronic spectral function is calculated from the weak to the intermediate electron-phonon coupling regime
finding a peak-dip-hump line shape. The spectra are characterized by a transfer of spectral weight from the
incoherent hump to the coherent peak with decreasing the electron-phonon coupling constant or with increasing
the particle density. Three different density regimes stem out: the first, at low densities, where the features of a
single large polaron with a substantial incoherent spectral weight are not modified by charge carrier interactions;
a second one, at intermediate densities, where the polaronic liquid shows a rapid crossover from incoherent to
coherent dynamics; the third one, at high densities, where screening effects are so prominent that the system
presents a conventional metallic phase. The results obtained in the low to intermediate density regime turn
out to be relevant for the interpretation of recent tunneling and photoemission experiments in SrTiO3-based
systems.
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I. INTRODUCTION

The polaron is a fermionic quasiparticle which takes into
account the interaction of an electron with lattice vibrations
in a solid [1–3]. This concept has been originally used in
polar semiconductors to indicate that the polarization cloud
follows the electron in its motion. Indeed, a first classification
of the polaron is based on the size of the phonon cloud. If
the electron-phonon coupling is not very strong, the phonon
cloud accompanying the electron extends over lengths larger
than the lattice parameter of the solid, therefore, the corre-
sponding polaron is termed large. Large polarons are itinerant
quasiparticles whose dynamics affects the spectral, transport,
and optical properties of solids.

In the last years SrTiO3-based (STO) systems have become
one of the main research areas of the condensed matter com-
munity [4,5]. Not only the three-dimensional (3D) STO bulk,
but also the two-dimensional (2D) STO surface and quasi-
2D heterostuctures, such as those between STO and LaAlO3

(LAO), have been much studied showing many interesting
properties among which superconducting phases strongly tun-
able by chemical doping (in the bulk) or by application of a
gate potential (in the heterostructures). In particular, at odds
with simple metallic systems, superconducting states occur
at quite low carrier densities [6,7] suggesting the presence
of large pairing potentials and novel features of the normal
state. In order to interpret the bulk data from angle-resolved

photoemission spectroscopy (ARPES) [8–11], it has been
suggested that a substantial interaction between electrons and
lattice distortions plays a significant role. The relevance of
large polaron quasiparticles [12] has been confirmed by the
experimental spectral properties not only of the 3D bulk [13],
but also the 2D surface [14,15] and LAO/STO heterostructure
[16]. In particular, the large polaron formation is promoted by
the sizable coupling of the electron with a well-defined high-
frequency longitudinal optical mode [13,14,16]. In addition
to tunneling and photoemission spectra, the optical properties
[17,18] and inelastic x-ray scattering measurements [19] have
shown that the charge carriers undergo a crossover from a po-
laronic liquid to a Fermi liquid regime with increasing density.
Nowadays, the role of large polarons is widely recognized in
STO-based materials.

The Fröhlich model has been frequently used to simulate
the large polaron formation when the relevant coupling is
between electrons and longitudinal optical phonons in polar
materials [1–3,20]. In STO-based systems, experimental data
have been interpreted within the Fröhlich model [12], suggest-
ing that the electron-phonon interaction is not perturbative, but
in the intermediate coupling regime. For the single Fröhlich
polaron, the different coupling regimes of the electron-phonon
interaction have been investigated by several variational ap-
proaches [2,20,21] which provide also the starting point
for excited-state properties [22]. A simple variational ap-
proach is that based on the Lee-Low-Pines (LLP) canonical
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transformation which is quite accurate in the weak to interme-
diate electron-phonon coupling regime [23,24]. All the results
of these variational approaches for the single polaron have
been checked by many numerical methods, among which that
based on the diagrammatic quantum Monte Carlo (DQMC)
[12,25] is one of the most accurate for all the electron-phonon
couplings.

Theory for many polaron systems is feasible for weak
electron-phonon couplings [3,13,14], but it is quite challeng-
ing for nonperturbative regimes [12,26–28]. Considering only
the effects of the electron-phonon interaction, a recent theoret-
ical study has shown that the crossover from polarons to Fermi
liquids in transition metal oxides, among which titanates, oc-
curs when the frequency of plasma oscillations exceeds that
of longitudinal optical phonons [29]. For STO-based systems,
the optical response has been calculated starting from the
Fröhlich model including Coulomb electron-electron interac-
tions [30,31]. However, many features of the full Fröhlich
model, such as the spectral properties, are not fully understood
in the intermediate electron-phonon coupling regime. One
possibility to approach this problem is to generalize the vari-
ational approaches for the single polaron to the many-particle
case [1]. Indeed, the LLP canonical transformation has been
performed in second quantization to treat variationally the
electron-phonon interaction for a finite density of charge car-
riers [32]. One drawback of these approaches is that, after the
canonical transformation to the polaron configuration space,
polaron-polaron interactions have been treated only at the
Hartree-Fock level. It is highly desirable to treat the electron
liquid with polaronic effects beyond the mean-field theory
[33].

In this paper, in order to analyze the ground-state properties
of the Fröhlich model in the intermediate electron-phonon
coupling regime, we explicitly include polaron-polaron cor-
relations after the variational many-particle LLP canonical
transformation. Actually, polaron-polaron interactions are
taken into account through a variational Slater-Jastrow term
in the many-body wave function which, therefore, includes
the suppression of long-wavelength density fluctuations [34].
In fact, the treatment of charge correlations is at the same
level of the many-body approach known as random phase
approximation (RPA) [3]. Many quantities, such as the static
structure factor and the polaronic band shift, have been eval-
uated pointing out that polaron-polaron correlations represent
very relevant effects with increasing particle density.

The electronic spectral function is calculated from the
weak to the intermediate electron-phonon coupling regime for
different carrier concentrations by including fluctuations on
top of the variational approach. The large polaron spectra are
characterized by a peak-dip-hump line shape. For the single
polaron, in the intermediate electron-phonon coupling regime,
the hump has a relevant spectral weight and it consists of
several phonon satellites in good agreement with numerical
approaches. Screening promotes a transfer of spectral weight
from the incoherent hump to the coherent peak with increasing
the particle density. In agreement with recent tunneling and
photoemission experiments in STO-based systems [13,14,16],
we identify three different density regimes: the low-density
one, where the spectra bear a strong resemblance to those of
the single large polaron; the intermediate-density one, where

the crossover from incoherent to coherent dynamics is quite
rapid; the high-density one, where the system behaves as a
conventional metal. It turns out that the role of density can
be roughly understood as an effect leading to the reduction of
the effective electron-phonon coupling constant. However, for
intermediate electron-phonon couplings, the density evolution
of the spectral properties can not be ascribed only to many-
body screening, but also to polaron features ranging from the
antiadiabatic to the adiabatic regime. Our results are fully
consistent with experimental findings in STO-based systems
clarifying the role of the electron-phonon coupling in the low-
to intermediate-density regime.

The paper is organized as follows. In Sec. II the model and
the variational approach are reviewed; in Sec. III the spectral
properties are discussed; in Sec. IV are conclusions and dis-
cussions. We present additional details about polaron-phonon
couplings in Appendix A, and polaronic spectral features in
Appendix B.

II. THE MODEL AND THE VARIATIONAL APPROACH

In this paper, the Fröhlich model [3,23] is studied focus-
ing on the normal state of N polarons at zero temperature.
The starting point of the model is the jellium for interacting
electrons. In addition to the Coulomb electron-electron inter-
action, the model takes into account the coupling between
electrons and longitudinal optical phonons. The long-range
electron-phonon interaction is derived under the assumption
that the medium is a polarizable continuum with partially
ionic character. The Fröhlich model has been extensively used
for the description of doped polar semiconductors [3].

The Hamiltonian H of the Fröhlich model in second quan-
tization is the following:

H = H (0)
el + H (0)

ph + H∞
el-el + Hel-ph, (1)

where the first term H (0)
el , defined as

H (0)
el =

∑
k,σ

h̄2k2

2m
c†

k,σ ck,σ , (2)

describes the conduction band electrons of wave vector k
(k = |k| its modulus), mass m, and spin σ , with c†

k,σ (ck,σ )
the related creation (annihilation) operator, while the second
term H (0)

ph , defined as

H (0)
ph = h̄ωLO

∑
q

a†
qaq, (3)

characterizes the energy of free longitudinal optical phonons
of wave vector q and angular frequency ωLO, with a†

q (aq)
related creation (annihilation) phonon operator.

In Eq. (1), the electron-electron interaction is provided by
the following Hamiltonian H∞

el-el:

H∞
el-el = 1

2V

∑
q

V ∞
q (ρqρ

†
q − N ), (4)

where V is the volume of the system, ρq is the density operator

ρq =
∑
k,σ

c†
k+q,σ ck,σ , (5)
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and V ∞
q is the Coulomb potential

V ∞
q = 4πe2

ε∞q2
, (6)

with e the modulus of the electron charge, ε∞ the dielectric
function at frequencies higher than those of the optical modes,
h̄q the modulus of the momentum exchanged by the electrons.
Actually, the dielectric constant ε∞ takes into account elec-
tronic excitations across the semiconductor gap, which are
therefore at high energies. Indeed, these electronic excitations
provide a constant contribution on the low-energy scale of
vibrational modes and conduction electrons close to the Fermi
energy.

In Eq. (1), the electron-phonon interaction is given by the
following Hamiltonian Hel-ph:

Hel-ph = 1√
V

∑
q

Mqρq(aq + a†
−q), (7)

where the electron-phonon matrix element Mq is

Mq = h̄ωLO

√
4παRp

q
. (8)

In Eq. (8), the dimensionless electron-phonon coupling con-
stant α, defined as

α = e2

2Rph̄ωLO

(
1

ε∞
− 1

ε0

)
, (9)

is determined not only by ε∞, but also by the static dielectric
constant ε0, therefore, it depends on the polarizability of the
system. Moreover, Rp is the polaron radius defined as

Rp =
√

h̄

2mωLO
. (10)

The parameters of the many-body Hamiltonian (1) are the
electron mass m, the phonon angular frequency ωLO, the di-
electric constants ε∞ and ε0. Another important quantity in
this paper is the particle density n = N/V , which determines
the Fermi wave vector kF . In the case of STO-based sys-
tems, the following values are assumed [5,30,35]: m � 2m0,
with m0 electron rest mass, ωLO � 2.42 × 1013 s−1 (corre-
sponding to h̄ωLO � 100 meV), ε∞ � 5.1, and ε0 � 2 × 104.
This high-frequency phonon mode is the most coupled to the
electrons and it is clearly discernible in experimental mea-
surements [14–16]. Taking the model parameters, the polaron
radius Rp in Eq. (10) is larger than a = 3.9 Å, the lattice
parameter of STO-based systems, that is coherent with the
assumptions at the basis of the Hamiltonian. We remark that
a model with a single electronic band does not represent a
limitation for the analysis of STO-based systems since, in the
ARPES setup, it is possible to use polarized light in order
to investigate selected electronic bands. For example, using
s-polarized light [14], the measurements can resolve a single
dxy band at low density.

By using the Hamiltonian parameters and Eq. (9), one
gets the electron-phonon coupling constant α � 3.37, that
is, STO-based systems are well within the intermediate
electron-phonon coupling regime. This nonperturbative cou-
pling regime is notoriously difficult to analyze in systems, like

STO-based compounds, whose static and dynamic properties
are sensitive to the variations of particle density. Indeed, an
important feature of STO-based systems is the possibility to
tune the particle density over several orders of magnitude. In
the next subsection, we expose our variational approach which
takes into account both the polaron formation and the effects
of polaron-polaron interactions from weak to intermediate
electron-phonon coupling regime ranging from low to high
densities.

A. Variational approach

Following a proposed variational scheme valid for a finite
number N of electrons [32], the LLP canonical transformation
[23] is performed in second quantization to treat variationally
the electron-phonon interaction up to the intermediate cou-
pling regime (α < 6). The variational unitary transformation
U is

U = exp

[
1√
V

∑
q

fqρq(aq − a†
−q)

]
, (11)

where fq is a real variational function, which provides the
phonon distribution function induced by the electron dy-
namics. Actually, the function fq shifts the position of the
vibrational modes quantifying the strength of the coupling
between electron and lattice displacement, hence, it measures
the degree of polaronic effect. We point out that, even in the
intermediate electron-phonon coupling regime, the interac-
tions at zero temperature are not able to localize the electron,
that this way behaves as an itinerant large polaron [1,2,20].

The transformed Hamiltonian H̃ = U −1HU describes the
interaction between large polarons and shifted vibrational
modes being

H̃ = H (0)
ph + Hpol + Hpol-ph + Hpol-2ph, (12)

where H (0)
ph is the free-phonon Hamiltonian equal to Eq. (3),

and Hpol describes many interacting large polarons:

Hpol = H (0)
pol + Hpol-pol. (13)

In Eq. (13), the free-polaron Hamiltonian H (0)
pol has the same

form as the kinetic energy in Eq. (2), but the quadratic term in
the momentum is replaced by the polaronic band εk ,

εk = h̄2k2

2m
+ η, (14)

with the polaronic band shift η given by

η = 1

V

∑
q

(
h̄ωLO + h̄2q2

2m

)
f 2
q − 2

V

∑
q

Mq fq. (15)

In Eq. (13), the polaron-polaron interaction term Hpol-pol has
the same form as Eq. (4), with V ∞

q replaced by the following
effective potential V eff

q :

V eff
q = V ∞

q + 2
(
h̄ωLO f 2

q − 2Mq fq
)
. (16)

Due to the electron-phonon interaction, the effective potential
gets reduced in comparison with the bare repulsive one. More-
over, in the strong electron-phonon coupling regime (α > 6,
not analyzed in this paper), V eff

q can also present a negative
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sign for some values of the wave vector q (characteristic of
an attractive interaction), thus favoring the stability of bipo-
laronic [36] or charge-ordered phases [27] different from the
normal state considered in this paper. Therefore, the unitary
transformation U given in Eq. (11) takes into account very rel-
evant effects due to the electron-phonon coupling, that is both
the band shift in Eq. (15) and the effective polaron-polaron
potential in Eq. (16), which in fact depend on the phonon
distribution function fq. Other renormalization effects can be
determined analyzing the role played by further interaction
terms of the transformed Hamiltonian H̃ .

In Eq. (12), the residual polaron-phonon interaction term
Hpol-ph consists of two contributions:

Hpol-ph = H (1)
pol-ph + H (2)

pol-ph, (17)

where H (1)
pol-ph has the same form as Eq. (7), with Mq replaced

by the following effective matrix element Meff
q :

Meff
q = Mq − h̄ωLO fq, (18)

therefore, as expected, the resulting polaron-phonon vertex is
reduced in comparison with the bare electron-phonon one. In
Eq. (17), H (2)

pol-ph is more complex being

H (2)
pol-ph = 1√

V

∑
k,q,σ

Nk,k+qc†
k+q,σ ck,σ aq − a†

−q), (19)

where the electron-phonon matrix element Nk,k+q is

Nk,k+q = h̄2 fq

2m
q · (q + 2k)

= h̄2 fq

2m
(k + q − k) · (k + q + k). (20)

Actually, H (2)
pol-ph derives from the unitary transformation of

the kinetic energy in Eq. (2), and it is not a function of the
position operator but of the momentum operator of phonons.
Moreover, the polaron-phonon vertex in H (2)

pol-ph does not sim-
ply depend on the phonon momentum q, but it is a function
of the incoming vector k and the outgoing vector k + q. In
the following sections, we will find that the effects due to the
term H (2)

pol-ph on the spectral properties of large polarons in the
intermediate coupling regime are not negligible in comparison
with those due to the term H (1)

pol-ph when the charge density is
low.

Finally, in Eq. (12), the polaron–two-phonon interaction
term Hpol-2ph describes the interaction between phonons me-
diated by polarons. Like H (2)

pol-ph, the Hamiltonian Hpol-2ph

derives from the unitary transformation of the kinetic energy
in Eq. (1).

In order to pursue the theoretical approach, one has to
evaluate the variational function fq which determines the pa-
rameters of H̃ . At zero temperature, fq is calculated through
a variational scheme minimizing the ground-state energy E0

of the system with N charge carriers. In the regime of weak to
intermediate electron-phonon coupling, the ground-state wave
function |	0〉 of the original Hamiltonian H in Eq. (1) is given
in terms of the unitary transformation U in Eq. (11) in the
following way:

|	0〉 = U |	pol〉|0〉ph, (21)

where |	pol〉 is the ground state of the many-polaron Hamilto-
nian (13) and |0〉ph is the phonon vacuum. The minimization
of the ground-state energy E0 provides the following form of
the function fq [32]:

fq = Mq

h̄ωLO + h̄2q2

2mSeff
q

, (22)

where Seff
q is the static structure factor related to |	pol〉. We

notice that there is a recoil term in Eq. (22), which has the
same form as the Bijl-Feynman expression for the excitations
in liquid helium IV [32]. In the case of a single polaron, one
gets the limit Seff

q → 1.
Within the Hartree-Fock approximation for Hpol [32], the

wave function |	pol〉 is equal to D, where D is the Slater
determinant of N free polarons: |	pol〉 = D. Therefore, the
static structure factor only corresponds to S(0)

q , that of N free
fermions: Seff

q = S(0)
q � q for small q. However, the structure

factor must increase more slowly for small q [37]. Indeed,
the severe suppression of long-wavelength density fluctua-
tions due to the long-range interaction is completely neglected
within the Hartree-Fock approximation.

In order to include the effects of Hpol-pol in Eq. (13) beyond
the Hartree-Fock approximation considered in the literature
[32], in this paper, we have used the approach based on the
variational wave function proposed by Gaskell [34] for the
treatment of charge correlations at the level of RPA. Indeed,
this approach is based on a Slater-Jastrow wave function,
therefore, the wave function |	pol〉 for the many-polaron
Hamiltonian in Eq. (13) is expressed as

|	pol〉 = exp

[
−

∑
q

uqρqρ
†
q

]
D, (23)

where the exponential Jastrow term, acting on the Slater de-
terminant D, depends on an additional variational function
uq which controls charge fluctuations. Numerical approaches,
such as Monte Carlo methods, have shown that the Gaskell
wave function takes into account almost completely the two-
particle correlations providing a very accurate description of
fermionic charge liquids [38,39].

The Gaskell approach provides the following Jastrow func-
tion uq:

uq = 1

4

(
1

Seff
q

− 1

S(0)
q

)
, (24)

which is expressed in terms of the interacting polaron struc-
ture factor Seff

q related to the free-polaron structure factor S(0)
q

by the following equation [34]:

1

Seff
q

=
√

1[
S(0)

q
]2 + 4mn

h̄2q2
V eff

q . (25)

Since Seff
q depends on the polaron-polaron potential V eff

q
which, in turn, is a function of the distribution function fq,
the two equations (22) and (25) have to be self-consistently
solved not only as a function of the particle density, but also
of the strength of the electron-phonon coupling. Indeed, this
approach takes into account on the same footing the polaron
formation and the screening due to a finite density of charge
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carriers. Moreover, in the limit q � kF , the structure factor
recovers the Bijl-Feynman formula [37] indicating that, within
the RPA-Gaskell approach, the behavior for small q is beyond
the poor results given by the Hartree-Fock approximation. Ac-
tually, when polaronic effects are neglected ( fq = 0), Eq. (25)
provides a structure factor where electron-electron interac-
tions are exactly treated in the limit of small q.

We remark that, within the approach used in this paper, we
consider the limit of a macroscopic system. This is one of the
great advantages of this approach in comparison with purely
numerical methods where typically one makes a finite-size
scaling to get results valid in the thermodynamic limit. In
this paper, we assume the polaron radius Rp in Eq. (10) as
unit length, being it very small in comparison with the size
of the system. Clearly, all the wave vectors will be expressed
in terms of the inverse of RP. Furthermore, the energy h̄ωLO

(� 100 meV in STO-based systems) is assumed as energy
unit. Since large ranges of particle density n will be consid-
ered in this paper, we assume 1022 cm−3 as a reference: n =
n22 × 1022 cm−3, that is the particle density will be expressed
in terms of n22. Therefore, one can easily find the order of
magnitude for the Fermi wave vector kF and energy EF :

kF RP = 2.79 × n
1
3
22,

EF

h̄ωLO
= 8.46 × n

2
3
22. (26)

For the density n = 1019 cm−3, kF � 0.067 Å−1, and EF �
8.46 meV, values smaller than those typical of simple metals.
In the following, we will show that a proper treatment of
particle-particle correlations is able to provide a description
of incipient screening effects in this regime of rather low
particle density. Actually, STO-based systems present a lot of
interesting properties, such as superconductivity, for so low
densities that EF < h̄ωLO, the so-called antiadiabatic regime
[5,40]. In this paper, the analysis will focus on this regime
of particle densities where the variational approach is able to
provide a very accurate description for static quantities of the
normal state.

It is possible to relate the bulk three-dimensional den-
sity to the electron density of two-dimensional gases at the
STO surface or at the LAO/STO interface. In fact, following
Refs. [18,19], the two-dimensional density n2D of LAO/STO
samples can be obtained by the volume carrier density n by
considering the effective thickness d at the interface to be
less than 10 nm. In this paper, we assume d = 6 nm: n2D =
nd = n22 × 6 × 1015 cm−2. Therefore, for the volume density
n = 2 × 1019 cm−3, n2D is of the order of 1.2 × 1013 cm−2,
which is the reference density in quasi-two-dimensional STO-
based systems.

B. Results of the variational approach

In this section, we will analyze the behavior of many static
quantities calculated by means of the variational approach. We
start from the effective structure factor Seff

q , which represents
one of the relevant quantities for the variational approach
proposed in this paper. In the upper panel of Fig. 1, we plot
Seff

q as a function of the wave vector q comparing different
approaches for the treatment of polaron-polaron interactions.
In the case of Hartree-Fock approach (LLP + HF curve in
the upper panel of Fig. 1), the structure factor increases quite

FIG. 1. Upper panel: the effective structure factor Seff
q as a func-

tion of the wave vector q (in units of 1/RP) at n22 = 0.01. Lower
panel: the polaronic band shift η (in units of h̄ωLO) as a function
of n22. In both panels, electron-phonon coupling constant α = 3.37
and different approaches: LLP + GASK (black solid line) stands for
many-body LLP approach with Gaskell treatment of polaron-polaron
interactions, LLP + GASK el-el (blue dashed-dotted line) for the
same neglecting polaronic effects, LLP + HF (red dashed line) for
many-body LLP approach with Hartree-Fock treatment of polaron-
polaron interactions.

fast for small q, and it presents a discontinuity at q = 2kF .
On the other hand, the structure factor obtained within the
Gaskell approach (LLP + GASK curve in the upper panel
of Fig. 1) increases more slowly for small q indicating that
charge correlations are accurately treated for small values of
q. Actually, in the limit q � kF , the structure factor recovers
the Bijl-Feynman formula [37]

Seff
q � h̄q2

2m
PP(q)
= h̄

nV eff
q

ω2
PP

2
PP
, (27)

where 
PP(q) is the frequency of the polaronic plasmon [1,41]
given by


PP(q) � ωPP

(
1 + 2

9

v2
F q2

ω2
PP

)
, (28)
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with vF = h̄kF /m the Fermi velocity. As discussed below, V eff
q

is always proportional to 1/q2 for small q, therefore, in the
limit q → 0, the polaronic plasmon tends to the constant value
ωPP given by

ωPP = lim
q→0

√
nq2

m
V eff

q . (29)

Indeed, in the limit of small q, the effective structure factor re-
mains quadratic as a function of q confirming that the normal
state of many interacting large polarons is a charged Fermi
liquid [37]. In the absence of polaronic effects (distribution
phonon function fq = 0), ωPP coincides with the plasmon
frequency ω∞

P (the square of the electron charge is screened
by ε∞), whose order of magnitude is given by

ω∞
P

ωLO
� 11.6(n22)

1
2 . (30)

Therefore, even for the low particle density n = 1020cm−3,
ω∞

P is larger than ωLO. Actually, as discussed in the next
section, the main contributions to the spectral properties
will come from the fermion scattering with optical phonons.
Finally, as reported in Eq. (28), for fq = 0, the plasmon dis-
persion, quadratic as a function of the wave vector q, is almost
coincident with that obtained within RPA approach [3,37].

In order to emphasize the effects of the electron-phonon
coupling on the structure factor, in the upper panel of Fig. 1,
we report Seff

q when only electron-electron interactions are
taken into account within the Gaskell approach neglecting
polaronic formation [LLP + GASK el-el in the figure cor-
responding to the distribution phonon function fq = 0 in
Eq. (25)]. We remark that the self-consistent solution of the
structure factor is necessary in the presence of polaronic ef-
fects for low densities. Indeed, for n22 = 0.01 (shown in the
upper panel of Fig. 1), the structure factor including pola-
ronic correlations shows a behavior intermediate between the
Hartree-Fock case and that obtained at fq = 0.

For many interacting polarons, the phonon function dis-
tribution fq given in Eq. (22) shows a behavior strongly
dependent on the properties of Seff

q . Within the Gaskell ap-
proach, for small values of q, using Eqs. (22) and (27), one
gets

fq � Mq

h̄ωLO + h̄ωPP
. (31)

Then, for low particle densities such that ωPP � ωLO, in the
limit of small q, one gets fq � Mq/h̄ωLO, the characteristic
distribution function of the single polaron. Otherwise, for high
particle densities such that ωPP � ωLO, in the limit of small q,
one gets fq � Mq/h̄ωPP. Therefore, polaronic effects, quan-
tified by fq, progressively decrease with increasing particle
density. Finally, for large q, fq goes as 1/q3.

The distribution function fq determines the polaron shift η

defined in Eq. (15). In the lower panel of Fig. 1, we plot η as a
function of the particle density by using different treatments of
the polaron-polaron interactions. In particular, in the limit of
small densities, as expected, η = −αh̄ωLO [3]. With increas-
ing the density, η becomes less negative, and, in the limit of
high densities, it goes to zero. As shown in the lower panel of
Fig. 1, the Hartree-Fock approach completely fails to describe

FIG. 2. The average phonon number nph as a function of n22

at α = 3.37 for different approaches: LLP + GASK (black solid
line) stands for many-body LLP approach with Gaskell treatment
of polaron-polaron interactions, LLP + GASK el-el (blue dashed-
dotted line) for the same neglecting polaronic effects, LLP + HF
(red dashed line) for many-body LLP approach with Hartree-Fock
treatment of polaron-polaron interactions.

the behavior of η providing a systematic overestimation of
the modulus of η. Actually, polaron-polaron correlations have
to be necessarily included in order to correctly describe the
renormalization of the polaronic band, which, as discussed
in Appendix B, will provide the correction to the chemical
potential μ due to many-body interactions. Finally, we point
out that polaronic effects are relevant for densities up to
n22 = 1, which, as discussed in the following sections, can
be considered as the cutoff density for the manifestation of
electron-phonon effects.

The distribution function fq provides also the average
phonon number in the many-polaron ground state within the
LLP scheme [23]:

nph = 1

V

∑
q

f 2
q . (32)

In particular, in the limit of small densities, one gets nph =
α/2, indicating that the average phonon number is not small
within the intermediate electron-phonon coupling regime. We
remark that the approach used in this paper is clearly beyond
the perturbative Hartree-Fock approximation in the electron-
phonon coupling where the number of excited phonons is
typically restricted to one. Actually, as deduced by Eq. (11),
the phonon part of the many-polaron wave function is ba-
sically a coherent state, therefore, it can take into account
variationally a large number of excited phonons.

In Fig. 2, we plot nph as a function of the particle density
by using again different treatments of the polaron-polaron in-
teractions. With increasing the density, nph decreases, and, in
the limit of high densities, it goes to zero. As shown in Fig. 2,
in analogy with previous physical quantities, the Hartree-Fock
approach for the polaron-polaron interactions fails to properly
describe the average phonon number nph. Actually, polaron-
polaron correlations within the Gaskell approach are again
relevant in order to provide the correct behavior as a function
of the particle density. We point out that the average number of
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FIG. 3. The effective polaron-polaron potential V eff
q (in units of

h̄ωLOR3
P) as a function of the wave vector q (in units of 1/RP) for

different particle densities at α = 3.37. V 0
q is the bare Coulomb

potential screened by the static dielectric constant ε0, while V ∞
q is

the bare Coulomb potential screened by the high-frequency dielectric
constant ε∞. Upper panel: LLP + HF stands for many-body LLP ap-
proach with Hartree-Fock treatment of polaron-polaron interactions.
Lower panel: LLP + GASK stands for many-body LLP approach
with Gaskell-RPA treatment of polaron-polaron interactions.

excited phonons will affect the behavior of the spectral weight
of the coherent peak of the electron Green function, which
will be one of the main quantities discussed in the next section
devoted to the discussion of the spectral properties.

Another interesting outcome of our approach is the be-
havior of the polaron-polaron potential V eff

q , defined in
Eq. (16), comparing Hartree-Fock approximation and Gaskell
approach. This comparison confirms that the Hartree-Fock
approach does not correctly describe the behavior of static
quantities with increasing particle density.

In the upper panel of Fig. 3, we plot V eff
q when the

Hartree-Fock approximation is used to determine the phonon
distribution function fq. Actually, for small values of q, in the
limit of low density, V eff

q goes toward V 0
q = Vq/ε0, that is the

Coulomb potential screened by the static dieletric function
ε0 [36]. In the limit of large values of q, V eff

q tends to V ∞
q ,

the bare Coulomb potential. With increasing the density, one
expects a crossover towards a regime where V eff

q tends to

be more similar to V ∞
q for smaller values of q. However,

even for the high density n22 = 1000, this crossover is not
complete within the Hartree-Fock approach. Therefore, in the
next section, we will analyze dynamic quantities including
always correlations beyond Hartree-Fock approximation.

In the lower panel of Fig. 3, we report V eff
q when the

Gaskell approach is used to determine the phonon distribution
function fq. In particular, in the limit of large q, by using
Eq. (8), at the leading order, V eff

q � V ∞
q . Instead, for small

values of the wave vector q, by using Eq. (27), one gets

V eff
q � V ∞

q + (
V 0

q − V ∞
q

)[
1 − ω2

PP

(ωLO + ωPP)2

]
. (33)

For low particle densities such that ωPP � ωLO, in the limit
of small q, one gets V eff

q � V 0
q . Otherwise, for large particle

densities such that ωPP � ωLO, in the limit of small q, one
gets V eff

q � V ∞
q . Actually, neglecting polaronic effects ( fq =

0), from Eq. (30), one can determine the crossover density nc
22

defined such that ω∞
P � ωLO: nc

22 � 0.01. In fact, as shown
in the lower panel of Fig. 3, at n22 = 0.01, V eff

q seems to be
intermediate between V ∞

q and V 0
q for low values of q.

In contrast with the Hartree-Fock approximation, we notice
that, within the Gaskell approach, the crossover of V eff

q from
V 0

q to V ∞
q is very rapid with increasing the particle density.

Indeed, as shown in the lower panel of Fig. 3, already at n22 =
0.1, the crossover is almost complete. Really, at n22 = 10, V eff

q
is practically identical to V ∞

q . Apparently, as discussed in the
next section, in order to calculate the spectral properties, one
needs to include a proper screening of the polaron-polaron
interactions through the effects of excited states.

III. SPECTRAL PROPERTIES

In the previous section, we have characterized relevant
terms of the transformed Hamiltonian H̃ in Eq. (12). In this
section, the approach used to calculate the spectral properties
will be based upon an accurate many-body perturbation the-
ory of the interaction terms in the transformed Hamiltonian
H̃ . The small effects due to the anharmonic term Hpol-2ph in
Eq. (12) are neglected focusing on the effects of the terms
Hpol-pol in Eq. (13) and Hpol-ph in Eq. (17). The electron spec-
tral properties of the system are calculated at zero temperature
for a finite density n of charge carriers in the regime from
weak to intermediate electron-phonon coupling constant. In
the absence of polaronic effects (distribution phonon func-
tion fq = 0), this theory recovers the approach valid in the
perturbative regime of electron-electron and electron-phonon
coupling [3].

After performing the canonical transformation given in
Eq. (11), within the perturbative approach, the two-point elec-
tron correlation function can be disentangled into polaronic
and phononic contributions [1,42–45] yielding the following
electronic Green’s function G(k, ih̄kn) in fermionic Matsubara
frequencies kn:

G(k, ih̄kn) = e−SGpol(k, ih̄kn)

+ e−S

V

∑
k1

∞∑
l=1

1

l!
Fl (k − k1)
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× [Gpol(k1, ih̄kn + l h̄ωLO)nF (ξk1 )

+Gpol(k1, ih̄kn − l h̄ωLO){1 − nF (ξk1 )}], (34)

where S = K (r = 0), with the function K (r) given in terms of
the distribution function fq as

K (r) = 1

V

∑
q

f 2
q cos (q · r). (35)

We point out that the quantity S is nothing else that the average
number of phonons nph defined in Eq. (32) and plotted in
Fig. 2. As discussed below, its behavior as a function of the
particle density will be relevant for the features of the Green’s
function. In Eq. (34), the function Fl (p) is defined as

Fl (p) =
∫

dr e−ip·r[K (r)]l , (36)

ξk = εk − μ, with εk polaronic band given in Eq. (14),
and nF (E ) = θ (μ − E ) is the Fermi distribution function at
zero temperature, with μ chemical potential. In Eq. (34),
Gpol(k, ih̄kn) is the polaron Green’s function, defined starting
from the transformed Hamiltonian H̃ of Eq. (12).

We point out that two physically distinct terms appear in
Eq. (34): the coherent and the incoherent one [46,47]. The first
term derives from the coherent motion of electrons and their
surrounding phonon cloud. Without many-body corrections in
the Hamiltonian H̃ of Eq. (12), the first term of the spectral
function derived from Eq. (34) represents the purely polaronic
band contribution and shows a delta behavior. This coherent
term is controlled by the exponential e−S , which will repre-
sent the most important contribution to the spectral weight of
the Green’s function. On the other hand, the second term in
Eq. (34) describes the possibility of changing the number of
phonons in the phonon cloud during the electron motion. This
is confirmed by the presence of phonon replicas and the sum
over all momenta. This second term provides the incoherent
contribution and spread over a wide energy range.

The polaronic Green’s function Gpol(k, ih̄kn) in Eq. (34) is
related to the polaronic self-energy pol(k, ih̄kn) by means of
the Dyson equation [3]

Gpol(k, ikn) = G (0)
pol (k, ikn)

1 − G (0)
pol (k, ikn)pol(k, ih̄kn)

, (37)

where G (0)
pol (k, ikn) is the free-polaron Green’s function. In-

deed, the introduction of the polaronic self-energy allows to
include directly additional dampings and energy renomaliza-
tions for the large polarons improving the approximations
for the calculation of the spectral properties [1,42–45]. We
have checked that the self-energy does not change the spectral
properties in a considerable manner, although it allows to
eliminate the delta behavior in the expression of the coherent
term of the spectral function.

In order to determine the polaronic self-energy, we have
to evaluate the total dynamic polaron potential W (tot)

k,p,q(ih̄qn)
in bosonic Matsubara frequencies qn, which, due to the com-
plex polaron-phonon vertex of H̃ , depends not only on the
phononic momentum h̄q, but also on both the incoming po-
laronic momenta h̄k and h̄p. Actually, with increasing the
particle density, it is necessary to properly screen the polaron-
polaron interaction and the polaron-phonon couplings in the

limit of small q. In this paper, the screening is introduced
by the dielectric function εq(ih̄qn) in bosonic Matsubara fre-
quencies qn, which includes contributions from many-polaron
correlations. Therefore, the total potential W tot

k,p,q(ih̄qn) [3]
can be derived as

W tot
k,p,q(ih̄qn) = V eff

q

εq(ih̄qn)
+ W (ph)

k,p,q(ih̄qn)

ε2
q (ih̄qn)

, (38)

where V eff
q is the static polaron potential defined in Eq. (16),

while the phonon-mediated potential W (ph)
k,p,q(ih̄qn) comes

from integrating out the phonon degrees of freedom interact-
ing with polarons through the term Hpol-ph of H̃ in Eq. (12).
Hence, in bosonic Matsubara frequencies qn, one gets

W (ph)
k,p,q(ih̄qn) = [(

Meff
q

)2 + U (0)
k,p,q

]
D(0)(ih̄qn), (39)

where Meff
q is the effective polaron-phonon matrix element

defined in Eq. (18), U (0)
k,p,q is the term derived from H (2)

pol-ph
given in Eq. (19),

U (0)
k,p,q = −Nk,k+qNp,p−q

= f 2
q

(
h̄2

2m

)2

(2k · q + q2)(2p · q − q2), (40)

where k and p are the incoming wave vectors, k + q and p −
q the outgoing wave vectors, Nk,k+q is the polaron-phonon
matrix element in Eq. (20), and D(0)(ih̄qn) is the free-phonon
Green function in Matsubara frequencies qn,

D(0)(ih̄qn) = 2h̄ωLO

(ih̄qn)2 − (h̄ωLO)2
. (41)

For the calculation of the self-energy, we have to consider

U (0)
k,k+q,q = f 2

q

(
h̄2

2m

)2

(2k · q + q2)2, (42)

which is a positive quantity like (Meff
q )2, but it depends on

the angle between k and q. We remark that U (0)
k1,k1+q,q, with

k1 = kF q̂, is equal to the coupling T2,q, which, in addition
to T1,q = (Meff

q )2, is analyzed in Appendix A. As discussed
in this Appendix, the two-polaron–phonon coupling terms
T1,q and T2,q provide comparable contributions to the spec-
tral properties in the intermediate electron-phonon coupling
regime for low particle densities.

After having evaluated the total polaron potential
W (tot)

k,p,q(ih̄qn), the polaronic self-energy to the lowest order can
be obtained as

pol(k, ih̄kn)

= − 1

βV

∑
q,qn

W (tot)
k,k+q,q(ih̄qn)G (0)

pol (k + q, ih̄kn + ih̄qn),

(43)

where β = 1/kBT , with kB Boltzmann constant, T tempera-
ture. Making the analytic continuation ih̄kn → E + iδ, with
δ infinitesimal quantity, and the limit to zero temperature,
Eqs. (34) and (37) allow to evaluate the retarded electronic
Green’s function Gret (k, E ) and the electronic spectral func-
tion A(k, E ) = −2 ImGret (k, E ), which will be thoroughly
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discussed in the next subsections. We have checked that the
sum rule

∫ +∞
−∞

dE
2π

A(k, E ) = 1 is satisfied with a tolerance of a
few percent for all the electron-phonon coupling regimes and
particle densities analyzed in this paper.

A. Single-polaron–low-density regime in STO-based systems

In the limit of very low particle density, analytic calcu-
lations can be made to determine many contributions to the
spectral function not only within the electron-phonon pertur-
bative regime [27,48], but also within the LLP approach. In
particular, we focus on the spectral weight at k = 0, indicated
with Z0, which represents a relevant measure of the polaronic
character in the case of a single fermion [3].

The scheme perturbative in the electron-phonon coupling
provides the following estimate for Z0:

ZPERT
0 = 1

1 + α
2

, (44)

such that, for very low α, ZPERT
0 � 1 − α/2, which is com-

monly used in the literature [3]. In any case, as shown in
the upper panel of Fig. 4, the spectral weight decreases
with increasing the coupling constant α. In the same panel,
we report the spectral weight calculated within the LLP
scheme:

ZLLP
0 = exp

(
−α

2

)
. (45)

We point out that ZLLP
0 represents a very relevant contribution

to the exact spectral weight. Indeed, as shown in the upper
panel of Fig. 4, ZLLP

0 is slightly larger than the numerically
exact results from DQMC technique. For α > 4, the spectral
weight is smaller than 0.1, therefore, the spectral function
derived from Eq. (34) is dominated by the incoherent term.
This is the reason why, in the lower panel of Fig. 4, we
focus on the spectral functions for α < 4. In particular, for
α = 3.37, which is the value estimated to be relevant for
STO-based systems, Z0 is very close to 0.2, hence, the quasi-
particle, the large polaron, is still well defined. As shown in
the next subsection, this value of Z0 for α = 3.37 is in very
good agreement with its estimate from experimental data in
the limit of small particle densities [14].

In order to go beyond the LLP scheme and to deter-
mine the polaronic self-energy pol(k, ih̄kn), in the case of
a single-fermionic particle, we only need W (ph) in Eq. (39),
thus, making the limit of very low particle density for all the
quantities W (tot) = W (ph). Analytic calculations can be made
to determine the retarded polaronic self-energy ret

pol(k, E ).
In particular, including the lowest-order polaron-phonon cor-
rections upon the LLP scheme, the spectral weight at k = 0,
ZLLP+PERT

0 , is

ZLLP+PERT
0 = ZLLP

0 ZPERT
0 = exp

(−α
2

)
1 + α

8

. (46)

Therefore, the polaron-phonon correction provides a denomi-
nator which is similar to that obtained for the electron-phonon
perturbation theory given in Eq. (44). As expected, the frac-
tion in the denominator is smaller than that present in Eq. (44)
since the polaron-phonon interaction terms are reduced in
comparison with the bare electron-phonon vertex. As shown
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FIG. 4. Upper panel: single-fermion spectral weight at wave vec-
tor k = 0 as a function of the electron-phonon coupling constant
α for different approaches: PERT stands for perturbative approach,
LLP for Lee-Low-Pines method, LLP + PERT for perturbative cor-
rections upon LLP method, DQMC for diagrammatic quantum
Monte Carlo data from Ref. [25]. Lower panel: single-fermion spec-
tral function (in units of 1/h̄ωLO) at wave vector k = 0 as a function
of the energy (related to the ground-state energy E0, both in units of
h̄ωLO) at k = 0 for different values of the electron-phonon coupling
constant α within the perturbative method upon the LLP approach
(LLP+PERT). A negligible width � has been added as an imaginary
part to the polaronic self-energy.

in the upper panel of Fig. 4, ZLLP+PERT
0 is in excellent

agreement with numerical DQMC data suggesting that weak
polaron-phonon corrections are effective to improve the accu-
racy of the spectral properties.

Next, we analyze the polaron effective mass at k = 0, de-
noted with m∗

0, which quantifies the mass increase due to the
phonon cloud accompanying the electron [3]. The perturba-
tive approach in the electron-phonon coupling provides the
following estimate for m∗

0:

m

m∗
0

=
(

1 + α

3

)
ZPERT

0 = 1 + α
3

1 + α
2

> ZPERT
0 , (47)

such that, for very low α, m
m∗

0
� 1 − α

6 , which is typically used
in the literature [3].

In Appendix B we provide some details concerning the
dispersion of the polaron as a function of the wave vector.
In particular, as discussed in this Appendix, the evaluation
of the polaronic self-energy in the case of a single fermion
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allows to estimate also the effective mass. It is found that,
for α < 4, the effective mass at k = 0 is well approximated
by the following expression which extends the perturbative
estimate to the intermediate coupling regime: m

m∗
0

� 1 − α
6 .

Indeed, the corrections to the mass for the Fröhlich single
polaron are power laws in the constant coupling α within the
intermediate electron-phonon coupling regime, therefore, they
are weaker than those, exponential in α, characteristic of the
spectral weight [25]. Moreover, for α = 3.37, this value is
relevant for STO-based systems m∗

0
m � 2.28. We remark that

this value is in very good agreement with the experimental es-
timate m∗

0
m � 2.33 obtained in the limit of low particle densities

[14].
Finally, we focus on the spectral function at k = 0 de-

rived from Eq. (34) in the limit of low particle density. In
the lower panel of Fig. 4, we plot the spectral function at
k = 0 as a function of the energy for different values of
the electron-phonon coupling constant α. We notice that all
the curves show the peak-dip-hump structure characteristic
of the experimental spectral function [12,14,16]. The peak
corresponds to the coherent term, while the hump to the in-
coherent contribution. Therefore, the increase of the coupling
constant α induces a transfer of spectral weight towards higher
energies enhancing the number of phonon satellites. In fact,
for α = 0.5, a one-phonon satellite is evident in the spectra,
while, for α = 3.37, the coupling relevant for STO-based
systems, at least three phonon satellites, characterizes the
incoherent term. We remark that these features of the spectrum
for α = 3.37 are in very good agreement with the electron
spectral function extracted from experiments in the limit of
low particle density [14].

Summarizing, not only spectral weight and effective mass,
but also the spectral function at k = 0 in the limit of small
density, are accurately described by the approach used in
this paper confirming that the estimated value α = 3.37 is
perfectly consistent with experimental results in STO-based
systems. In the next subsections, we analyze the effects
of a finite particle density for which polaron-polaron in-
teractions become relevant together with polaron-phonon
couplings.

B. RPA-Gaskell approach: Low- to high-density regime
in STO-based systems

We recall that the calculation of the electronic Green’s
function G(k, ikn) in Eq. (34) requires the evaluation of the
polaronic Green’s function Gpol(k, ikn) in Eq. (37) and its
phonon replicas. In turn, the polaronic Green’s function is cal-
culated through the polaronic self-energy pol(k, ih̄kn), which
requires the total dynamic polaron potential W tot

k,k+q,q(ih̄qn) in
Eq. (38) obtained through the dielectric function εq(ih̄qn).

At the level of the Hartree-Fock approximation, in Eq. (38),
the dielectric function is approximated to unity, therefore, the
total dynamical potential reduces to the bare one. This way,
screening effects due to the presence of fermionic charge
carriers are not included in the dynamical potential. As ex-
pected, at the Hartree-Fock level, the effects of a finite density
n of charge carriers are not correctly taken into account. In
this paper, the calculation of the dielectric function is made,

extending the Gaskell approach beyond the ground state
which has been analyzed in the previous section. Since the
results are similar to the RPA approach, we call this method
RPA-Gaskell.

We have checked that a very accurate starting point to
calculate the dielectric function is the self-consistent structure
factor Seff

q which, for small q, satisfies the Bijl-Feynman re-
lation in Eq. (27) related to the polaron plasmon 
PP(q) in
Eq. (28). Indeed, we recall that the static structure factor can
be obtained for q 
= 0 as

Seff
q =

∫ ∞

0

dh̄ω

π
Seff

q (h̄ω), (48)

where Seff
q (h̄ω) is the dynamic structure factor, which is the

spectral function of the retarded inverse dielectric function
εret

q (h̄ω) [3]:

Seff
q (h̄ω) = − 1

nV eff
q

Im

[
1

εret
q (h̄ω)

]
, (49)

with εret
q (h̄ω) derived from εq(ih̄qn) through the analytic con-

tinuation qn → ω + iδ (δ is an infinitesimal quantity). In order
to satisfy the Bijl-Feynman relation of Eq. (27) for small q,
the inverse dielectric function in Matsubara frequencies must
have the following form:

1

εq(ih̄qn)
= 1 + h̄ω2

PP

2
PP(q)

×
[

1

ih̄qn − h̄
PP(q)
− 1

ih̄qn + h̄
PP(q)

]
,

(50)

with ωPP the polaron plasmon at zero wave vector given in
Eq. (29). Therefore, as expected for small values of q, the
dielectric function is dominated by plasmon poles [49], which
are related to the polaron plasmon with frequency 
PP(q).
This is the dielectric function that can be used in Eq. (38)
to accurately screen polaron-polaron and polaron-phonon
interactions.

Since dynamic effects due to plasmons have not been
identified in the electronic spectral properties of STO-based
systems, we focus on the static dielectric function εq which,
as expected, goes as 1/q2 for small values of q:

εq = 1 + ω2
PP


2
PP(q) − ω2

PP

= 1 + q2
GTF

q2
, (51)

where qGTF is a generalized Thomas-Fermi wave vector,
defined as

qGTF = 3

2

ωPP

vF
, (52)

with vF Fermi velocity. In fact, in the absence of pola-
ronic effects ( fq = 0), εq is practically coincident with the
Thomas-Fermi dielectric function, which provides an accurate
screening of the long-range electron-electron potential for
small values of q and is frequently used also for screening the
potential due to the electron-phonon coupling [3]. As a result,
for the evaluation of the potential in Eq. (38) and the related
polaronic self-energy, we will use the static dielectric function
given in Eq. (51).
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FIG. 5. Upper panel: spectral weight at Fermi wave vector kF ,
ZF , as a function of the particle density n22 for different values
of the electron-phonon constant α within the many-body LLP ap-
proach with Gaskell-RPA treatment of polaron-polaron interactions
(LLP+GASK). Experimental data are taken from Ref. [14]. Lower
panel: spectral function (in units of 1/h̄ωLO) at Fermi wave vector kF

as a function of the energy (related to the chemical potential μ, both
in units of h̄ωLO) for different values of particle density at α = 3.37
within the many-body perturbative method upon the LLP approach.
A width � = 0.5h̄ω0 has been added as an imaginary part to the
polaronic self-energy.

First, we focus on ZF , the spectral weight at the Fermi
wave vector kF , which is derived from the Green’s function in
Eq. (34). Really, this renormalization factor plays the role of
the residue at the pole in a Fermi-liquid description [50]. Thus,
we can evaluate the renormalized electron distribution func-
tion nren

k = ∫ +∞
−∞

dE
2π

A(k, E )nF (E ). At zero temperature, we
recall that nren(μ − δ) − nren(μ + δ) = ZF (with δ infinites-
imal energy), so that the factor ZF determines the jump in
the Fermi distribution function [46]. Actually, the polaronic
self-energy introduces tiny differences between ZF and the
renormalization term e−S in Eq. (34) only in the low-density
regime since, with increasing the particle density, screen-
ing rapidly reduces the effects due to polaron-polaron and
polaron-phonon interactions.

In the upper panel of Fig. 5, we plot ZF as a func-
tion of the two-dimensional particle density n2D for different

values of the electron-phonon constant α. We recall that the
two-dimensional n2D is obtained from the three-dimensional
density n through the effective length d = 6 nm. For any
value of the coupling constant α, ZF gets enhanced with in-
creasing the particle density. We stress that this increase starts
from around n2D = 6 × 1012 cm−2, and it is very rapid from
n2D = 6 × 1013 cm−2. Indeed, at n2D = 6 × 1014 cm−2, the
spectral weights for different values of α converge towards
similar values. Finally, at n2D = 6 × 1016 cm−2, ZF is close to
unity for any value α indicating that the screening of many-
body interactions is almost complete. For these values of the
density, polaronic effects are very weak, therefore, the system
presents a conventional metallic state.

It is important to note that these results are compatible
with photoemission experiments at the (001) STO surface
[14]. Indeed, as shown in the upper panel of Fig. 5, not only
the low-density value of ZF but also its calculated behavior
as a function of the particle density agree with experimen-
tal data. In particular, with increasing the particle density,
the experimental enhancement of ZF looks a little bit more
marked than that predicted by theory. We notice that the
two-dimensional behavior is predicted by theory taking into
account the effective length d of the electron gas. One expects
that screening effects beyond the Hartree-Fock approximation
would be more pronounced in an actual two-dimensional cal-
culation providing a more rapid increase of the spectral weight
ZF .

The next step is to analyze the spectral function derived
from the Green’s function in Eq. (34). In the lower panel of
Fig. 5, fixing α = 3.37, we report the spectral function at the
Fermi wave vector kF as a function of the energy for different
densities considering both the hole (E < μ) and the particle
sector (E > μ). The peak-dip-hump line shape is recovered
not only for low densities, but also for high densities. With
increasing carrier concentration, a transfer of spectral weight
occurs towards the coherent peak by reducing the hump con-
sisting of phonon satellites due to the incoherent large polaron
dynamics. Moreover, this transfer towards the coherent peak is
accompanied by an increase of the spectral weight of the hole
sector with increasing density. We remark that experiments in
Ref. [14] show only the hole sector, which is very carefully
described by our theory. For example, as shown in the lower
panel of Fig. 5, in contrast with the behavior in the particle
sector, the coherent peak is higher than the first phonon satel-
lite in the hole sector for all the charge densities. Actually, in
the lower panel of Fig. 5, we have added width � = 0.5h̄ω0

as an imaginary part to the polaronic self-energy in order to
simulate the instrumental resolution of photoemission spectra
and to make a more realistic comparison with experiments.
Moreover, in agreement with experiments [14], we recognize
three different density regimes: the first one corresponding
to quite low densities (n22 � 10−4), the second one to inter-
mediate densities (10−4 < n22 < 10−1), and the third one to
high densities (n22 � 10−1). In the final part of the paper, we
analyze these three regimes.

In the first regime at low densities, the spectral function is
not identical to that in the limit of single polaron discussed
in a previous subsection since, as shown in the lower panel
of Fig. 5 for n22 = 10−6, there is also the incoherent hole
contribution for energies below the chemical potential. Even
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if the incoherent hole hump has less spectral weight than the
incoherent electron hump, the number of phonon satellites
in the two humps is very similar, confirming that polaronic
effects are active both in the hole and particle channels. In this
first regime with low density, screening is not active, therefore,
electrons interact with phonons through a long-range Fröhlich
coupling.

In the second regime of intermediate density (10−4 <

n22 < 10−1), screening starts to reduce polaronic effects
whose spatial range decreases with increasing density. Indeed,
as shown in the lower panel of Fig. 5 for n22 = 10−3 and
n22 = 10−2, the number of phonon satellites is reduced, trans-
ferring spectral weight to the coherent peak. We stress that
this coherent-incoherent crossover is quite rapid: for n22 =
10−3 (corresponding to n2D of the order of 1013 cm−2), the
satellite structure is not dissimilar from that of lower den-
sities, on the other hand, for n22 = 10−2 (corresponding to
n2D of the order of 1014 cm−2), only the first phonon satel-
lite is marked, the second one is strongly reduced, the third
one has almost completely disappeared. All these features
are in excellent agreement with tunneling and photoemis-
sion experiments probing the polaronic liquid in STO-based
systems [13,14].

In the third regime at high densities (n22 � 10−1), screen-
ing becomes predominant causing the breakdown of the
polaronic state. As shown in the lower panel of Fig. 5 for
n22 = 10−1, the weight of the coherent term is prevalent.
The system behaves as a metal with a short-range electron-
phonon coupling. Indeed, in this regime, the mass ratio at
the Fermi wave vector kF , m

m∗
F

, becomes very similar to the
spectral weight ZF , confirming the short-range character of
many-body interactions.

Summarizing, the variation of carrier concentration con-
trols the screening of many-body interactions affecting the
spectral properties of large polaron systems. From the com-
parison between the lower panels of Figs. 4 and 5, it emerges
that the role of density can be roughly understood as an effect
leading to the reduction of the electron-phonon coupling con-
stant. An estimate of this reduction as a function of the particle
density is not easy since it involves both polaron features
and many-body screening, which, in our work, are intimately
linked.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have discussed ground-state and spec-
tral properties of the Fröhlich model as a function of the
particle density focusing on the intermediate electron-phonon
coupling regime at zero temperature. We have introduced a
different variational approach exploring a huge range of par-
ticle densities. The formation of the large polaron and the
role of screening turn out to play a crucial role in under-
standing the spectral properties of STO-based systems with
varying the carrier concentration. In the case of a single po-
laron, the peak-dip-hump line shape is in good agreement with
the spectral function obtained by numerical approaches and
with experimental spectra of STO-based systems in the low-
density limit. In addition to the low-density regime, we have
identified two other relevant density ranges, the intermediate
and high density ones. While for high densities the system

shows a conventional metallic phase, for intermediate densi-
ties, a rapid crossover takes place from incoherent to coherent
large polaron dynamics with increasing carrier density finding
very good agreement with experimental spectra in STO-based
systems.

In this work, we have ascribed all the electron-phonon
coupling to a single longitudinal optical mode with frequency
ωLO which is mostly coupled to charge carriers. This mode has
quite a high frequency (h̄ωLO � 100 meV), therefore, we have
largely analyzed the antiadiabatic regime relative to this mode
(Fermi energy EF such that EF < h̄ωLO). Additional low-
frequency optical modes are present, however, they are much
more weakly coupled to the electrons [12,13]. Tiny spectral
features due to these modes can be recognized in tunneling
experiments [13], but are not visible in photoemission data
[14]. Indeed, due to instrumental resolution of photoemission
experiments, the main peak shown in the experimental data
at the Fermi energy is quite large. We have estimated a width
of the order of � = 0.5h̄ω0. Therefore, in photoemission ex-
periments, the main peak at the Fermi energy could include
not only the coherent peak, but also the first satellites due to
low-frequency optical modes. This is the reason why, in the
literature, the modeling of spectral properties has been done in
the perturbative electron-phonon coupling regime considering
only the most coupled high-frequency mode [14]. We point
out that additional phonon modes can be included into the
theoretical model since this involves a simple generalization
of our approach.

In this work, we have focused on the spectral proper-
ties of the normal state at zero temperature. The next step
could be the analysis of superconducting states [6,7] where
the coupling to longitudinal optical phonons plays a non-
negligible role [51,52]. Finally, another interesting aspect
could be related to the role of electron-phonon coupling on
the temperature behavior of spectral and transport properties
[16,53,54], for example, of the thermoelectric Seebeck effect
[55,56].
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APPENDIX A: POLARON-PHONON COUPLINGS

In this Appendix, we discuss the polaron-phonon couplings
of the transformed Hamiltonian H̃ in Eq. (12), which, in
addition to the polaron-polaron potential V eff

q , are relevant for
the evaluation of the spectral properties presented in the main
text.

We start considering the first coupling T1,q, defined as

T1,q = (
Meff

q

)2 = M2
q

[ h̄2q2

2mSeff
q

]2

[
h̄ωLO + h̄2q2

2mSeff
q

]2 , (A1)
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FIG. 6. Polaron-phonon couplings [in units of (h̄ωLO)2R3
P] as a function of the wave vector q (in units of 1/RP) at electron-phonon coupling

constant α = 3.37 for n22 = 10−10 (a), n22 = 10−6 (b), n22 = 10−3 (c), n22 = 10 (d). T1 low q stands for the low-q expansion of the coupling
T1, T1 low n for the low-density expansion of the coupling T1, T2 low n for the low-density expansion of the coupling T2, Bare for the bare
coupling given by the square of Mq defined in Eq. (8).

where we have used the expression of Meff
q in Eq. (18).

Within the Gaskell approach, for small values of the wave
vector q,

T1,q � M2
q

[ωPP]2

[ωLO + ωPP]2 . (A2)

For low particle densities such that ωPP � ωLO, with ωPP the
polaron plasmon at zero wave vector given in Eq. (29), in
the limit of small q, T1,q is quite small. Otherwise, for large
particle densities such that ωPP � ωLO, in the limit of small
q, T1,q tends to the bare coupling M2

q . Finally, for large values
of q, as expected, T1,q � M2

q .
Then, we study the second coupling T2,q, defined as

T2,q = [Nk1,k1+q]2 =
(

h̄2 fq

2m

)2

[q · (q + 2k1]2, (A3)

where we have considered the polaron-phonon matrix element
in Eq. (20), with k1 = kF q̂. Therefore, for this coupling, we
consider the most relevant contribution, that is that at the
Fermi wave vector kF in a direction given by the versor q̂ of
the wave vector q. In analogy with T1,q, T2,q tends towards the
bare coupling M2

q for large values of q.
In Fig. 6 we plot the first coupling T1,q and the second

coupling T2,q as a function of the modulus q of the wave vector
q for different particle densities. Figure 6(a) corresponds to
the lowest particle density n22 = 10−10. We notice that, for
this density, T1,q and T2,q are almost identical for a large range
of values of q. They differ only for small values of q, where
T1,q increases with decreasing q recovering the limit for small
q. On the other hand, T2,q is always coincident with the limit
for small density n.

Figure 6(b) corresponds to the low particle density n22 =
10−6. The couplings T1,q and T2,q coincide for large values of
q. For intermediate values of q, T1,q is smaller than T2,q, while,
for small values of q, one gets the opposite. In fact, T1,q shows
a crossover from the small-q limit to the bare coupling with
increasing the values of q.

FIG. 7. Upper panel: single-fermion spectral weight as a func-
tion of the wave vector k (in units of 1/RP) for different
approaches: PERT stands for perturbative approach, LLP for Lee-
Low-Pines method, LLP + PERT for perturbative corrections upon
LLP method, DQMC for diagrammatic quantum Monte Carlo data
from Ref. [25]. Lower panel: single-fermion quasiparticle energy (in
units of h̄ωLO) as a function of the wave vector k (in units of 1/RP)
for different approaches: PERT stands for perturbative approach,
LLP + PERT for perturbative corrections upon LLP method, FREE
for the bare electronic dispersion (shifted by the ground-state energy
E0), FREE + 1PHON for the same with a shift of h̄ωLO. In both
panels, electron-phonon coupling constant α = 1.
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In Fig. 6(c) we plot the couplings T1,q and T2,q for the par-
ticle density n22 = 10−3. They differ in a large range of values
of q. The coupling T1,q shows a narrower crossover from the
small-q limit to the bare coupling. Finally, Fig. 6(d) shows
the couplings T1,q and T2,q for the particle density n22 = 10.
As expected, the coupling T1,q always coincides with the bare
coupling, while the coupling T2,q is negligible in comparison
with T1,q for a large range of values of q. As discussed in
the main text, for high values of density, screening of the
polaron-phonon vertex is fundamental to properly calculate
the spectral properties.

APPENDIX B: ADDITIONAL RESULTS ON POLARON
SPECTRAL PROPERTIES

In this Appendix, we provide some details concerning the
dispersion of the quasiparticles as a function of the wave
vector. In particular, we discuss the evaluation of the polaronic
self-energy in the case of wave vectors different from Fermi
wave vector kF .

In this paper, a perturbative approach is made on top of the
LLP scheme, which, however, already provides quite accurate
polaronic energies. Therefore, in our perturbative approach,
we fix Reret

pol(kF , ω = 0) = 0 [27], therefore, the chemical

potential is μ = h̄2k2
F

2m + η, where η is the polaronic band shift
given in Eq. (15). In the limit of single polaron, one gets
the correct ground-state energy E0 = η = −αh̄ωLO within the
intermediate electron-phonon coupling regime.

In order to investigate the behavior of spectral properties
as a function of the wave vector k, we analyze the single-
polaron case. We plot the spectral weight Zk as a function
of the wave vector k in the upper panel of Fig. 7 comparing
different approaches at α = 1. We notice the rapid decrease
of the spectral weight with increasing k. The LLP scheme
is not able to describe this behavior, while the lowest-order
perturbation theory on top of the LLP approach (LLP + PERT
in the figure) is able to interpolate the DQMC numerical data.
Clearly, the comparison of the approach with DQMC results
could improve if one would include further corrections in the
building up of the self-energy. For example, one possibility
would be to make a self-consistent calculation between pola-
ronic Green’s function and self-energy.

In addition to the spectral weight, we have derived the
polaron dispersion. We plot the quasiparticle energy as a
function of the wave vector k in the lower panel of Fig. 7
comparing different approaches at α = 1. There is a flattening
of the polaron dispersion when the spectral weight goes to
zero. This occurs when the difference between the energy
at finite k and that at k = 0 is equal to the phonon energy
h̄ωLO [3]. Finally, we consider the effective mass analyzing
the polaron dispersion for small wave vectors. For α = 1, the
perturbative approach in the electron-phonon coupling pro-
vides the estimate m∗

0 � 1.13m, by using Eq. (47). As shown
in the lower panel of Fig. 7, the dispersion calculated within
the perturbation theory upon the LLP scheme has a smaller
curvature. Indeed, the effective mass ratio is a little bit higher:
m∗

0 � 1.2m.
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