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Electronic and heat transport phenomena in the nanogranular thiospinel Fe3S4
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The iron sulphide Fe3S4 (greigite) is similar to its oxide counterpart Fe3O4 (magnetite) as to the crystal
structure and ferrimagnetic order, but differs in electronic states. The ab initio calculations have evidenced p-type
carriers at three spin-minority and three spin-majority Fermi surfaces, which is in contrast to the half-metallic
character of magnetite with n-type carriers at three spin-minority Fermi surfaces. The transport properties
including Hall and Nernst effects have been studied over the range 2–300 K by using nanogranular ceramics
prepared by cold isostatic pressing of Fe3S4 particles with the mean crystallite size of dXRD ≈ 80 and 30 nm,
respectively. The samples show metalliclike electrical resistivity with large residual value at T → 0 K. The
p-type character of the charge carriers is reflected by the positive sign of both the thermopower and Hall effect.
Temperature dependencies of the electrical resistivity, thermal conductivity, and thermopower are analyzed
by considering processes of the grain boundary and defect intragrain scattering; simultaneously the role of
magnons and their dynamics in electronic and heat transport is revealed. The Nernst and Hall effects show
dominant contributions of anomalous type (ANE and AHE) with signs exactly opposite to those of Fe3O4, i.e.,
positive AHE and negative ANE in Fe3S4. The results are interpreted by evoking the original Callen treatment
of thermoelectric and thermomagnetic phenomena using Onsager equations. Scaling between the longitudinal
and transverse components of the electrical resistivity and thermoelectric conductivity tensors is checked. The
analysis of the temperature dependent AHE using the relation between transverse and longitudinal resistivity
ρA

yx (T ) ∼ ρxx (T )n gives the characteristic exponent n = 1.15, which is close to the n = 1 predicted by the
skew-scattering mechanism.

DOI: 10.1103/PhysRevB.103.245129

I. INTRODUCTION

The thiospinel Fe3S4 known under the mineral name greig-
ite is naturally occurring in a form of tiny crystallites in
sedimentary rocks, whose origin is usually related to magne-
totactic and sulfate-reducing bacteria [1,2]. Although several
methods for the synthesis of greigite have been described, the
main obstacle to prepare pure-phase samples is the metastable
nature of greigite. When heated in air at temperatures above
200 °C, Fe3S4 is converted to a mixture of pyrrhotite (Fe1−xS)
and either pyrite (cubic FeS2) or sulphur, and finally is ox-
idized to Fe3O4 and maghemite (γ -Fe2O3); see, e.g., [3].
Hydrothermal methods, which are typically carried out at
low temperatures (<300 °C) under autogeneous pressure of
water, have appeared especially suitable for obtaining almost
pure greigite. In particular, Chang and co-workers [4,5] syn-
thesized highly pure and well-crystallized greigite with the
grain size up to 44 μm by reacting FeCl3 with H2S generated
from thiourea in the presence of formic acid at 170 °C under
hydrothermal conditions. The authors studied in detail the
ferrimagnetic ordering and other magnetic properties of this
product, comparing them with those of both natural and syn-
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thetic greigite samples published before. Later on, Li et al. [3]
described the surfactant-assisted hydrothermal procedure with
cetyltrimethylammonium bromide (CTAB) as the surfactant
and cysteine as the sulphur source, which provided pure greig-
ite samples with a crystallite edge length of ≈1 μm. In order
to prepare nanocrystalline greigite of high purity, Pashchenko
et al. [6] adapted this procedure and varied the surfactants and
their concentrations, obtaining samples with the mean size of
crystallites of 30 and 80 nm.

The transport properties of greigite were investigated
primarily on polycrystalline samples fabricated by cold iso-
static pressing of hydrothermally prepared particles, e.g., the
≈1 μm sized grains prepared by Li et al. [3] or 0.5 μm thick
platelets by P. Li et al. [7]. In addition, we may note a single
report to our knowledge on the transport properties of thin
film of greigite that was prepared by the vacuum deposition
method. This material was used in the paper of Nozaki [8]
for the study of electric conductivity and magnetoelectric phe-
nomena like Hall effect. The results have shown that intrinsic
conduction of Fe3S4 is a metallic one.

As concerns the potential applications, the ferrimagnetic
order and relatively high saturation magnetization at room
temperature of 67.2 emu/g [3], combined with the low toxic-
ity of greigite, made Fe3S4 nanoparticles a promising material
for medical therapy and diagnostics, such as cancer treatment
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by magnetic hyperthermia, magnetic resonance imaging, and
magnetically guided drug delivery [9,10]. Further, Cao et al.
[11], Paolella et al. [12], and Li et al. [3] studied electro-
chemical properties of nanosized greigite by using cyclic
voltammetry and galvanostatic discharge-charge cycling, and
pointed out its potential use as an anode in lithium-ion batter-
ies. The metallic nature of greigite and its strong magnetism
up to elevated temperatures are attractive also in view of appli-
cations in electronics and spintronics [3,13–15]. However, one
of the limiting factors to reveal all the potentials of greigite is
the general lack of good-quality samples in bulk forms needed
for fundamental research, especially for transport measure-
ments.

In an attempt to provide data that could contribute to an
understanding of the electric transport behaviors and the role
of extrinsic factors in them and, simultaneously, considering
the will to maximize the phase purity of resulting ceramics,
nanogranular samples have been fabricated by cold isostatic
pressing of nanocrystallites of two distinct sizes prepared
according to Pashchenko et al. [6]. The present study involves
measurements of diverse transport properties, in which the
nanogranular greigite is characterized as a metallic conduc-
tor strongly influenced by local defects (mean free path at
T → 0 K is 0.2 nm only). We argue that the thermal conduc-
tivity inside the grains has a significant contribution from both
phonon and magnon dynamics at cryogenic temperatures,
and, in addition to standardly low diffusive thermopower,
there is an observable contribution to Seebeck effect due to
mutual magnon-electron drag. Special attention is given to
the role of intergrain boundaries, through which electrons may
penetrate by quantum tunneling, and heat is transmitted by the
long-wavelength lattice and surface phonons.

In the next parts, the investigation is focused on Nernst
(NE) and Hall (HE) effects. They both refer to transverse
transport, i.e., the situation when two external fields, arranged
along two perpendicular axes of the sample, induce entropy or
charge density flows along the third axis of the sample. One
of these fields is the thermal gradient for the Nernst effect,
whereas it is the DC electric field for the Hall effect, and the
other one is the magnetic field �B or spontaneous magnetiza-
tion �M. The transverse transport is generally revealed as the
Nernst or Hall voltage due to accumulation of positive and
negative charges on opposite sides of the sample in the direc-
tion of the third axis. The observed data distinguish between
effects of the ordinary (ONE, OHE) and anomalous (ANE,
AHE) kinds, and are interpreted by evoking Onsager recipro-
cal relations for the particle and heat flows in formulations of
Callen and others [16–18].

II. ELECTRONIC STRUCTURE CALCULATIONS

Let us first discuss the thiospinel Fe3S4 in comparison with
its oxide counterpart Fe3O4, known as the mineral magnetite.
Both systems possess crystal structure of the space group
symmetry Fd 3̄m. Compared to a = 8.394 Å for magnetite,
the lattice parameter for greigite is significantly larger mak-
ing a = 9.872 Å at room temperature [3]. Oxygen or sulphur
atoms form a face-centered-cubic network, in which iron
atoms occupy 1/8 of the tetrahedral interstices (A sites) and
1/2 of the octahedral interstices (B sites); see the structure

FIG. 1. Spinel structure of Fe3S4 and Fe3O4. Blue tetrahedra of
FeA, red octahedra of FeB, and yellow spheres of S or O are shown.
Space group Fd 3̄m, atom positions FeA: 1/8, 1/8, 1/8 (8a), FeB:
1/2, 1/2, 1/2 (16d), S/O: x, x, x (32e).

displayed in Fig. 1. In the ferrimagnetic configuration, the
iron spin moments on A sites are oriented antiparallel to the
spins on B sites. The moments observed of Fe3O4 at low tem-
perature are very slightly lower compared to the theoretical
values for Fe3+ in A sites (mA = 4.44μB), and for Fe2+/Fe3+

mixture in B sites (mB = 4.17μB), which results in satu-
rated ferrimagnetic moment m = 2mB − mA of 3.9μB/f.u.

(f.u. = formula unit Fe3O4) [19]. On the other hand, the fer-
rimagnetic moments reported for thiospinel Fe3S4 samples
are lower, with the highest reported saturation magnetization
of 3.74μB/f.u. at 5 K according to Li et al. [3]. More im-
portant data come from the neutron diffraction study [5], in
which spontaneously ordered moments in both the A and B
sublattices are determined, mA = 3.0 μB and mB = 3.25 μB,
with total moment calculated to ∼3.5 μB/f.u. The ordering
temperature TC is rather uncertain because of the instability
of greigite at high temperature and has been estimated to
600–670 K [15].

Large differences are also in the character of charge car-
riers. The experimental study of the greigite thin film by
Nozaki [8] showed ordinary Hall resistivity practically in-
dependent on temperature in the range 4.3–297 K, RO =
3.4×10−11 � cm/G (or 3.4×10−9 m3/C), pointing to the
p-type carriers of concentration 0.22 hole per f.u. (hole
concentration of 1.8×1021 cm−3). For magnetite measured
at room temperature (in the regime of small polaron hop-
ping), the Hall resistivity is found to be negative, RO =
−2.12×10−11 � cm/G (or −2.12×10−9 m3/C). This allows
a lower estimate of the carrier concentration at RT to be 0.22
electron per f.u. (∼3.0×1021 cm−3) [20,21].

To get more insight, we performed detailed electronic
structure calculations for Fe3S4 and Fe3O4. The calculations
were made with the WIEN2K program [22] based on the
density functional theory (DFT). It uses the full-potential
linearized augmented plane-wave (FP LAPW) method with
the dual basis set. In the LAPW method, the space is di-
vided into nonoverlapping atomic spheres and the interstitial
region. For the exchange correlation potential, we adopted
the generalized gradient approximation (GGA) form [23],
including an orbitally dependent potential for 3d orbitals
implemented in the GGA+U method [24]. This method
uses two additional parameters, namely Hubbard energy U
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FIG. 2. The spin-majority (up) and spin-minority (down) total and projected DOS for (a) Fe3S4 and (b) Fe3O4.

describing Coulomb repulsion of electrons in the same orbital
and Hund’s exchange parameter J, which is approximately 1
eV independently on the system studied. Several values of U
over the range 0–3 eV were tested for the sulphide. Increasing
U resulted in increased magnetic moments on each Fe site as
well as the increased total moment. The value of the Hubbard
energy U = 2 eV was finally chosen; the criterion for this
choice was the best agreement between the calculated and
experimentally observed magnetic moment of the greigite [3].
The calculated densities of states (DOSs) for Fe3S4 are dis-
played in Fig. 2(a). A higher value of U = 5.4 eV was used for
the DOS calculation for the partner oxide Fe3O4 and is related
to the fact that the correlation effects are generally stronger in
oxides than in sulphides [25]. The calculated DOSs for Fe3O4

are displayed in Fig. 2(b). Our values of U and J are similar to
values Ueff = U–J = 0.7 and 3.6 used in [7], and Ueff = 1.0
and 3.8 used in [26,27] for Fe3S4 and Fe3O4, respectively, and
U = 2.5 and J = 1 eV used in [28] for Fe3S4.

The atomic charges and magnetic moments were calcu-
lated using the atoms in molecule (AIM) concept of Bader
[29]. In this approach, the unit cell is divided into regions by
surfaces that run through the minima in the charge density. By
integrating the electron or spin density within these regions
the charge or spin moment on a given site can be calculated.
The advantage of this method is that the analysis is based

solely on the charge or spin density so it is independent of
the basis set and atomic spheres used.

The structural parameters were optimized during the self-
consistent cycles. The resulting lattice parameters a = 9.9173
and 8.4030 Å are by 0.4% and 0.1% larger than experi-
mental values, and the coordinates of the S/O site (x, x, x)
are x = 0.2548 and 0.2544, for Fe3S4 and Fe3O4, respec-
tively. For Fe3O4, one may notice an existence of a large
gap in the spin-majority states, and a smaller moment and
charge located on the B site compared to the A site; see
Table I. These findings confirm the inverse spinel structure,
(Fe3+)A[Fe2.5+

2]BO4. Let us note that the AIM method takes
into account the charge transfer between cation and ligands,
therefore the calculated charges are lower than the ideal ones,

TABLE I. Charges and magnetic moments calculated for indi-
vidual atoms using the AIM method [29]. A site: tetrahedral; B site:
octahedral.

Charges Spin moments

FeA FeB S/O Total Fe(A) Fe(B) S/O

Fe3S4 1.00 1.07 −0.79 3.73 −3.54 3.61 0.01
Fe3O4 1.77 1.68 −1.28 4.00 −4.46 4.27 −0.02
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FIG. 3. Multiband character of carriers and corresponding Fermi surfaces in (a) Fe3S4 majority spin, (b) Fe3S4 minority spin, (c) Fe3O4

minority spin. The bands forming the Fermi surfaces are highlighted by corresponding colors.

depending on the degree of covalency. The energy splitting
of the antibonding d orbitals of the B site, which are located
around and above the Fermi level, is governed by the crystal
field of the trigonally elongated octahedral, i.e., t2g orbitals
split into a1g and e′

g orbitals. Spin-minority carriers in the
narrow band at the Fermi level are entirely of a1g-orbital
origin mixed with ligand orbitals. This is in agreement with
the half-metallic conduction (or perhaps the magnetic-polaron
hopping) attributed to magnetite above the Verwey temper-
ature of ≈120 K. On the other hand, the gap in thiospinel
Fe3S4 is suppressed and the Fermi level possesses both the
spin-minority and spin-majority carriers, which means that
Fe3S4 should be thus considered as a normal metal (see also
[7]). The a1g-orbital character of the spin minority carriers
still prevails, whereas the spin majority carriers are mainly
contributed by the tetrahedral A-site orbitals mixed with octa-
hedral and sulphur orbitals. Another difference is manifested
in the charges and magnetic moments, which are higher in
the B site than in the A site, in agreement with the neutron
diffraction study of Fe3S4 [5]. This signifies a stabilization of
intermediate-type structure between the inverse and normal
spinel, with iron charges distributed evenly among A and B
sites.

The difference between the sulphide and oxide is readily
seen in the electron band spectra and corresponding Fermi
surfaces presented in Fig. 3. It appears that in contrast to three
spin-minority Fermi surfaces of n-type carriers in half-metal
Fe3O4, there are three spin-minority and three spin-majority
Fermi surfaces in Fe3S4. In order to shed light onto such a
complex situation with carriers of many bands contributing,
the results of the electronic structure calculations for Fe3S4

have been further utilized as input data for computing elec-
tronic properties by means of the BOLTZTRAP program [30].
The parameters actually calculated are (a) linear coefficient of
electronic heat capacity γcalc = 3.0 mJ mol−1 K−2, (b) average
effective mass for carriers at spin-minority and spin-majority
Fermi surfaces m∗ = 10me and 13me, respectively, and (c)
average Fermi velocities vF = 1.5×105 and 2.0×105 m/s, re-
spectively. The carriers of both spins are dominantly of p

type and the spin-minority contribution to overall conductivity
exceeds to about 20% the spin-majority contribution. In what
follows, the computed transport properties are discussed with
respect to experimental findings in Secs. IV A–IV C below.

III. PREPARATION AND CHARACTERIZATION
OF THE NANOGRANULAR Fe3S4

As the experimental part of this study is concerned, the
preparation of greigite nanocrystallites of controlled size was
carried out according to our previous paper [6] with only mi-
nor modification (two to three higher concentrations of FeCl2

and cysteine were employed in the present case to yield a
sufficient amount of the product for transport measurements).
The preparation procedure was based on the aforementioned
surfactant-assisted hydrothermal method developed by Li
et al. [9], but the surfactants and their amounts were varied
to achieve greigite crystallites of a size on the nanoscopic
scale. The use of cetyltrimethylammonium bromide (CTAB)
at a concentration of 67 mmol/L (compared to 17 mmol/L in
the study [9]) led to the mean crystallite size of dXRD ≈ 80 nm
according to the x-ray diffraction line broadening, whereas
the application of oleic acid at 106 mmol/L provided par-
ticles with dXRD ≈ 30 nm. Detailed characterizations of the
two greigite products as concerns the morphology, chemical
composition, and valence distribution were already reported
[6], and thus only a short summary follows here. Importantly,
both the powder samples were compacted by applying cold
isostatic pressing, which provided samples suitable for trans-
port measurements in the present study.

The x-ray diffraction data were acquired using a pow-
der Bruker D8 Advance diffractometer with Cu-Kα radiation
equipped with a Lynxeye XE-T detector. The x-ray diffraction
patterns of the present products showed characteristic lines
for the greigite spinel structure with the Fd 3̄m symmetry.
The sample with 80 nm crystallites was assessed as single
spinel phase material without any crystallized impurity phases
characterized by lattice parameter a = 9.8714(1) Å. In con-
trast to the previous report, the sample with 30 nm crystallites
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FIG. 4. Low and room temperature magnetization curves of
Fe3S4 nanocrystallites compacted by cold isostatic pressing. The left
inset shows the virgin curves at 5 K, the right inset displays low-field
details of the hysteresis loops at 5 and 300 K.

contained about 8 wt % of marcasite FeS2 as minor admixture.
This fact likely resulted from nonoptimal conditions of the
synthesis at higher concentration of starting materials, which
was, however, necessary to obtain a sufficient amount of ma-
terial for the transport measurements. Nevertheless, the 30 nm
sample exhibited a practically identical a = 9.8724(2) Å.

The magnetic response was measured using a supercon-
ducting quantum interference device (SQUID) magnetometer
(MPMS, Quantum Design). Magnetic properties of the con-
solidated samples are illustrated in Figs. 4 and 5 (for more
details on magnetism of the comparable samples, see [6]). The
data in Fig. 4 evidence relatively large magnetization, making
64.6 and 51.5 emu/g at 5 K in magnetic field of 5 T for 80
and 30 nm crystallites, respectively. The value observed for
the larger nanocrystallites is very close to the low-temperature

FIG. 5. Temperature dependencies of magnetic susceptibility of
the compacted samples Fe3S4 in the range 5–390 K and magne-
tization between 300 and 390 K. The main graph shows the ZFC
scan and susceptibility during subsequent cooling in magnetic field
of 100 Oe, whereas the inset displays the magnetization in field of
30 kOe.

magnetizations of 63.3–70.6 emu/g (3.39–3.74 μB/f.u.) re-
ported for the high purity greigite samples with larger grains
[3,4]. The magnetization decreases with increasing temper-
ature rather modestly, in particular to about 7% at 300 K
and 13% at the highest experimental temperature of 390 K.
The smaller low-temperature magnetization of the sample
with 30 nm crystallites, decreased also compared to the value
59.7 emu/g reported by Pashchenko et al. [6] for the sample of
the same crystallite size, is partially an effect of nonferromag-
netic surface layer that commonly affects the magnetization in
nanosize, and partially it can be attributed to a small amount
of the antiferromagnetic marcasite impurity. The susceptibil-
ity data in Fig. 5 reveal some differences between the two
samples related to the distinct size of their crystallites. Based
on the field-cooled (FC) and zero-field-cooled (ZFC) curves,
we infer a practically blocked state of the larger crystallites in
the whole temperature range under study, whereas the sample
with smaller crystallites enters the superparamagnetic state
at the highest temperatures with the irreversibility point (the
bifurcation of the ZFC and FC curves) of ≈370 K.

The transport properties measurements were performed on
nanogranular samples of greigite prepared by cold isostatic
pressing of nanoparticles of larger or smaller mean crystallite
size (dXRD ≈ 80 or 30 nm). The pressed samples were cut to
the required size using a diamond saw. The electrical contacts
were made with a nickel paste, which is more suitable in
the case of sulphur-containing materials than a silver paste
forming nonconductive sulfides.

The measurements of longitudinal transport properties, i.e.,
electrical resistivity, thermal conductivity, and thermopower
(Seebeck coefficient Vx/�Tx), were performed using the
four-probe method thermal transport option (TTO) of the
physical property measurement system (PPMS, Quantum De-
sign) on a specimen of length Lx = 8 mm and 2×2 mm2 cross
section.

As regards the measurements of transverse transport prop-
erties, the measurement of Hall effect was also performed
on PPMS apparatus (for the sample of 80 nm crystallite
size only), whereas the Nernst effect on both samples was
measured using a home-made apparatus. The small voltage
signal Vy was measured using a Keithley 2182A nanovolt-
meter and the temperature difference �Tx was detected by
differential thermocouples at the hot and cold sides of the
samples. The geometry was employed in which the magnetic
field �B is applied parallel to the z axis, the electric current
(I-Hall effect) or the temperature increment (�T-Nernst ef-
fect) are applied along the x axis, and the induced voltage
is measured in the y direction; see also the insets of Fig. 10.
For measurement of Hall resistivity Vy/Ix, the thickness of the
greigite sample was Lz = 0.5 mm and the dimensions in the
direction of electric current and detected voltage were Lx =
Ly = 4 mm. The measurement of Nernst coefficient Vy/�Tx

was done on a sample with Lz = 2 mm, the dimension in
the direction of applied temperature gradient Lx = 2 mm, and
the electric contact distance to detect transverse voltage Ly =
4 mm. The Nernst signal Syx was calculated according to a
formula

Syx = Ey

∇Tx
= Vy

Ly

Lx

�Tx
(μV/K).
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FIG. 6. The temperature dependence of electrical resistivity of
the compacted samples Fe3S4 compared with data from Ref. [8].

The results of all transport measurements are presented and
discussed in detail in Secs. IV A–IV E.

IV. TRANSPORT PHENOMENA

A. Electrical resistivity

Temperature dependence of resistivity measured on the
isostatically pressed samples of 80 and 30 nm crystallite sizes
is plotted in Fig. 6. For samples with larger crystallite size, the
resistivity character is metallic over the whole range 4–390 K,
and the absolute value of 9.7 m� cm at room temperature
is significantly smaller than values reported for analogous
nanogranular materials earlier, but still exceeds by one order
of magnitude the resistivity obtained by Nozaki on vacuum
deposited film [8]. For sake of comparison, the latter data are
reproduced in Fig. 6 as the best example of greigite resistivity
up to date.

One may note that the temperature dependence for greigite
film (blue diamond in Fig. 6) is typical for a true metal.
Employing a simple approach, we analyze the temperature
dependence of resistivity as a sum of two terms. The first
one is the temperature independent part that reflects scattering
on defects in the film and is manifested as residual resis-
tivity for T → 0 K making 0.28 m� cm. Comparing this
value with the electronic structure determination combined
with BOLZTRAP calculations, we have arrived at a relaxation
time for defect scattering in greigite film of τ = 7 fs. With
the velocity of charge carriers at Fermi level determined
to be vF ≈ 200 km/s, this relaxation time corresponds to a
mean free path of 1.4 nm. The second resistivity term is
the standard part due to electron-phonon scattering, the tem-
perature dependence of which revokes the Bloch-Grueneisen
formula (see, e.g., [31]) and is characterized with T n depen-
dence at very low temperatures (actually n = 4.1) gradually
changing to the linear T dependence at elevated temperatures
with a slope of 2.9×10−3 m� cm/K. The resistivity reaches
1.07 m� cm at 278 K. A useful comparison with noble metals
can be made—e.g., the annealed 99.999% pure gold shows a
residual resistivity of ρo = 0.02 μ� cm, the increase at low
temperatures obeys the Bloch-Grueneisen formula with ideal

exponent n = 5,1 and the room-temperature resistivity makes
ρRT = 2 μ� cm [31]. Similarly for pure iron as the most com-
mon example of an itinerant ferromagnet, ρo = 0.248 μ� cm,
ρRT = 10 μ� cm, and n = 3 [32]. In these two metals, the
resistivity drops more or less to two orders of magnitude
between 300 and 4 K, while for greigite film there is only a
fourfold difference. This is indicative for the more important
role of electron scattering by defects/impurities in the greigite
film.

In contrast to the vacuum deposited greigite film, the
present nanogranular sample of 80 nm crystallites shows re-
sistivity of linear dependence in nearly the whole temperature
range with a slope of 8.8×10−3 m� cm/K, and the T → 0
extrapolated residual resistivity makes the large value of
7.3 m� cm. (The respective values for the 30 nm size sample
are 12×10−3 m� cm/K and 18 m� cm.) These findings open
a question of whether increased resistivity with respect to
the greigite film is due to some enhanced scattering within
the nanograins, or it can be attributed to intergrain barriers
through which the charge carriers penetrate by quantum tun-
neling. Most importantly, if the transmission probability of
tunneling were the only reason for the resistivity increase,
both the residual part ρo and slope would be changed to same
factor. In fact, they are increased in the sample of 80 nm grains
by a factor of 26 and 3, respectively. This is an argument for
our conjecture that the presence of barriers increases the bulk
conductivity by a factor 3, and the dominating factor 26/3∼9
refers to the enhanced defect scattering inside grains. We thus
conclude that the resistance of the grain barrier is twice larger
than the resistance of the grain itself,2 and the internal resistiv-
ity of 80 nm grains at T → 0 makes 2.4 m� cm, corresponding
to an electron mean free path of 0.2 nm only. A similar elec-
tron free path can be anticipated also for the 30 nm sample,
since its ∼2.5 larger residual resistivity nicely equals the size
ratio, and can be thus fully attributed to an increased number
of intergrain crossings. With the electron mean free path being
close to the interatomic distance in the Fe3S4 structure, both
nanogranular samples can be considered as threshold metallic
conductors in the sense of the Ioffe-Regel criterion.

At the lowest temperature limit, an upturn of the resis-
tivity is seen in Fig. 6 for nanogranular greigite samples,
which presumably indicates the localization of carriers due
to the presence of an intergranular Coulomb gap; see the

1The Bloch-Grüneisen formula is derived for monovalent metal
with a spherical Fermi surface and phonon spectrum derived from
a Debye model: ρe-p = C

Mθ
( T

θ
)5 ∫θ/T

0
x5ez

(ex−1)2 dx, where θ is the Debye
temperature, M is the atomic weight, and C is a constant of the metal.

2With grain barriers making 2/3 of bulk resistivity and the
number of intergrain crossings in the 80 nm greigite sample
(∼1.25×105 cm−1), the resistivity per unit area of single barrier is
calculated to be 3.8×10−9 � cm2. Some comparison can be made
with widely studied polycrystalline and nanogranular samples of
La-Sr manganites, also of the ferromagnetic metallic state. Here, the
resistivity of the barrier has been found to be more than three orders
of magnitude larger [37], which can be related to the poorly con-
ducting shell (thickness of about 1 nm) that is present intrinsically at
the manganite surface. The greigite grains are evidently conducting
homogeneously up to the top layer.
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FIG. 7. (a) The temperature dependence of thermal conductivity
of the compacted samples Fe3S4. (b) The same data in the log-log
plot.

theoretically predicted localization lnρ ≈ T −1/2 by Helman
and Abeles [33] and its experimental manifestation col-
lected, e.g., for polycrystalline manganites of small grain sizes
[34,35]. Such weak localization possibly obscures eventual
manifestations of electron-magnon scattering, characterized
at low enough temperatures by resistivity of the T 2 or T 3

dependence, for conventional itinerant ferromagnets and half-
metals, respectively [36]. The T 5 resistivity term predicted
at low temperatures for electron-phonon scattering by Bloch-
Grueneisen formula is unlikely because phonon dynamics
is suppressed by defects/imperfections highly pronounced at
low temperatures.

B. Thermal conductivity

The temperature dependence of thermal conductivity is
shown in Fig. 7. There is a steep initial rise at the lowest tem-
peratures but starting from 20 to 30 K, the rate of the increase
is gradually diminished until a flat maximum at 100–250 K
is reached. As expected, the absolute values actually observed
are smaller for samples with smaller grains and finally, above
∼250 K, the thermal conduction slightly increases again, pos-
sibly due to extrinsic effects (parasitic radiation of the sample
and/or radiation thermal transport between grains). The be-
havior close to the lowest temperature limit is more readily
demonstrated in the log-log plot in Fig. 7(b) where the thermal
conductivity for both nanogranular greigite samples follows a
T n dependence with n = 1.5 in a remarkably broad tempera-
ture range up to ∼20 K. As a complementary experiment, we

FIG. 8. The low-temperature heat capacity measured on the
Fe3S4 sample of 80 nm crystallite size.

present in Fig. 8 the measurement of low-temperature specific
heat of the 80 nm sample.

The interpretation of thermal conductivity in greigite is
complicated since thermal properties of itinerant ferromag-
nets, in general, are essentially influenced by strong coupling
of the spin and electronic excitations, further by correlated
character of carriers, size dependent effects, etc. A simpli-
fied model, applicable at low temperatures, then anticipates
three additive contributions: the electronic term κe due to flow
of quasifree charge carriers induced by applied temperature
gradient, and two bosonic terms κλ and κm corresponding to
heat transport by lattice phonons and magnons, respectively,
leading in total to

κ = κ e + κ λ + κ m.

Analogous three terms are considered also for heat capac-
ity,

Ctot = C e + C λ + C m,

that are known in theory as the heat capacity of electrons
obeying Fermi statistics, the low-T lattice heat by phonons in
the Debye model, and the low-T heat capacity of magnons
with simple quadratic dispersion h̄ω = Dq2 applicable for
cubic greigite with ferrimagnetic order. Mathematically we
have

C e = γ T, C λ = 234rNAkB

(
T

�D

)3

, and

Cm(T ) = 0.113VmolkB

(
kBT

D

)3/2

,

where r = 7 is the number of atoms in formula unit and
Vmol = NAa3/8 = 72.4×10−6 m3 is the molar volume of
Fe3S4.3 The low temperature heat capacity data are shown

3The formula for magnon heat capacity, see, e.g., [38–40], is valid
at zero magnetic field. With external field increasing, the magnons
are gradually depopulated because of an energy gap of gμBB and the
magnon heat is correspondingly diminished or might be completely
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in Fig. 8. They are modeled (full line) as a sum of three
terms, Ctot (T ) = γ T + βT 3 + δT 3/2. The linear coefficient
of electronic heat is determined to γ = 3.1 mJ mol−1 K−2, in
excellent agreement with the value calculated (see Sec. II),
and fitted values β and δ lead to reasonable values of
Debye temperature θD = 530 K and spin-wave stiffness
D = 200 meV Å2, in agreement with previously published
data.4 As to the lattice and magnon heat capacity, the
values Cλ = 99 mJ mol−1 K−1(1365 J m−3 K−1) and Cm =
32 mJ mol−1 K−1(440 J m−3 K−1) have been determined at
10 K.

Turning now to the thermal conductivity in greigite, we
note that its electronic term is closely related to electric
conductivity by the Wiedemann-Franz law Lo = κe/σT as
exemplified, e.g., by measurements of thermal conduction
in pure polycrystalline iron [32]. Ideal theoretical value of
Lorentz number Lo = 2.45×10−8 V2 K−2 was found to apply
at least up to 20 K, where iron showed constant resistivity
of ρo = 0.248 μ� cm. In effect, the observed κe was T linear
and made about 100 W m−1 K−1 at 10 K; see similar findings
in the recent paper of Watzmann et al. [45]. The internal re-
sistivity of the present 80 nm greigite grains in our estimation
is 104 times larger (ρo = 2.4 m� cm), which means also that
the electronic term of thermal conductivity in the grains is
correspondingly lower, making κe = 0.01 W m−1 K−1 at 10
K. As bulk thermal conductivity of the nanogranular sample is
concerned, the electronic contribution is further reduced by a
factor 3 becoming negligible compared to the measured value
at 10 K, κ = 0.06 W m−1 K−1. This leads to the fact that,
in contrast to pure iron where thermal conduction is almost
completely electronic, the phonons and/or magnons have a
dominant contribution in the nanogranular greigite samples.
As concerns these bosonic terms, we refer to conventional
kinetic gas theory reasonably applicable at low temperatures
[38]. Within this approximation the thermal conductivity of
the diffusive system, neglecting the role of grain boundaries,
can be written as

κ = κe + 1
3Cλvλlλ + 1

3Cmvmlm,

where in the second term Cλ is the lattice specific heat per unit
volume, vλ is the group velocity of acoustic phonons (sound
velocity), and lλ is their mean free path, at low temperatures
limited in ceramic nanocrystalline samples by their crystallite
size. The third term is given by the magnon specific heat Cm,
energy averaged magnon velocity of vm, and the magnon free
path lm determined primarily by the crystallite size, taking into

quenched if temperature is sufficiently low; see for more details
[41–43].

4The spin-wave stiffness D = 200 meV Å2 corresponds to an al-
ternatively used parameter D′ = D/a2 = 2.05 meV or 24 K in units
of temperature (a = 9.872 Å). Let us note that there is no direct
determination of magnon spectra in greigite. Nonetheless, Chang
et al. [4] did estimate the mean spin wave stiffness from the tem-
perature decrease of spontaneous magnetization, taking into account
that δMs ∼ T 3/2 based on Bloch spin wave expansion; see also [44]
for theoretical justification in the case of exchange interactions in
ferrimagnetic spinels. A very similar value of D = 193 meV Å2 was
obtained.

account that magnons (as excitations of an exchange coupled
system of local spins) do not suffer from defect scattering.
As a rough estimate of vm at least for determination of its T
dependence, it is possible to consider the group velocity for
thermal magnons (h̄ω = kBT ),

vm(T ) = dω

dk
= 2

√
Dω

h̄
= 2

h̄

√
DkBT ,

which gives altogether the theoretical T 2 dependence of ther-
mal conductivity. The energy averaged group velocity vm

to use in kinetic gas formula is, nonetheless, 1.62 times
larger,5 which means that not the thermal but the superthermal
magnons have the dominant contribution to κm.

Employing parameters obtained in the heat capacity
measurement, vλ estimated to 2000 m/s and vm of dom-
inant acoustic magnons calculated from D = 200 meV Å2

to 6300 m/s at 10 K, we can thus determine the compo-
nents of thermal conductivity inside the 80 nm grains of
the greigite sample. The values calculated for 10 K are
κλ = 0.073 W m−1 K−1 and κm = 0.074 W m−1 K−1 for the
phononic and magnonic terms, respectively, which together
with κe = 0.010 W m−1 K−1 allows us to estimate the total
thermal conductivity inside grains to 0.16 W m−1 K−1. Since
bulk thermal conductivity measured at 10 K makes only about
one-third of this, κ = 0.06 W m−1 K−1, we quantify that in
the 80 nm greigite sample the thermal resistivity of the grain
boundary is twice larger than the thermal resistivity of the
grain itself. Although our analysis is only a rough estimate
at a particular temperature (T = 10 K), we may presume that
transmission probabilities for electron (see our analysis of
electrical resistivity in Sec. IV A) and heat flows through grain
boundary are similar, or at least not dramatically different.
This is a rather remarkable finding since the mechanisms of
the boundary penetration are completely different—quantum
tunneling of electrons vs transmission of heat through grain
boundary by participation of some kind of nonequilibrium
phonons.

A final remark concerns the dependence of thermal con-
ductivity in the temperature range up to about 20 K. For
the boundary limited transport with dominant contribution
of phonons and magnons, the above outlined theory predicts
a sum of T 3 and T 2 terms, but in reality a slower T 3/2

dependence is observed. Let us note that this seeming discrep-
ancy is likely again an effect of grain boundaries as shown
for purely phononic conductivity in silicon by decreasing
its crystallite size [46,47], or for magnonic conductivity in
the ferromagnetic insulator YIG [48,49]. It appears that only
the long-wavelength lattice phonons and surface phonons can
carry the heat through intergrain barriers, so that the bulk heat

5More rigorous treatment is based on proper integration over the q
space, which gives the theoretical formula for magnonic conductivity
in the case of the boundary limited free path lm [39], κm(T ) =
ζ (3)kB

3lmT 2

π2 h̄D
, where ζ is the Riemann zeta function (ζ (3) = 1.202).

Based on this, one may deduce that not the velocity of thermal
magnons (vm = 3900 m/s at 10 K) but 1.62 times larger velocity
(vm = 6300 m/s at 10 K) is the appropriate value for using the
simplified kinetic gas formula.
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transport cannot be simply derived from bosons in thermal
equilibrium as assumed by the theory. This is also the reason
why thermal conductivity tends quickly to a saturation above
100 K.

C. Thermoelectric power

The thermoelectric properties are commonly expressed
through the Seebeck coefficient. In theory, the Seebeck co-
efficient is defined as the ratio of entropy flow to charge flow
in the isothermal region but experimentally, an open circuit is
used and one measures the voltage per temperature gradient
at zero electric current. As shown below in Sec. IV E and the
Appendix, the equivalence of both approaches follows from
Onsager reciprocal relations valid for the electric and heat
(entropy) currents in the presence of electromotive force and
temperature gradient. Full treatment is given in the seminal
paper of Callen [16] and presented recently in the book of
Zlatić and Monnier [18].

As the itinerant ferromagnets are concerned, in addition
to the generally very low diffusive thermopower given by
the Mott expression Sd = (πkB )2T

3eσ ( ∂σ
∂E )

EF
, there is a contri-

bution Smd from magnon dynamics. The latter contribution
results from electron-magnon collisions that exert mutual drag
between the electronic and magnonic systems, and such a
magnon drag effect is known to boost thermopower in ferro-
magnetic metals such as Fe, Co, or Ni [45,46]. According to
early theories, see, e.g., the paper of Bailyn [50], the magnon
drag effect in thermopower is to a certain extent analogous
to the effect of phonon drag whose treatment can be dated
back to works of Klemens, Ziman, and Herring [51–53]. The
simplest model presumes that electron-phonon or electron-
magnon collisions set the drift velocity of phonons/magnons
to be the same as the drift velocity of electrons. This princi-
ple, justified if there are no other dissipation processes, was
developed further for the magnon drag and its suppression by
high external field in the paper of Grannemann and Berger
[42]. As to the occurrence of the drag phenomena, it should
be noted that phonon drag is observed only in systems with
minimum defects, whereas the presence of dopants or struc-
tural disorder (porosity, nanostructuring) suppresses both the
low-temperature phononic peak in thermal conductivity and
the drag effect in thermopower as demonstrated early in dilute
copper alloys or by the difference between the annealed and
unannealed nickel [54,55]. On the other hand, magnon drag
is found to be robust and much more resistant to alloying and
other defects as exemplified for ferromagnetic metals Fe, Co,
and Ni of different microstructures [45,55]. Most importantly
the magnon drag contribution Smd to thermopower starts at
higher temperature than that common for phonon drag; in our
case it develops a maximum at about 200 K (∼TC/2).

More recently, a hydrodynamic model of magnon drag was
formulated by Watzman et al. [45] and applied for ferromag-
netic metals. In this phenomenological model,6 the electron
and magnon systems are treated as two penetrating classical

6Microscopic theory of magnon-drag thermopower was presented
by Tserkovnyak and Mecklenburg [56], based on the spinmotive
forces that are exerted on spins of conduction electrons when moving

FIG. 9. The temperature dependence of thermopower of the
compacted samples Fe3S4.

gases (fluids), characterized by their number density, mass,
and drift velocity. We remind that applying the conservation
law of linear momentum during electron-magnon collisions
(magnon umklapp scattering is neglected) provides the for-
mula for Smd , that depends on the magnonic heat capacity Cm

and electron-magnon scattering rate τ−1
em confronted with scat-

tering rate τ−1
m due to dissipative magnon-to-lattice processes:

Smd = 2

3

Cm

nee

τ−1
em

τ−1
em + τ−1

m

.

Indeed, the Seebeck coefficient measured on the present
nanogranular samples of greigite shown in Fig. 9 exhibits,
in contrast to anticipated theoretical linear dependence for
quasifree carriers, more complex temperature dependence.
For samples with smaller grains, the Seebeck coefficient
steeply rises from the lowest temperatures, then the slope
is gradually diminished and a plateau of 4 μV/K is finally
reached at 130 K and higher. On the other hand, the sample
with larger grains shows a very small negative Seebeck co-
efficient at very low temperature (<0.5 μV/K). From about
30 K the Seebeck coefficient starts to rise to positive values
and reaches above 100 K at a plateau of 2 μV/K. Let us note
that the room temperature Seebeck coefficient reported for the
greigite film by Nozaki, 3.6 μV/K, is not far from our data. As
the overall temperature trend of Seebeck is concerned, there
is some similarity to what is seen in the thermal conductivity
in Fig. 7, which can be considered as a general argument for
presence of magnon drag. In the present nanogranular samples

through a dynamic magnetization texture formed by orbital electrons
of the itinerant ferromagnet (see also [57] and references therein).
It is considered that long-wavelength magnons propagating from
hot to cold represent analogous smoothly variable texture that in-
teracts with conduction electrons via exchange interaction of finite
strength, for which the itinerant spins cannot follow the dynamic
magnetization vector ideally. The result is thus a kind of viscous
drag that, importantly, exhibits driving force on conduction electrons
in parallel or opposite direction to magnon flow, depending on their
spin polarization.
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there is also a question of the role of grain boundaries, but
because of the fortuitous similarity of the electron and heat
intergrain transmittivity mentioned above, the thermoelectric
property measured on bulk should reflect the internal property
of grains.7

In an attempt to interpret the thermopower data, we con-
sider first that in nanogranular greigite, the electron-magnon
collisions largely dominate over other scattering mechanisms
of magnons (τ−1

em 	 τ−1
m ). In this case, the magnon drag con-

tribution to the Seebeck coefficient is given by a simpler
formula that unifies the results derived based on different
principles in Refs. [42,45]:

Smd = 2

3

Cm

nee
.

With magnonic heat capacity Cm proportional to T 3/2,
the magnon-drag contribution will increase with temperature
similarly. Indeed, the Seebeck data measured on pure iron
follow the T 3/2 trend over an exceptionally broad temperature
range; see Watzmann et al. [45] for more details. However,
no T 3/2 scaling can be drawn from the low-temperature
Seebeck data on present greigite samples, and the role of
magnon drag can be judged only indirectly from the sim-
ilarity of the 100–250 K flat maximum in Figs. 7 and 9.
Nonetheless, some illustrative estimate can be done based
on the above-mentioned formula. With Cm = 440 J m−3 K−1

and R0 = 1/nee = 3.4×10−9 m3/C, the magnon drag ther-
mopower of Smd = 0.99 μV/K is calculated for gregite at
T = 10 K, whereas the values measured on both the 80 and
30 nm samples at 10 K are significantly smaller and negative.
This suggests that a realistic description of the magnon-drag
effect should take into account more complex mechanisms in
which linear momentum of magnons streaming from hot to
cold is either absorbed directly by the grain boundary scatter-
ing or dissipated into a phonon bath in processes parametrized
by Gilbert damping. This may lead, especially at low tem-
perature, to τ−1

em < τ−1
m and significant suppression of the

magnon-drag contribution to thermopower [45].

D. Hall and Nernst experiments

In common metals, both the Hall resistivity and the Nernst
coefficient derive from the Lorentz force imposed on prop-
agating charge carriers proportionally to the strength of
perpendicularly applied magnetic field, �F = q�v × �B. Apart
from this classical effect, the ferromagnetic systems exhibit
extraordinary effects that arise due to mechanisms of quan-
tum origins and are often more important. The experiments
show that the magnitude of such anomalous contributions is
proportional to the bulk magnetization and closely follows
its hysteresis loops M(H), which makes the separation of the
normal and anomalous terms possible.

7There is also a question on the applicability of Onsager reciprocal
relations for nanogranular systems in the situation when heat asso-
ciated with electric current contains a contribution from phonon or
magnon drag. In our opinion, the similar electron and heat transmit-
tivity of grain boundaries in the material under study might assure an
affirmative answer.

FIG. 10. Hysteresis curves of (a) Nernst effect of 80 nm sample.
(b) Nernst effect of 30 nm sample. (c) Hall effect of 80 nm sample
Fe3S4. The insets show the geometry of the experiments: temperature
gradient �Tx , electric current Ix , resulting electric field Ey, magnetic
field Bz, and magnetization Mz.

The data of Nernst coefficient Syx = Vy/�Tx, measured on
the Fe3S4 samples of 80 and 30 nm particle size, and the data
of Hall resistivity ρyx = Vy/Ix on a sample of 80 nm particle
size are presented in Fig. 10. One may distinguish the nor-
mal H-linear contribution (ONE, OHE) from the anomalous
M-dependent (ANE, AHE) contribution that exhibits certain
coercivity and saturates in low fields. The temperature depen-
dencies of ONE and ANE are shown in Fig. 11, and OHE and
AHE compared with data of Nozaki [8] are shown in Fig. 12.
It is worthwhile to note that the ordinary and anomalous
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FIG. 11. The temperature dependence of (a) the ordinary Nernst
coefficient NO = SO

yx/B, and (b) anomalous Nernst effect SA
yx of the

compacted samples Fe3S4.

Nernst effects in Fe3S4 are negative, whereas the Seebeck
coefficient and both Hall effects are positive. This is exactly
opposite to Fe3O4 that displays negative Seebeck and Hall
effects, and positive Nernst effects [58].

The absolute value of anomalous Nernst effect of the 30 nm
sample is approximately twice bigger than that of the 80 nm
sample; see Fig. 11. Interestingly, a similar difference of their
Seebeck coefficients is observed; see Fig. 9. This suggests that
thermogalvanic phenomena in metallic greigite have in addi-
tion to a standard diffusive part also another contribution (the
magnon drag) that is evidently size dependent. The temper-
ature dependence of the ANE of the 80 nm sample is almost
linear, whereas that of the 30 nm sample is practically constant
down 100 K and then also decreases almost linearly. Both
tend towards zero at the lowest temperature. The behavior of
the ordinary Nernst effect is similar, i.e., the 30 nm sample
exhibits a higher absolute value than the 80 nm sample and
both decrease towards zero with lowering temperature.

As the ordinary Hall resistivity is concerned, one may see
a clear decrease with decreasing temperature; see Fig. 12.
Consequently, a direct simple translation of RH to carrier
concentration based on a single parabolic band approximation
is thus delicate; moreover, theoretical calculations point to
a coexistence of several Fermi surfaces and their complex
shapes (see Fig. 3). Nozaki, however, claimed the observa-
tion of a temperature independent Hall resistivity with, most
importantly, very comparable mean value that translates to
∼0.2 holes/f.u.; see Fig. 12(a), blue diamonds). In the lower

FIG. 12. The temperature dependence of (a) the ordinary Hall
coefficient RO = ρO

yx/B, compared with data from Ref. [8], (b) the
anomalous Hall resistivity ρA

yx compared with data from Ref. [8]. The
insets show a detailed view of the low temperature data in log(T)
scale.

panel of Fig. 12 the displayed anomalous Hall resistivity
also slopes down with decreasing temperature to a minimum
between 30 and 10 K and it rises slightly again at the low-
est temperatures. Thus, the temperature dependence of the
anomalous Hall resistivity closely resembles that of longitu-
dinal resistivity, which also displays a minimum around 15 K
after its quasilinear decrease from room temperature.

E. Interpretation of Hall and Nernst effects
within the linear transport theory

In an attempt to interpret the transverse transport in greigite
we refer first to the original Callen treatment of thermomag-
netic and galvanomagnetic phenomena [16]. This is based
on generalized Onsager equations for planar flows of charge
and heat (Je

x , Je
y , JQ

x , JQ
y ) in the presence of perpendicular

magnetic field. In these phenomenological equations, four
forces expressed through the gradients of electrochemical po-
tentials ( 1

T ∇xμ, 1
T ∇yμ) and temperature (∇x

1
T ,∇y

1
T ) are the

proper variables to assure the validity of famous reciprocal
relations between kinetic coefficients for the flows. It appears
that for a system with physical isotropy in the x,y plane
there are just six independent kinetic coefficients. Considering
the metallic nature of greigite and using slightly different
notation (see, e.g., the recent book of Zlatić and Monnier
[18]), the equations can be presented through components
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of electric field and temperature gradients as given in the
Appendix.8

Based on the Onsager equations, various transport phe-
nomena and the interrelation between them can be evaluated
for different experimental setups (isothermal/adiabatic con-
ditions, open/closed circuits). In the present work, the Hall
resistivity ρyx = Vy/Ix is measured under isothermal condi-
tions (∇xT = ∇yT = 0), which is assured by sticking the
greigite sample to a copper block with thin insulating spacer.
The Nernst coefficient is most readily also defined at isother-
mal conditions as transverse entropy density current induced
by longitudinal charge density current, Syx = (JQ

y /Je
x )/T ,

analogously to the standard definition of Seebeck coefficient
as entropy current per electric current, Sxx = (JQ

x /Je
x )/T . In

practice, Seebeck and Nernst are nonetheless measured with
open circuit by detecting voltage that is induced by applied
temperature gradient. The theory shows that there is an equiv-
alency (JQ

x /Je
x )/T = (Vx/�Tx )i and (JQ

y /Je
x )/T = (Vy/�Tx )i,

where the index i means “isothermal” in the y direction
(�Ty = 0). The real setup is, however, much closer to the “adi-
abatic” case (JQ

y = 0). In such a case, the actual effect is given
by (Vy/�Tx )a = (Vy/�Tx )i − SxxR, where R = ∇yT/∇xT is a
measure of Righi-Leduc effect in the absence of electric cur-
rent (see, e.g., [17]); the difference is nonetheless negligible
in most metals.

As shown in detail in the Appendix, the longitudinal and
transverse phenomena can be expressed, neglecting higher
order terms, through six basic parameters. These are the
electrical resistivity (or conductivity) ρxx ∼ 1/σxx and ρyx ∼
σxy/σ

2
xx, thermal conductivity κxx and κxy, and so-called ther-

moelectric conductivity αxx and αyx [see Eq. (A5)], all having
a direct relation to kinetic coefficients for charge and heat
flows.

It should be noted that thermal conductivity κxx as given in
Eq. (A3a) and actually measured refers to an open electrical
circuit, i.e., the thermal flow is hindered by the presence of
Seebeck voltage, Vx/�Tx = ρxxαxx. The electronic term of
thermal conductivity is thus diminished by the amount of
−ρxxα

2
xx = −σxxS2

xx. Neglecting such a correction may neg-
atively influence the reliability of the Lorentz number studies
on well-conducting systems with a large Seebeck coefficient.
The situation with nanogranular greigite is, however, very dif-
ferent. The overall thermal conductivity of the 80 nm sample
at 300 K makes about κxx = 0.6 W K−1 m−1. It is dominated
by the magnonic term while other contributions are largely
suppressed by defect scattering in nanogranular Fe3S4. This
concerns the lattice or acoustic-phonon thermal conductivity
and the electronic term that is related to the room-temperature
conductivity σxx = 1.0×104 S/cm by Wiedemann-Franz law
(ke = 0.13 W K−1 m−1 at 300 K) and is theoretically dimin-
ished, due to Seebeck voltage, by an amount of −ρxxα

2
xx =

−σxxS2
xx (Sxx = 3.0 μV/K). The effect calculated for greigite,

�ke = −1.0×10−8 W K−1 m−1 at 300 K, is really negligible,
and this holds to a still larger extent at low temperatures.

8The kinetic equations for Je
x , Je

y , JQ
x , and JQ

y in the Appendix
do not use the proper set of forces, so that the Onsager reciprocal
relations, though included, are not obvious.

FIG. 13. The dependence of the anomalous Hall resistivity vs
longitudinal resistivity.

A counterpart of common electrical resistivity ρxx is the
transverse phenomenon of Hall resistivity ρyx = Vy/Ix. Its
value varies linearly with applied field Hz or in the case of
AHE, with bulk magnetization Mz. Several models linking
anomalous Hall resistivity ρAH

yx and longitudinal resistivity
ρxx have been devised in the form ρAH

yx ∼ λρn
xx, with n and λ

as nondimensional exponent and prefactor [59]. The intrinsic
models that only depend on the ideal band structure and are
independent of scattering include interband effect and Berry
phase mechanisms. The models based on extrinsic mecha-
nisms include side jump and skew scattering. The models can
be distinguished by the exponent n in the above mentioned
power-law relation. The intrinsic and side jump mechanisms
can be modeled with the exponent n = 2. In contrast, the
skew-scattering mechanism predicts n = 1. The experiment
on the 80 nm sample of Fe3S4 allows us to make a check of
the scaling character of ρxx and the AHE part of ρyx based
on their temperature dependent data. As shown in Fig. 13,
there is nearly linear dependence between the longitudinal and
transverse conductivities. Our fit by a power law ρA

yx(T ) =
A [ρxx(T ) − ρxx(0)]n, where ρxx(0) is the rather high residual
resistivity due to grain boundary and static defect scattering,
gives n = 1.15, which is close to n = 1 predicted by the skew-
scattering mechanism.

The Nernst coefficient linearly dependent on Hz or Mz

has been the main focus of the present study. In general,
it is defined as (Vy/�Tx )i = ρyxαxx + ρxxαyx; see the tensor
formula for Seebeck and Nernst, S = σ−1α, in the Appendix
[Eq. (A5)]. Nonetheless, the values measured in the standard
way require correction for the above-mentioned Righi-Leduc
term Sxx

∇yT
∇xT ∼ ρxxαxxκxy/κxx that is always present but dif-

ficult to determine. To our knowledge, the only direct
measurement of Righi-Leduc effect in an itinerant ferromag-
net was achieved for iron metal and its alloys [60–62], using
the fact that their thermal conductivity is almost exclusively
of the electronic type. It was shown that (a) in analogy to
the Wiedemann-Franz law relating the thermal and electronic
conductivities, there is a similar relation between the trans-
verse conductivity κxy and Hall conductivity σxy, quantified
by Lorentz number not far from the ideal L0 value; (b) for
both κxy and σxy the ordinary (Hz-dependent) and anomalous
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FIG. 14. Components of (a) Seebeck coefficient Sxx = ρxxαxx −
ρyxαyx and (b) anomalous Nernst effect Syx = ρxxαyx + ρyxαxx .

(Mz-dependent) components can be distinguished—the latter
ones having dominant contribution at least for experimental
fields below 100 kOe; (c) the magnitude of κxy at B = 3 T,
i.e., well above the magnetic saturation of iron, is significantly
lower than longitudinal thermal conductivity κxx, with a ratio
(Righi-Leduc coefficient) varying from about 1/100 at 300 K
to about 1/1000 at 5 K.

For greigite we can anticipate still lower values of
∇yT/∇xT = κxy/κxx than found in the iron metal, presumably
because the electronic part in κxx is overwhelmed with much
larger magnonic contribution. The correction for Righi-Leduc
effect, involving also Seebeck coefficient of rather low value
of ∼3 μV/K for greigite at 300 K, becomes thus negligible. It
is thus seen that irrespective of the ”isothermal” or “adiabatic”
regime, the Nernst coefficient can be analyzed as a sum of
two parts that are presented in the Appendix and have been
widely used in the literature, ρxxαyx + ρyxαxx.9 Based on the
present ANE data in combination with AHE, it is possible
to separate these two parts. Their temperature dependence is
seen in the lower panel of Fig. 14. It is seen that the term
ρxxαyx, dependent on the transverse component of thermoelec-

9As seen in the Appendix, the formula Syx = ρxxαyx + ρyxαxx fol-
lows from Onsager kinetic equations. Its use is justified at least in the
case of ONE, where the transverse parameters ρyx and αyx are both
proportional to Hz by virtue of the Lorentz force. When applied for
ANE, rather formally, analogous transverse parameters dependent on
Mz are anticipated.

FIG. 15. (a) The dependence of the anomalous transverse elec-
trical conductivity vs longitudinal electrical conductivity corrected
by ρ0 (see Fig. 13). (b) The dependence of the anomalous trans-
verse thermoelectric conductivity vs longitudinal thermoelectric
conductivity.

tric conductivity, has a dominant contribution of negative sign
and its absolute value increases steeply from zero value and
acquires an almost linear trend above ∼100 K. On the other
hand, the minor term ρyxαxx has positive sign and its originally
very slow trend is accelerated with increasing temperature. It
is worthwhile to note that analogous two parts can be consid-
ered also for the Seebeck coefficient, Sxx = ρxxαxx − ρyxαyx,
where the second term arises as the reciprocal response of
Onsager equations in the x-y plane.10 It is quadratic depen-
dent on Mz and its relative impact on the Seebeck value for
greigite is negligible, ∼10−5 according to the data presented
in Fig. 14(a).

In order to get more insight into the relation between the
longitudinal and transverse parameters in the electric conduc-
tivity and thermoelectric conductivity, let us finally turn to the
tensor form of Onsager kinetic equations for electric current

10In this respect we refer to an equivalent but intuitively more
obvious form of Seebeck coefficient, Sxx = ρxxαxx + ρxyαyx; see the
thermoelectric tensor in the Appendix [Eq. (A5)].
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given in the Appendix,

�je = σ �E + α(−�∇T ).

The components of primary interest for us and actually
available for the 80 nm greigite sample are the adjusted values
σxx(T ) = 1

ρxx (T )−ρxx (0) , calculated values αxx(T ), and values

of anomalous Hall and Nernst components, σ A
xy(T ) = ρA

yx

ρ2
xx

and

αA
yx(T ). The data plotted in Fig. 15 show a similar quasilinear

increasing trend for both the electric and thermoelectric con-
ductivities, which can be understood as an independent proof
of unique mechanism of anomalous, Mz-dependent effects in
nanogranular greigite—the skew scattering.

V. CONCLUSIONS

Electronic structure calculations for iron sulphide Fe3S4

(greigite) have shown that compared to the oxide counterpart
Fe3O4 (magnetite) of half-metallic character with n-type car-
riers at three spin-minority Fermi surfaces, there is a broader
conduction band due to much larger hybridization between
the iron 3d states and ligand s states and complex contri-
bution of p-type carriers at three spin-minority and three
spin-majority Fermi surfaces. Experimental investigations of
the ferromagnetic ordering and transport properties (includ-
ing the electric and thermal conductivity, the Hall, Seebeck,
and Nernst effects) have been performed on two nanogran-
ular greigite samples prepared by cold isostatic pressing of
Fe3S4 particles with the mean crystallite size of dXRD ≈ 80
and 30 nm. The bulk conduction of nanogranular greigite is
metalliclike with large residual value ρ0 = 7.3 m� cm and
nearly linear increase to higher temperatures with a slope of
8.8×10−3 m� cm/K for the 80 nm sample. Combining with
resistivity data measured in earlier study on a unique thin-film
sample of Fe3S4 we have estimated that in our nanostruc-
tured samples the electrical resistivity is formed from 1/3
by intragrain resistance and from 2/3 by intergrain barri-
ers. Importantly, a similar ratio was obtained for the thermal
resistance, when the experimental thermal conductivity was
compared with calculated conductivity of grains themselves.
This is a rather unique finding since background mecha-
nisms are quite different—the quantum tunneling of electrons
through barriers vs heat transfer due to transmittivity of long-
wavelength phonons and contribution of surface phonons. The
Seebeck coefficient measured on the 80 nm sample is rather
low, but clear signs of magnon drag contributions have been
found, leading to a broad maximum of S ∼ 2.0 μV/K in
temperature range T = 100–250 K.

The main attention has been given to transverse transport
phenomena, which included the measurements of Hall and
Nernst effects in magnetic fields from −1 to 1 T, the de-
termination of their ordinary and anomalous parts, and the
interpretation of the data in terms of fundamental kinetic
coefficients of Onsager equations. The observed ordinary part
of Hall resistivity for the 80 nm sample is weakly tempera-
ture dependent, corresponding to p-type conduction and on
average ∼0.2 hole/f.u. in Fe3S4, which is in contrast to the
n-type carriers in Fe3O4. The anomalous Hall shows complex
behavior up to ∼20 K, which is followed with rather steep,
almost T-linear increase at higher temperatures. The ordinary

and anomalous Nernst coefficients increase from their zero
value for T → 0 K in a nearly linear manner. It is of interest
that Fe3S4 displays positive Seebeck and Hall effects and neg-
ative Nernst effects, whereas Fe3O4 displays exactly opposite
signs of these effects.

The anomalous Nernst data for Fe3S4 have been separated
into two distinct terms predicted by theory, the dominant one
dependent on the transverse component and the minor one
dependent on the longitudinal component of thermoelectric
conductivity. The temperature dependent values of the former
term provide an alternative way to check scaling of the ther-
moelectric conductivity components, analogously to widely
used scaling between the longitudinal and transverse com-
ponents of the electrical resistivity. It is concluded that the
anomalous Hall and Nernst effects in nanogranular greigite
are governed by skew scattering.
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APPENDIX

Kinetic equations for the charge current density and heat
current density in the presence of perpendicular magnetic field
can be expressed, when applied to metals, in the following
form [see, e.g., Eq. (5.2) in the book of Zlatić and Monnier
[18]]:

Je
x = +Lxx

11Ex + Lxy
11Ey − Lxx

12
∇xT

T
− Lxy

12

∇yT

T
,

Je
y = −Lxy

11Ex + Lxx
11Ey + Lxy

12

∇xT

T
− Lxx

12
∇yT

T
,

JQ
x = +Lxx

12Ex + Lxy
12Ey − Lxx

22
∇xT

T
− Lxy

22

∇yT

T
,

JQ
y = −Lxy

12Ex + Lxx
12Ey + Lxy

22

∇xT

T
− Lxx

22
∇yT

T
.

The present equations take already into account the
Onsager reciprocal relations and are applicable for systems
with physical isotropy in the x,y plane. The role of chemical
potential is considered as negligible and the gradient of elec-
tric potential is included as Ex = − 1

T ∇x� and Ey = − 1
T ∇y�.

There are just six independent kinetic coefficients: Lxx
11, Lxx

12,

and Lxx
22 are even functions of the magnetic field, while the

coefficients Lxy
11, Lxy

12, and Lxy
22 are odd functions of the mag-

netic field or in the case of zero-field ANE or AHE, even and
odd functions of the bulk magnetization Mz. (It is supposed
that these latter coefficients are linearly dependent on Hz and
Mz.) For our purposes, these four equations can be suitably
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rewritten into the next form (see also [17]),

Ex = ρxxJe
x + ρxyJe

y + Sxx∇xT + Sxy∇yT, (A1a)

Ey = ρyxJe
x + ρyyJe

y + Syx∇xT + Syy∇yT, (A1b)

JQ
x = T SxxJe

x + T SxyJe
y − κxx∇xT − κxy∇yT, (A1c)

JQ
y = T SyxJe

x + T SyyJe
y − κyx∇xT − κyy∇yT, (A1d)

which include new parameters that are expressed through
original kinetic coefficients and can be further simplified by
neglecting terms depending on Hz (Mz) to higher order than
linear,

Sxx = Syy = 1

T

Lxx
11Lxx

12 + Lxy
11Lxy

12(
Lxx

11

)2 + (
Lxy

11

)2 ∼ 1

T

Lxx
12

Lxx
11

, (A2a)

Syx = −Sxy = 1

T

Lxy
11Lxx

12 − Lxx
11Lxy

12(
Lxx

11

)2 + (
Lxy

11

)2 ∼ 1

T

Lxy
11Lxx

12 − Lxx
11Lxy

12(
Lxx

11

)2 ,

(A2b)

κxx = κyy = Lxx
22

T
− Lxx

12Sxx + Lxy
12Sxy + κλ + κm

∼ Lxx
22

T
− Lxx

12Sxx + κλ + κm, (A3a)

κxy = −κyx = Lxy
22

T
− Lxy

12Sxx + Lxx
12Syx, (A3b)

ρxx = ρyy = Lxx
11(

Lxx
11

)2 + (
Lxy

11

)2 ∼ 1

Lxx
11

, (A4a)

ρyx = −ρxy = Lxy
11(

Lxx
11

)2 + (
Lxy

11

)2 ∼ Lxy
11(

Lxx
11

)2 . (A4b)

All these parameters have a straightforward relation to
transport properties. According to Eqs. (A1a) and (A1b),
the parameter ρxx refers to common electrical resistivity
and ρyx = Ey/Je

x is the Hall resistivity, both measured under
isothermal conditions. As seen in Eqs. (A1c) and (A1d), Syx

is the Nernst coefficient defined at isothermal conditions as
transverse entropy current induced by longitudinal electric
current, Syx = (JQ

y /Je
x )/T , analogously to the standard defi-

nition of Seebeck coefficient as entropy current per electric
current, Sxx = (JQ

x /Je
x )/T . In a more practical way, Seebeck

and Nernst are commonly measured with open circuit as
voltage induced by applied temperature increment, consider-
ing the equality (JQ

x /Je
x )/T = (Ex/∇xT )i and (JQ

y /Je
x )/T =

(Ey/∇xT )i, where the index i means “isothermal” in the y
direction (∇yT = 0)—see Eqs. (A1a) and (A1b).

Finally, there are the longitudinal and transverse thermal
conductivities κxx and κyx that quantify the heat current JQ

x in
response to temperature gradients ∇xT and ∇yT . The longi-
tudinal component as actually given in Eq. (A3a) is the total
thermal conductivity measured with open electrical circuit. It
is generally a sum of three terms—the electronic κe, phononic
κλ, and magnonic κm. The theoretical value of the elec-
tronic term, κe = Lxx

22/T , is related to conductivity σ through
the Lorentz number, Lo = κe/σT (Lo = 2.45×10−8 V2 K−2).
When measured, it is partially reduced by the onset of See-
beck voltage; see the additional H-linear term −Lxx

12Sxx in

Eq. (A3a). The reduction is, nonetheless, small for metallic
systems. The transverse component κyx refers to two effects
that are closely interrelated—the Righi-Leduc and so-called
thermal Hall effects. The first one is quantified as transverse
∇yT induced by longitudinal ∇xT , and is measured with open
electrical circuit (Je

x = 0) and the absence of transverse cur-
rents (Je

y = JQ
y = 0). The formula for the Righi-Leduc effect

can be then written in two alternative ways:

∇yT

∇xT
= κxy

κxx
= wxx

wyx
,

where the first formulation derives from Eq. (A1d) and uses
the components of thermal conductivity, whereas the second
one is given in terms of thermal resistivity,

wxx = wyy = κxx/
(
κ2

xx + κ2
xy

) ∼ 1/κxx and

wyx = −wxy = κxy(
κ2

xx + κ2
xy

) ∼ κxy

κ2
xx

.

The transverse component wyx can be named as
thermal Hall resistivity. Namely, it is intimately related to the
thermal Hall effect, wyx = −∇yT/JQ

x , which is an analog of
standard Hall effect with electric current replaced by thermal
current JQ

x and electromotive force replaced by thermal force
−∇yT .

We may conclude that transport phenomena in the isotropic
x, y plane, measured in the presence of perpendicularly acting
magnetic field or spontaneous magnetization, can be suitably
expressed through three tensors, containing in total six inde-
pendent elements. These are the tensors of electrical resistivity
ρ (or electric conductivity σ ), thermoelectric conductivity α,
and thermal resistivity w (or thermal conductivity κ). For
galvanomagnetic properties one gets

(
Ex

Ey

)
=

(
ρxx ρxy

ρyx ρyy

)(
Je

x

Je
y

)
or equivalent,

(
Je

x

Je
y

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
,

where σxx = σyy = ρxx/(ρ2
xx + ρ2

yx ) ∼ 1/ρxx and σxy =
−σyx = ρyx/(ρ2

xx + ρ2
yx ) ∼ ρyx/ρ

2
xx. For thermomagnetic

properties like Seebeck and Nernst (given as S = σ−1α in
tensor notation),

(
Ex

Ey

)
=

(
ρxxαxx + ρxyαyx ρxxαxy + ρxyαyy

ρyxαxx + ρyyαyx ρyxαxy + ρyyαyy

)(∇xT
∇yT

)
,

(A5)
where αxx = αyy = Lxx

12
T and αxy = −αyx = Lxy

12
T . Finally for

the thermal Hall,

(−∇xT
−∇yT

)
=

(
wxx wxy

wyx wyy

)(
JQ

x

JQ
y

)
.
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