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Topological correspondence between magnetic space group representations and subdimensions
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The past years have seen rapid progress in the classification of topological materials. These diagnostical
methods are increasingly getting explored in the pertinent context of magnetic structures. We report on a
general class of electronic configurations within a set of antiferromagnetic-compatible space groups that are
necessarily topological. Interestingly, we find a systematic correspondence between these antiferromagnetic
phases to necessarily nontrivial topological ferro/ferrimagnetic counterparts that are readily obtained through
physically motivated perturbations. Addressing the exhaustive list of magnetic space groups in which this
mechanism occurs, we also verify its presence on planes in 3D systems that were deemed trivial in existing
classification schemes. This leads to the formulation of the concept of subdimensional topologies, featuring
nontriviality within part of the system that coexists with stable Weyl points away from these planes, thereby
uncovering novel topological materials in the full 3D sense that have readily observable features in their bulk
and surface spectrum.
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I. INTRODUCTION

With the advent of topological insulators (TIs)—gapped
quantum matter having a topological entity by virtue of
symmetry—the past years have seen a reinvigorated interest
in band theory. Time reversal symmetry (TRS) has played
a major role in these developments, standing at the basis of
the developments of the first models of the general notion of
symmetry protected states [1,2]. More recently, the interplay
with crystalline symmetries has provided a plethora of topo-
logical characterizations [3–22]. In particular, it was found
that a substantial fraction of topological materials can be
diagnosed by refined symmetry eigenvalue methods. Heuris-
tically this pertains to considering combinatorial constraints
between high-symmetry momenta in the Brillouin zone (BZ),
which can be shown to reveal classes of band structures that
actually match the full machinery of K-theory analysis in
certain cases [23], and then comparing them to real space
atomic limits in order to define nontriviality with respect to
this reference [24,25].

Despite the crucial role of TRS, arguably the most
paradigmatic TI model actually involves the formulation of
TRS-breaking Chern bands [26], manifesting the original in-
spiration of these pursuits by quantum Hall effects. Hence,
it is of natural interest to consider the role of magnetism
in combination with the above recent developments. While
the interplay of topology and magnetism entails a vast and
established literature, ranging from spin liquids to axion insu-
lators [27–33], there have been rather fruitful results on both
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essential symmetry eigenvalues indicated schemes [34], that
is symmetry indicators [35] and, very recently, topological
quantum chemistry [36].

Already in the nonmagnetic case the refined evaluations re-
sulted in new insights. In particular, the discrepancies between
different approaches culminated in the formulation of the con-
cept of fragile topology [37]. These are topological invariants
that, unlike stable counterparts, characterize band subspaces
separated by energy gaps from the other bands that can be
trivialized upon the closing of the gaps [38–41]. Of particular
interest are systems with PT or C2T symmetry that were
early characterized through a stable Z2 invariant [42–45],
and more recently through a fragile Z invariant [38,46] given
by the Euler class [47–49] for which new physical effects
have been predicted [50]. In fact, taking into account multiple
gap conditions [49], these phases go beyond any symmetry
eigenvalue indicated notion and relate to the momentum space
braid trajectories of non-Abelian frame-charge characterized
spectral nodes [48,51,52]. The role of C2T symmetry has also
been pointed out in the nontrivial topology of the low energy
bands of twisted bilayer graphene [53,54].

Here we revert to the question what physical implications
the extension to magnetic space groups (MSG) symmetries
can bring within the above context. To this end, we start
by a case study in space group family (SG) 75 and find
that within a magnetic background some Wyckhoff positions
necessarily imply nontriviality. Turning to antiferromagnetic
case we, for the first time, find a model exhibiting fragile
and Euler class topology in a MSG and identify the protect-
ing symmetries as well as defining quantities. The magnetic
symmetry defining antiferromagnetic (AFM) order is however
broken upon adding a generic Zeeman term, giving rise to a
ferro/ferrimagnetic-compatible (FM) phase within the same
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family. The correspondence subsequently manifests itself by
conveying that the fragile topological nature has to translate
into bands of finite Chern number in the FM counterpart.
Going beyond fragile topology, we find that the other re-
maining possibility of this configuration entails a symmetry
protected Weyl semimetallic phase phase, characterized by a
quantized π -Berry phase. The stable nodal phase corresponds
to finite Z2 symmetry indicator [35] that is protected by the
combination of the C4 and C2T symmetries. We moreover
show that this phase possesses a systematic correspondence
to a nontrivial Chern insulating FM counterpart at half-filling,
characterized by an even Chern number C = 2 mod 4. We then
generalize our findings by formulating an exhaustive list of
tetragonal MSGs featuring this necessarily present topological
configurations and their systematic correspondences relating
AFM and FM counterparts. We moreover address the effect
of adding and removing unitary symmetries leading to the
identification of magnetic Dirac points [55], and the gener-
alization of the C2T protected Weyl semi-metallic phases to
numerous MSGs. Most importantly, we find that this mecha-
nism can occur on planes in 3D systems that were previously
diagnosed as trivial. At the crux of the argument lies that
the in-plane topology must coexist with symmetry indicated
nodes away from the subdimensional regions, such that the 3D
conditions appear trivial. Nonetheless, these subdimensionally
enriched topological nodal topologies exhibit robust topolog-
ical features, such as corner modes plus Fermi arcs in the
subdimensional gapped fragile AFM case [56], or Fermi arcs
plus Fermi arcs in the subdimensional Weyl nodal AFM case,
and thus pinpoint to a new class of gapped-nodal topological
materials to explore.

II. MAGNETIC SPACE GROUP AND MAGNETIC
STRUCTURE: A FIRST CASE STUDY IN SG P4 (NO. 75)

To concretize matters we depart from a simple model
for the tetragonal magnetic space group PC4 (MSG No.
75.5 using the BNS convention) [57,58]. The MSG can be
decomposed into left cosets as G75.5/G75.1 = (E |0)G75.1 +
(E |τ )′G75.1, where the space group G75.1 = C4 × T (P4, No.
75.1 in the BNS convention) has no antiunitary symmetry [57]
(E is the identity, the prime (·)′ stands for time reversal,
and τ = a1/2 + a2/2). MSG75.1 (P4) has point group C4

with the normal subgroup of translations T corresponding
to the primitive tetragonal Bravais lattice {n1a1 + n2a2 +
n3a3}n1,n2,n3∈Z where the primitive vectors are a1 = a(1, 0, 0),
a2 = a(0, 1, 0), and a3 = c(0, 0, 1). In the following, we first
focus on the two-dimensional projection z = 0, namely we
study the corresponding magnetic layer group pc4 (denoted
MLG49.4.357 in [58]). In addition, we use the fact that
MSG75.5 (PC4) is generated by (C4z|0)T (C4z is the rotation
by π/2 around the z-axis in the positive trigonometric orienta-
tion) and (E |τ )′T (we will call (E |τ )′ a nonsymmorphic time
reversal symmetry (TRS) as it contains a fractional transla-
tion).

Generally, magnetic space groups with nonsymmorphic
TRS, called Shubnikov space groups of type IV [57],
correspond to AFM structure. Writing (r, m) for a mag-
netic moment m located at r, the action of (E |τ )′ gives
(E |τ )′ (r, m) = (r + τ,−m), and the square [(E |τ )′]2

(r, m) =

MSG75.5 MSG75.1

(a) (b)

2b 2c

FIG. 1. Background magnetic structures for MSG75.5 and 75.1
with Wyckoff positions of interest indicated in standard notation. The
latter MSG is effectively realized by making the oppositely-oriented
moments (red/blue spins aligned with the ẑ axis perpendicular to
the plane) in the former of unequal magnitude. This thus relates an
antiferromagnetic-compatible configuration of the SG75-family with
a ferro/ferrimagnetic one.

(r + a1 + a2, m), i.e., the moment is conserved under trans-
lation by a Bravais lattice vector while it is flipped under a
fractional translation. Hence MSG75.5 (PC4) is compatible
with the AFM structure drawn over one unit cell in Fig. 1(a),
where all the moments of equal sign (pointing in the direction
of the vertical ẑ axis) are obtained under the action of elements
generated by (C4z|0)T. In the following, we assume the exis-
tence of a magnetic background and describe its effect on the
band structure’s topology of itinerant electrons. We note that
such magnetism can be obtained directly as localized atomic
magnetism within density functional theory frameworks [59],
or as the solution of an effective spin Hamiltonian mapped
from the Green’s functions of interacting electrons [60,61].
Alternatively, effective electronic tight-binding Hamiltonians
were derived from the double exchange model, i.e., non-
self-interacting electrons coupled through Hund’s coupling
to local classical magnetic moments that interact via super-
exchange coupling [62], where the electron spins antialign
with the local moments, and for which line-nodal semimetal-
lic phases were recently discussed [63].

A. Necessary crystalline fragile antiferromagnetic topology

Adopting maximal Wyckoff position 2b [58], spanned by
the sublattice sites rA = a1/2 and rB = τ − rA = a2/2, and
setting one s-electronic orbital and both spin-z-1/2 compo-
nents per site, we define the corresponding Bloch orbital basis
functions

|ϕα,σ , k〉 =
∑
R∈T

eik·(R+rα )|wα,σ , R + rα〉, (1)

with α = A, B and σ =↑,↓ (taking ẑ as the quantization
axis of the spins). Ordering the degrees of freedom as ϕ =
(ϕA,↑, ϕA,↓, ϕB,↑, ϕB,↓), the generators of MSG75.5 (PC4), i.e.,
C4z rotation and nonsymmorphic time reversal, are then repre-
sented through

〈ϕ, Dπ/2k|(C4z|0)|ϕ, k〉 = (σx ⊗ M4),

〈ϕ,−k|(E |τ )′ |ϕ, k〉 = eik·τ (σx ⊗ −iσy)K, (2)
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where M4 = diag[e−iπ/4, eiπ/4], and Dπ/2 is the 3D rotation
matrix by an angle π/2 around the kz axis, {σi}i=x,y,z are the
Pauli matrices, and K is complex conjugation. Combining the
two generators, we also obtain

〈ϕ,−Dπ/2k|(C4z |τ )′ |ϕ, k〉 = eiDπ/2k·τ (1 ⊗ −iσyM∗
4 )K. (3)

It follows that the orbit of the action of the sym-
metries {(E |0), (C4z|0), (E |τ )′, (C4z|τ )′} on ϕA,↑ is
{ϕA,↑, ϕA,↓, ϕB,↑, ϕB,↓}, i.e., all four degrees of the freedom
are intertwined by the symmetries of MSG75.5 (PC4).
It can be easily checked that this remains true for any
change of basis (i.e., under any general rotation among the
sublattice and spinor components). Furthermore, it can be
verified that the atomic orbitals cannot be moved to any
other Wyckoff position without breaking the symmetries.
We therefore conclude that {|ϕ, k〉}k∈BZ defines a four
dimensional elementary band representation (EBR) [25,64–
66] as it is formed by the minimal set of localized (atomic
like) orbitals at the sites 2b that is compatible with the
magnetic space group symmetries, and we denote it EBR2b

75.5.
This agrees with Ref. [36] which lists 2b as a maximal
Wyckoff position and excludes this EBR from the exceptional
composite EBRs.

A minimal tight-binding model for EBR2b
75.5 is given by

H (k) = t1 f1(k)σz ⊗ σz

+ t2 f2(k)σy ⊗ 1 + t3 f3(k)σx ⊗ 1

+ λ1g1(k)1 ⊗ σ+ + λ∗
1g∗

1(k)1 ⊗ σ−
+ λ2g2(k)σx ⊗ σ+ + λ∗

2g∗
2(k)σx ⊗ σ−, (4)

with σ± = (σx ± iσy)/2 and the lattice form factors

f1 = cos a1k − cos a2k, g1 = sin a1k − i sin a2k,

f2 = cos δ1k − cos δ2k, g2 = sin δ1k − i sin δ2k,

f3 = cos δ1k + cos δ2k, (5)

defined in terms of the bond vectors δ
(
1
2)

= (a1(
−
+)a2)/2. It is

assumed that {t1, t2, t3} are real, while {λ1, λ2} can be com-
plex. In the following, we first set t1, t2, t3 = 1, and λ1, λ2 =
(1/2)eiπ/5.

Of importance for the analysis of the band structure and
its topology are the squares of the twofold antiunitary sym-
metries [67,68]. The nonsymmorphic time reversal squares as

〈ϕ, k|[(E |τ )′]2 |ϕ, k〉 = −e−ik·2τ14×4, (6)

from which we get

〈ϕ, �|[(E |τ )′]2 |ϕ, �〉 = 〈ϕ, M|[(E |τ )′]2 |ϕ, M〉 = −14×4. (7)

We thus conclude that there must be a twofold Kramers de-
generacy at � and M, and we call them TRIM (time reversal
invariant momentum) in the following. Combining the non-
symmorphic time reversal with C2z, we get (C2z|τ )′ that is
represented through

〈ϕ,−C2zk|(C2z|τ )′ |ϕ, k〉 = eiDπ k·τ (σx ⊗ iσx )K (8)

TABLE I. Character table for the magnetic space group IRREPs
of MSG75.1 (P4), and coIRREPs of the unitary symmetries of
MSG75.5 (PC4), at �, M, and X , with ω = eiπ/4. The coIRREPs
of MSG75.5 (PC4) are given by the pairing of the two IRREPs
of MSG75.1 (P4) within the same column (e.g., �5�7 = �5 ⊕ �7).
Retrieved from the Bilbao Crystallographic Server [69]. The second
column gives the spin components located at the Wyckoff position
2c of MSG75.1 (P4) from which the IRREPs are induced.a

WP �5 �6 M8 M7

2c �7 �8 M5 M6 X 3 X 4

C4z
↑z

↓z

−ω∗

−ω

ω∗

ω

ω

−ω∗
−ω

ω∗

C2z
↑z

↓z

−i
i

−i
i

i
−i

i
−i

-i i

aWe note that for any maximal Wyckoff position (WP) of MSG75.1
(P4) {1a, 1b, 2c} [36,69] the spin-z components are good quantum
numbers at � and M, which originates from the fact that the verti-
cal C4z-axes (for WPs 1a and 1b) and C2z axes (for WPs 2c) give
natural quantization axes for the spins. At the Wyckoff position 2c
(compatible with the Wyckoff position 2b of MSG75.5), the spin-
z + 1/2 (+3/2) induces {�5, �6, M7, M8}, and the spin-z − 1/2
(−3/2) induces {�7, �8, M5, M6}.

and squares as

〈ϕ, k|[(C2z|τ )′]2 |ϕ, k〉 = 14×4. (9)

The existence of such an antiunatry symmetry that leaves the
momentum invariant and squares to +1 implies that there
exists a change of orbital basis in which the Hamiltonian is
real symmetric [52]. This is here achieved through H̃ (k) =
V · H (k) · V † where V = √

σx ⊗ iσx. We symbolically refer
to this symmetry as the “C2T ” symmetry.

The bands are then effectively analyzed using the (co-
)irreducible representations at the �, M, and X points. These
are summarized in Table I (and discussed further in Ap-
pendix D 1).

Whenever a band structure of an EBR may be split by
an energy gap, at least one band subspace must be topologi-
cal, namely, either both band subspaces are stable or fragile
topological, or one is trivial and the other must be fragile
topological [25,37,38]. Heuristically this is the case because
there must be an obstruction forbidding the mapping of Bloch
eigenstates of EBR subspaces to localized Wannier functions
(i.e., atomic limits) as a result of the space group symmetries,
since the dimensionality of any band subspace’s Wannier basis
(here two) is necessarily smaller than the dimensionality of
the by definition minimal EBR (here four). As a consequence,
the Wannier functions representing an EBR’s subspace are
either delocalized if we impose all symmetry constraints, or
are incompatible with the space group symmetries. From the
induced irreducible co-representations (coIRREPs) and the
compatibility relations among these [23,69,70], we conclude
that EBR2b

75.5 can be split over all high-symmetry regions of
the Brillouin zone. We actually obtain a gapped band structure
over the whole Brillouin zone in our minimal model, see
Figs. 2(a) and 2(b) that gives the ordering in energy of the
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FIG. 2. Nontriviality in MSG75.5. (a) Full band structure of
model defined in Eq. (4) and (b) along the high-symmetry direc-
tions with coIRREPs indicated. (c) Symmetry-based paths within the
Brillouin zone used as base loops for the patch Wilson loop (dashed
blue), the C4-symmetric Wilson loop (green), and the symmetry indi-
cated Berry phase (red). The small arrows show the direction of flow
(deformation of base loops). (d) Two-band Wilson loop (blue lines),
integrated along kx ∈ [0, 2π ], and total Berry phase (red dashed line)
for the valence (equivalently, conduction) bands of EBR2b

75.5. Integrat-
ing along ky ∈ [0, 2π ] gives equivalent results. (e) Wilson loop flow
over a patch from the base loop �X�′ to �M�′. (f) C4-symmetric
Wilson loop flow from the point l0 = � to the boundary of the
Brillouin zone, l1 = ∂BZ. Notation follows conventions of the main
text.

induced coIRREPs1 (defined in Table I). The rational behind
the splitting of the EBR will be explained when we address
the symmetry indicator, which turns out to be trivial for the
IRREPs ordering of Fig. 2(b). In the following we refer to the
lower (higher) two-band subspace as the valence (conduction)
subspace at half-filling. The question is then to determine the
topology of each gapped subspace as in that case there is no
stable symmetry indicated topology.

As pointed out above, the C2T symmetry implies that the
Bloch eigenvectors can be made real through the appropriate
change of basis. It follows that (oriented) two-band subspaces
of such Hamiltonians are topologically classified by Euler
class χ ∈ Z that can be computed as a winding of Wilson
loop [38,47–49,52]. We find that the Wilson loop (W[l],
see Appendix A) of each two-band subspace winds along
both directions (i.e., integrating along the base path lky =
{(kx, ky)|kx ∈ [0, 2π ]} and scanning through ky ∈ [0, 2π ], and
similarly if we exchange kx ↔ ky), see Fig. 2(d). We moreover
find that the Berry phase (eiγB[l] = DetW[l]) of both two-band

1The coIRREPs of MSG75.5 are obtained from the IRREPs of
MSG75.1 with the degeneracies imposed by the extra antiunitary
symmetries (this is practically determined by the Herring rule [57]).

TABLE II. Character table for the magnetic space group IRREPs
of MSG77.13 (P42), and coIRREPs of the unitary symmetries of
MSG77.18 (PI 42), at Z , A, and R, with ω = eiπ/4. The (co-)IRREPs
at �, M, and X are the same as in Table I. The coIRREPs of
MSG77.18 are given by the pairing of the two IRREPs of MSG77.13
within the same column. Retrieved from the Bilbao Crystallographic
Server [69].

WP Z5 Z6 A8 A7

2c Z8 Z7 A5 A6 R3 R4

(C4z|τ3)
↑z

↓z

−ω

−ω∗
ω

ω∗
ω∗

−ω

−ω∗

ω

(C2z|0)
↑z

↓z

−i
i

−i
i

i
−i

i
−i

-i i

subspaces is π along both directions, see Fig. 2(d) (red dashed
line), pointing to the nonorientability of the subspaces’ frames
of Bloch eigenvectors [49]. While the Euler class is not de-
fined strictly speaking for an unorientable band subspace [71],
we still obtain the winding of Wilson loop as an element of
π1(O(2)) = Z since W[l] ∈ O(2) when computed in the real
gauge (i.e., using the Bloch eigenvectors of the real symmetric
form).2 We thus conclude that each two-band subspace has a
nonorientable nontrivial fragile topology [49]. Moreover, we
also point out that the nontrivial π Berry-phases are actually
appealing from a bulk-boundary perspective [72]. Indeed, they
culminate in-gap edge states, reflecting a physical signature,
see Ref. [56] for a detailed analysis.

We further derive in Appendix A the necessary nontriv-
iality of the split EBR2b

75.5. Following Ref. [38], we show
that the crystal symmetries impose a finite fractional wind-
ing of Wilson loop over one quarter of the Brillouin zone,
i.e., the patch bounded by the paths �X�′ and �M�′ (blue
dashed lines) in Fig. 2(c). This results from the difference
in the symmetry protected quantizations of the Wilson loops
over the two base paths, i.e., Arg[eig{W[l�X�′ ]}] = [0, π ] and
Arg[eig{W[l�M�′ ]}] = [π/2, π/2], which depends on both
the IRREPs and the spinor structure of the bands (i.e., spin-
parallel versus spin-flip parallel transports, see Appendix A),
as is also verified through direct numerical evaluation of the
Wilson loop over the patch in Fig. 2(e). Then, by C4 symmetry,
the Wilson loop must have a finite integer winding over the
whole Brillouin zone, as confirmed by Fig. 2(d). We later refer
to it as the crystalline Euler fragile topology (written CEF in
Table III) when we address the generalization to other MSGs.

We furthermore compute the C4-symmetric Wilson loop
flow [38,73,74] from the point l0 = � to the contour of the
Brillouin zone l1 = ∂BS, shown in green in Fig. 2(c), and
between which we extrapolate by taking the scaled contour
ν∂BZ for ν ∈ [0, 1]. This also exhibits a full winding shown
in Fig. 2(f). The C4-symmetric Wilson loop winding alludes
to the persistence of nontrivial fragile topology after breaking

2Strictly speaking there is reduction Z → N of the classification as
a consequence of the facts that band subspaces are orientable and
not oriented, and that the homotopy classes of gapped Hamiltonians
have no fixed base points [49].

245127-4



TOPOLOGICAL CORRESPONDENCE BETWEEN MAGNETIC … PHYSICAL REVIEW B 103, 245127 (2021)

TABLE III. Candidate MSGs for the (Euler) fragile/stable-nodal AFM to Chern FM mechanism, including those profiting from the
subdimensional topological analysis. The table lists the AFM and corresponding FM counterparts as well as their time reversal invariant
momenta (TRIM) which host Kramers doublets (i.e., Weyl nodes). Moreover, it details the topology by enumerating the value of C2T = ±1
and the two-band subspace (2-BS) characterization on the kz = 0, π momentum planes. [C2T ]2 = +1 indicates Euler class (real) topology,
while [C2T ]2 = −1 implies the twofold Kramers degeneracy of the bands. The labels CEF, CF, CW, and CC indicate crystalline Euler fragile
(with symmetry-indicated Wilson loop quantization), crystalline fragile (with the winding of C4-symmetric Wilson loop), and crystalline Weyl
semimetallic (with a symmetry-indicated π -Berry phase), respectively. When the 2-BS Topology is CW, we mean that there must be Weyl
nodes connecting adjacent two-band subspaces. When we write CEF/CW, we mean that either of the topologies is realized depending on the
ordering of IRREPs. Finally, the EBR column specifies the elementary band representationsa hosting the topologyb. All FM candidates acquire
crystalline Chern (CC) topology when obtained from their AFM parents through Zeeman splitting. The EBR data were retrieved from the
Bilbao Crystallographic Server [69].

AFMSG TRIM kz [C2T ]2 2-BS Topology EBRs FMSG

75.4 (Pc4) �, M, X, X ′ 0
π

+1
−1

CEF
CF

(2a, ↑z ) ⊕ (2a,↓z ), (2b, ↑z ) ⊕ (2b,↓z ),
(4c,↑z ), (4c, ↓z )

75.1 (P4)

75.5 (PC4) �, M, Z, A
0
π

+1
+1

CEF/CW
CEF/CW

(2a, ↑z ) ⊕ (2a,↓z ), (2b, ↑z ⊕ ↓z ),
(4c,→y )

75.1 (P4)

75.6 (PI 4) �, M, R, R′ 0
π

+1
−1

CEF/CW
CF

(2a,↑1/2
z ) ⊕ (2a,↓1/2

z ) ⊕ (2a, ↑3/2
z ) ⊕ (2a, ↑3/2

z ),
(4b,↑z ), (4b, ↓z )

75.1 (P4)

76.10 (Pc41) �, M, X, X ′ 0
π

+1
+1

CEF
CEF/CW

(4a, →y ), (4b, →y ), (4c, →y ) 76.7 (P41)

76.11 (PC41) �, M, Z, A
0
π

+1
−1

CEF/CW
CF

(8a, →y ) 76.7 (P41)

76.12 (PI 41) �, M, R, R′ 0
π

+1
+1

CEF/CW
CEF/CW

(4a, →y ) 76.7 (P41)

77.16 (Pc42) �, M, X, X ′ 0
π

+1
−1

CEF
CF

(2a, ↑z ⊕ ↓z ), (2b, ↑z ⊕ ↓z ),
(4c,↑z ), (4c, ↓z )

77.13 (P42)

77.17 (PC42) �, M, Z, A
0
π

+1
+1

CEF/CW
CEF/CW

(4a, ↑z ) ⊕ (4a,↓z ), (4b, ↑z ) ⊕ (4b,↓z ),
(4c,→y )

77.13 (P42)

77.18 (PI 42) �, M, R, R′ 0
π

+1
−1

CEF/CW
CF

(2a, ↑z ⊕ ↓z ), (4b, ↑z ) ⊕ (4b, ↓z ) 77.13 (P42)

78.22 (Pc43) �, M, X, X ′ 0
π

+1
+1

CEF
CEF/CW

(4a, →y ), (4b, →y ), (4c, →y ) 78.19 (P43)

78.23 (PC43) �, M, Z, A
0
π

+1
−1

CEF/CW
CF

(8a, →y ) 78.19 (P43)

78.24 (PI 43) �, M, R, R′ 0
π

+1
+1

CEF/CW
CEF/CW

(4a, →y ) 78.19 (P43)

79.28 (Ic4) �, M, X, X ′ 0 +1 CEF
(4a,↑z ) ⊕ (4a, ↓z ), (4b,↑z ⊕ ↓z ),

(8c,→y )
79.25 (I4)

80.32 (Ic41) �, M, X, X ′ 0 +1 CEF
(8a, →y ), (8b, →y ),

(8c,↑z ), (8c, ↓z )
80.29 (I41)

81.36 (Pc4̄) �, M, X, X ′ 0
π

+1
−1

CEF
CF

(2a, ↑z ) ⊕ (2a,↓z ), (2c, ↑z ) ⊕ (2c, ↓z ),
(4g,↑z ), (4g, ↓z )

81.33 (P4̄)

81.37 (PC 4̄) �, M, Z, A
0
π

+1
+1

CEF/CW
CEF/CW

(2a,↑1/2
z ) ⊕ (2a,↓1/2

z ) ⊕ (2a, ↑3/2
z ) ⊕ (2a, ↑3/2

z ),
(2b,↑1/2

z ) ⊕ (2b, ↓1/2
z ) ⊕ (2b, ↑3/2

z ) ⊕ (2b, ↑3/2
z ),

(2c, ↑z ⊕ ↓z ), (2d,↑z ⊕ ↓z ), (4g, →y )
81.33 (P4̄)

81.38 (PI 4̄) �, M, R, R′ 0
π

+1
−1

CEF/CW
CF

(2a,↑1/2
z ) ⊕ (2a,↓1/2

z ) ⊕ (2a, ↑3/2
z ) ⊕ (2a, ↓3/2

z ),
(2b,↑1/2

z ) ⊕ (2b, ↓1/2
z ) ⊕ (2b, ↑3/2

z ) ⊕ (2b, ↓3/2
z ),

(2c, ↑z ⊕ ↓z ), (2d,↑z ⊕ ↓z )
81.33 (P4̄)

82.42 (Ic4̄) �, M, X, X ′ 0 +1 CEF
(4a,↑z ) ⊕ (4a, ↓z ), (4d,↑z ) ⊕ (4d,↓z ),

(8g, →y )
82.39 (I 4̄)

aThe EBRs are defined for a given Wyckoff position and a fixed spin basis. We either take the vertical ẑ-axis (C4-axis) as the quantization axis
for the spin-1/2 (3/2) with the spin basis (↑z, ↓z ), or we take a quantization axis that is perpendicular to ẑ, e.g., ŷ for which the spin basis is
(→y, ←y ) = (↑z +i ↓z, i ↑z + ↓z )/

√
2.

bIn the case of a single EBR, splitable at kz = 0 and kz = π , we mean that it must host one of the listed nontrivial topologies. In the case of a
(direct) sum of EBRs, we mean that the topology can be achieved through the permutation of IRREPs between the EBRs.
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- 2

0
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E

FIG. 3. Stable topological semimetallic phase of MSG75.5 (PC4)
indicated by z2 = 1 mod 2, here represented by EBR2b

75.5 at half-
filling. Full band structure over (a) BZ and (b) along high-symmetry
lines where two coIRREPs at X have been inverted when compared
to Fig. 2(b).

(C2z|0)′ symmetry, i.e., without Euler class. We refer to it as
the crystalline fragile topology (written CF in Table III).

These results thus constitute three complementary ways
to reveal the necessary nontriviality of the crystalline fragile
topology of the split EBR2b

75.5.

B. Stable nodal topological phases

We can characterize the symmetry indicators of a given
band structure by using the matrix containing all allowed
magnetic EBRs. This results in a Z2 indicator for MSG75.5
(PC4). As detailed in Appendix D, the explicit expression for
this indicator is

z2 = nX3
mod2, (10)

where nX3
is the number of occupied bands at the X point

with the IRREP X 3. In agreement with the discussion in the
previous section, the indicator is trivial for the fragile phase
of EBR2b

75.5 at half-filling, as can be verified from the coIR-
REPs of Fig. 2(b). We emphasize that this symmetry indicator
readily generalizes for an arbitrary even number of occupied
bands, i.e., at a filling ν ∈ 2Z + 2.

We thus conclude that a stable topological phase can be
reached through a band inversion at X . This is achieved
for the model Eq. (4) by taking |λ2| >

√
2|t1|. Setting λ2 =

(6/5)
√

2, we obtain the band structure of Fig. 3 that ex-
hibits a semimetallic phase with four nodal points around �

at half-filling. We find that the stable symmetry indicator z2

corresponds to a π Berry phase for the valence (conduction)
bands along the path lq [see Fig. 2(c)], i.e., (see derivation in
Appendix B)

γ
(1::2)

B [lq] = −i ln[Det(W (1::2)[lq])]

= −i ln

[
ξ�

4 (1)ξ�
4 (2)ξM

2 (1)ξM
2 (2)

ξM
4 (1)ξM

4 (2)ξX
2 (1)ξX

2 (2)

]

= −i ln

[
(+1)(+1)

(−1)ξX
2 (1)ξX

2 (2)

]

= −i ln
[
(−1)ξX

2 (1)ξX
2 (2)

]
=

{
0 mod 2π, if z2 = 0,

π mod 2π, if z2 = 1.
(11)

Let us first note that, similarly to Eq. (10), Eq. (11) can also
be generalized for an arbitrary even number of occupied bands
(i.e., a filling ν ∈ 2Z + 2). Importantly, C2T symmetry (with
[C2T ]2 = +1) imposes the vanishing of the U (1) Berry curva-
ture over the two-band occupied eigen-subspaces, since within
the real basis we have F = Pf[F]iσy [52] and thus trF ≡ 0.
As a consequence, the Chern number of the gapped AFM
phase at half-filling is identically zero. From there results that
the nontriviality of the Berry phase indicates a nodal phase
(i.e., it indicates the obstruction to define a smooth projector
on the occupied bands over the whole Brillouin zone due
to the presence of topologically stable band crossings with
the unoccupied bands), i.e., the necessary existence of an
odd number of nodal points inside the domain bounded by
lq. Upon the breaking of the nonsymmorphic TRS, C2zT is
also broken, and the π Berry phase indicates a C4-symmetry
protected Chern number at half-filling, or more generally at a
filling ν ∈ 2Z + 2,

C = 2z2 mod 4. (12)

The nontrivial Chern phases are discussed in detail in the next
section.

We emphasize that the nodal points at general momenta are
not indicated by the compatibility relations. Indeed, these are
stabilized by the (C2z|τ )′ symmetry (C2T ) for which there is
not an eigenvalue structure. Instead, the C2T symmetry quan-
tizes the Berry phase to the values {0, π}, with π indicating
an odd number of nodes encircled by lq. Embedded in 3D the
nodal points correspond to single Weyl points that are pinned
on the C2T invariant plane (i.e., at kz = 0 where −C2zk =
IC2zk = mzk = k) by virtue of the chirality-preserving prop-
erty of C2T . Indeed, any Weyl point leaving the kz = 0 plane
must have a mirror symmetric image with equal chirality by
C2T symmetry. It is therefore forbidden for a single node to
leave the plane by conservation of Chern number. We refer to
these phases in the 3D context as the crystalline Weyl topology
(written CW in Table III).

III. AFM-FM CORRESPONDENCE

We now turn to ferro/ferrimagnetic (FM) phases associ-
ated with SG75 obtained from the fragile and stable nodal
AFM phases discussed above through the breaking of the
antiunitary symmetry (E |τ )′, thereby effectively realizing
MSG75.1 (P4, Shubnikov type I). This is done in Eq. (4) by
adding a Zeeman coupling term εZ(1 ⊗ σz ). We find that the
topology of the FM-compatible phases are necessarily non-
trivial, exhibiting Chern numbers constrained by crystalline
symmetries that intricately relate to the topology of the AFM
counterparts.

We note that the correspondence discussed here must be
contrasted from the Chern phases obtained under an external
magnetic field [75] which are in general not symmetry indi-
cated.

A. General mechanism

Let us first generally address the AFM-FM correspondence
and its physical mechanisms. For this purpose it is worth
starting from MSG83.49 (PC4/m) which is obtained from
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(a)

(b)

FIG. 4. (a) Splitting and ordering of the EBR’s energy levels
induced by the successive breaking of inversion (I|0) and nonsym-
morphic time reversal (E |τ )′ symmetries. The split (t1, t2, t3 = �)
four-dimensional EBR of MSG83.49 (PC4/m), and MSG75.5 (PC4)
for z2 = 0, separates into two split EBRs of MSG75.1 (P4) un-
der the combined effect of Dresselhaus-Rashba spin-orbit (λ1, λ2 =
λsoc) and Zeeman (εZ) couplings, giving rise to energy ordered
pseudo-spin-polarized Chern bands (C = sign[t2], brown). Pure spin
components are drawn in red and blue (for MSG83.49), pseudo-spin
components are drawn in magenta and green for MSG75.1. Under a
strong Zeeman splitting, the valence (conduction) subspaces become
fully pseudo-spin-polarized (see text) while conserving (at fixed λsoc)
the Chern characters of the bands. b) Zeeman splitting when z2 = 1
for the EBR of MSG75.5 (PC4) leading to a symmetry indicated
nontrivial even Chern insulator (C = 2 mod 4) at half-filling.

MSG75.5 by simply adding inversion symmetry, i.e., SG83
has point group C4h. The presence of (I|τ )′ symmetry which
squares to −1 leads to the twofold Kramers degeneracy of
the bands over the whole Brillouin zone. The parent EBR,
which we write EBR2c

83.49, also splits with a topology char-
acterized by symmetry indicated mirror Chern numbers [36].
We readily obtain the corresponding Hamiltonian by taking
λ1, λ2 = 0 in Eq. (4). The full splitting of EBR2c

83.49 requires
|t1|, |t2|, |t3| > 0 (which we symbolize by a single variable
� in Fig. 4), where t1 is a spin-z-preserving spin-orbit cou-
pling that acts as a delocalized Zeeman coupling on each
sublattice orbital but changes sign between sublattice sites,
and t2 and t3 are spin-preserving inter-sub-lattice site cou-
plings. Due to the basal mirror symmetry 〈ϕ, mzk|mz |ϕ, k〉 =
1 ⊗ −iσz, each band doublet can be separated into the −i and i
mirror-eigenvalue sectors, matching with the spin-↑ and spin-
↓ components (i.e., the spin z components are good quantum
numbers over the whole Brillouin zone).

The terms in {λ1, λ2} in Eq. (4) break inversion symmetry
and correspond to combined Dresselhaus and Rashba spin-
orbit couplings. The effect of the latter (symbolized by λsoc)
is to split the Kramers degeneracy away from � and M, as
represented schematically in Fig. 4(a) for z2 = 0 in Eq. (10).
The conservation of Kramers doublets at � and M is due to
the nonsymmorphic time reversal which still squares to −1
at these points, as derived above. While the bands now have
pseudospin components at generic momenta, the pure spin-↑

FIG. 5. Nontriviality in MSG75.1. (a) Band structure for
MSG75.1 obtained from the model in Eq. (4) together with Zeeman
coupling and (b) along high-symmetry lines with the IRREPs indi-
cated. We have taken εZ = 1/2. Applying Eq. (14) we find that each
band hosts a nonzero Chern number.

and spin-↓ components are still good quantum number at �

and M since the terms in λ1,2 vanish there.
The AFM-FM transition can then be modeled through a

Zeeman term (εZ) that breaks the nonsymmorphic TRS lead-
ing to the splitting of the (� and M) Kramers doublets. This
leads to the pure spin polarization of the bands at � and
M since, for any maximal Wyckoff position of MSSG75.1
(P4) [36,69], spin-↑ and spin-↓ induce distinct sets of IRREPs
at � and at M (see the footnote of Table I). In the following
we thus refer to the pseudo-spin-polarizations ↑̃ and ↓̃ of the
bands in the sense that the band ↑̃ (̃↓) at k has the pure spin
component ↑ (↓) at � and M. This does not exclude the case,
for dominant spin-flip terms as compared to Zeeman splitting,
of a band subspace with an opposite pure spin configuration
at � (say spin-↑) and M (spin-↓), see the discussion around
Eq. (A6) in Appendix A. Such a configuration typically re-
quires long-range spin-flip terms [36]. This results in energy
ordered pseudo-spin-polarized Chern bands (column εZ > 0
in Fig. 4, Fig. 5, and Fig. 12 in Appendix C) with the relative
chirality of the minimal model set by sign[t2]. Further increas-
ing Zeeman coupling (while keeping λsoc fixed, see below)
leads to fully pseudo-spin-polarized valence and conduction
subspaces illustrated in the right column in Fig. 4(a).

As a next step, by switching off the spin-flip λ1,2 terms,
while maintaining a dominant Zeeman splitting, we adiabat-
ically map the fully pseudo-spin-polarized bands into pure
spin-polarized split EBRs of MSG75.1 (P4). Indeed, the sub-
lattice sites A and B still span a single maximal Wyckoff
position, now labeled 2c for MSG75.1 (P4) [69,76], and
from the absence of spin-mixing symmetry we may form
spin polarized EBR2c,↑

75.1 , and EBR2c,↓
75.1 , from the orbital ba-

sis (ϕA,↑, ϕB,↑), and (ϕA,↓, ϕB,↓), respectively. We write the
adiabatic mapping of the fully pseudo-spin-polarized va-
lence and conduction bands into spin-polarized split EBRs as

EBR2c,̃↑
75.1 ∼ EBR2c,↑

75.1 and EBR2c,̃↓
75.1 ∼ EBR2c,↓

75.1 . The symmetry
breaking term (Zeeman) thus induces the following phase
transition from one four-dimensional split EBR (of MSG75.5)
to two two-dimensional split EBRs (of MSG75.1),

EBR2b
75.5 −→ EBR2c,̃↑

75.1 + EBR2c,̃↓
75.1 ∼ EBR2c,↑

75.1 + EBR2c,↓
75.1 .

(13)
We emphasize that this mapping is model independent, in the
sense that it continues to exist when we add any extra term
in Eq. (4) that satisfies the symmetries of MSG75.5 (PC4)
and MSG75.1 (P4). The symmetry broken band structure is
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now split into four separated bands and the question is to
characterize the topology of each single band.

The symmetry indicated Berry phase for Band n (using
the bottom-up labeling of the energy eigenvalues, i.e., En �
En+1) along the path lq = �M′XM� (M′=M-b2), see (in red)
Fig. 2(a), is [6,13,77] (one-band reduction of Eq. (11), see
derivation in Appendix B)

γ
(n)

B [lq] = −i ln
[
ξ�

4 (n)ξM
4 (n)−1ξM

2 (n)ξX
2 (n)−1

]
, (14)

where ξ k̄
4 (n) and ξ k̄

2 (n) are the C4- and C2-eigenvalues, re-
spectively, at the high-symmetry point k̄ listed in Table I.
The Chern number of Band n, given through e−i2πC(n) =
(eiγ (n)

B [lq] )4, is thus

C(n) = −(2/π )γ (n)
B [lq] mod 4, (15)

see also Ref. [36]. We show below that whenever the FM
phase is obtained from one of the (necessarily) nontrivial
AFM phases of EBR2b

75.5, it must be made of nontrivial Chern
bands. Remarkably, the Zeeman splitting of the stable nodal
phase of MSG75.5 (PC4), i.e., with z2 = 1 in Eq. (10), neces-
sarily generates a nontrivial Chern FM phases at half-filling,
with C = 2 mod 4 according to Eq. (12), see Fig. 4(b). This
is discussed in detail below where we show that Eq. (12)
matches with Eq. (14) and (15) for Band 1 and 2. Below we
also use the pseudospin polarization to predict single bands of
higher Chern number (i.e., C = ±3 mod 4) in some regime.
In the following we refer to these symmetry indicated Chern
phases as the crystalline Chern topology (we call it CC topol-
ogy in the following).

Before we study the AFM to FM phases correspondence
for the model Eq. (4) in more detail, we importantly note that
the same nontrivial AFM phases, as well as the AFM to FM
correspondence, can be obtained from the following EBRs
(for MSG75.5 (PC4) → MSG75.1 (P4)):

EBR↑
2a ⊕ EBR↓

2a → EBR↑
1a ⊕ EBR↓

1b ⊕ EBR↓
1a ⊕ EBR↑

1b,

EBR→
4c → EBR→

4d , (16)

where EBR→ is an EBR formed with noncolinear in-plane
spinors {(→),C4z(→),C2z(→),C−1

4z (→)}, i.e., with a quanti-
zation axis that is perpendicular to the vertical C4-axis 3 (we
chose ŷ in Table III with →y).

B. Small Zeeman splitting

Here we derive the topology of the FM phases obtained
from each of the nontrivial AFM phases of EBR2b

75.5 when
the Zeeman splitting is small compared to the other energy
scales (i.e., εZ < �,λSOC in Fig. 4), underpinning the general
mechanism outlined previously.

3In that case however, there is no spin polarization at � and M,
which we relate to the fact that 4d is not a maximal Wyckoff position
for MSG75.1, i.e., the noncolinear in-plane spins at 4d can be can
superposed on top of each other by moving them to another Wyckoff
position with higher symmetry.

1. Crystalline Chern ferro/ferrimagnetic topology from fragile
AFM phase

Starting from the gapped fragile phase of EBR2b
75.5 (z2 = 0)

and given the sign of the Zeeman coupling (εZ > 0, i.e., E↑z >

E↓z ) we predict the ordering in energy of the IRREPs of each
split Kramers degeneracy to be E (�7) < E (�5) < E (�8) <

E (�6), and E (M5) < E (M8) < E (M6) < E (M7). We show
the band structure for MSG75.1 in Figs. 5(a) and 5(b) together
with the IRREPs along high-symmetry lines thus confirming
the IRREPs ordering.

Substituting the symmetry eigenvalues in Eq. (14), we then
readily find C(1) = C(4) = +1 mod 4, and C(2) = C(3) =
−1 mod 4. We conclude that each split EBR2c

75.1 has a stable
Chern class topology. This is confirmed by direct evaluation
of the flow of Berry phase for each band, see Fig. 12 in
Appendix C.

2. Crystalline Chern FM from stable nodal AFM phase

We now start from the stable nodal phase of EBR2b
75.5

(z2 = 1). The breaking of nonsymmorphic TRS unlocks the
nodal (Weyl) points which then become free to leave the basal
momentum plane (when embedded in 3D). As for the fragile
topological phase this results in a fully gapped band structure
at kz = 0 where each band acquires a symmetry indicated
Chern number given by Eq. (14). Given the band inversion
at X between band 2 and 3 required in the fragile to stable
topological transition [see the IRREPs ordering in Fig. 3(b)],
we now find band Chern numbers

C(1) = C(2) = C(3) = C(4) = +1 mod 4. (17)

Then, together with the cancellation sum rule
∑4

i=1 C(i) =
0, we predict C(2) = −3 and C(3) = +1 [or, equivalently,
C(2) = +1 and C(3) = −3]. This is confirmed numerically
in Fig. 13 of Appendix C. We thus reach the conclusion that
for small Zeeman coupling the bands in the vicinity of the
half-filling energy must exhibit a higher Chern number. Also,
contrary to the gapped FM phase obtained from the fragile
topological phase where the valence (conduction) subspace
has a trivial summed topology [i.e., C(1) + C(2) = 0], we
here necessarily obtain a nontrivial Chern phase at half-filling
with C(1) + C(2) = ±2, thus recovering the general predic-
tion of Eq. (12).

C. Fully pseudo-spin-polarized FM phases

Given the spin-z components associated with the induced
IRREPs of the EBR at � and M (Table I), we anticipate that
by increasing εZ there must be a second transition into a phase
with fully pseudo-spin-polarized valence (conduction) bands
(right column of Fig. 4), i.e., the ↑̃ (̃↓ ) band has a ↑- (↓-) spin
component at � and M. This phase transition must happen
through two band inversions, i.e., at � and at M. Assuming
εZ > 0, we infer that beyond the transition the IRREPs or-
dering at � and M are E (�7) < E (�8) < E (�5) < E (�6),
and E (M5) < E (M6) < E (M8) < E (M7), respectively [im-
portantly, note the difference with the ordering of the previous
section and Fig. 5(b)]. The question of the Chern numbers,
as determined by Eq. (14), is then reduced to the IRREPs
ordering at X .
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First, without loss of generality we can assume that the
lowest (highest) energy level has IRREP X 4 (X 3), as in
Figs. 2(b) and 3(b), from which we get C(1) = C(4) =
+1 mod 4. Then, for dominant values of εZ and λSOC, we get
C(2) = C(3) = −1 mod 4. If we assume intermediary values
of εZ and λSOC (see below), we instead obtain C(2) = C(3) =
+1 mod 4. In the later case [similarly to the discussion below
Eq. (17)], one of the two middle bands must exhibit a high
Chern number of −3, giving a total Chern number of ±2 at
half-filling for the valence/conduction space.

We now detail the phase transition to the fully polar-
ized phase in the context of the model Eq. (4) to underpin
the general scheme outlined above. The fully pseudo-spin-
polarized phase must happen through two band inversions,
at � and M, which are analytically defined for Eq. (4) by
the conditions εZ > 2t3 and εZ > 2t2, respectively (assum-
ing t2,3 > 0), and with the IRREPs ordering at � and M
given above for εZ > 0. The general form of the energy
eigenvalues at X for Eq. (4) including the Zeeman term is

εs1,s2 = s12t1 + s2

√
2|λ2|2 + ε2

Z with s1,2 = ±1, and we find

E±(X 4) = ε−,± and E±(X 3) = ε+,±. Fixing t1 > 0, we note
that E−(X 4) � E+(X 4) � E+(X 3) and E−(X 4) � E−(X 3) �
E+(X 3). Hence, the lowest and highest energy levels are E1 =
E−(X 4) and E4 = E+(X 3), respectively, from which we get
C(1) = C(4) = 1 mod 4.

The topology of the two remaining bands is then deter-
mined by the sign of

E−(X 3) − E+(X 4) = 2t1 −
√

2|λ2|2 + ε2
Z . (18)

Let us first we assume |λ2| >
√

2t1, for which we find E2 =
E−(X 3) < E+(X 4) = E3 for all εZ > 2t2, 2t3, and C(2) =
C(3) = −1 mod 4. This case thus has zero Chern number at
half-filling.

If we take instead t1 > |λ2|/
√

2, then either εZ >√
4t2

1 − 2|λ2|2, 2t2, 2t3, and we reach the same conclusion

as before, or
√

4t2
1 − 2|λ2|2 > εZ > 2t2, 2t3, in which case

E2 = E+(X 4) < E−(X 3) = E3, and we find C(2) = C(3) =
+1 mod 4 which, we have shown, leads to a higher Chern
number for band 2 or 3, thus leading to a finite Chern number
at half-filling (C = 2 mod 4).

We conclude this section by noting that the bands of a
single split EBR2c,↑(↓)

75.1 must always carry nonzero Chern num-
bers irrespectively of the ordering of IRREPs.

IV. 3D TOPOLOGY AND GENERAL MSG

Having determined the topology of the 2D projection of
MSG75.5 (PC4) (i.e., for the corresponding magnetic layer
group), we now address the 3D topology introducing the third
momentum component kz. First of all, we note that each
Kramers doublet at �, M, Z, and A, are Weyl points carrying
a chirality (Chern number). This results from the chirality of
any crystal structure with MSG75.5 (PC4), see Sec. VI. This
nodal topology will be manifested in terms of Fermi arcs on
surface spectra only at quarter-filling, and more generally at
a filling ν ∈ 2Z + 1. In the following, we instead focus on

Γ
X

M

A

Z
R

Fragile

Γ
X

M

A

Z
R

Γ
X

M

A

Z
R

Γ
X

M

A

Z
R

FIG. 6. Topology at half-filling of the 3D EBR2b
75.5 for

(a) (z0
2, zπ

2 ) = (1, 0) and (b) (1,1). The colored dots represent the
Weyl points (and their chirality) of the crystalline Weyl (CW) phases.
The plane with crystalline Euler fragile (CEF) topology is colored in
green. TRIM (time reversal invariant) momenta are indicated as open
circles. (c) Same as (b) before the annihilation of the Weyl points on
the vertical axes. (d) Alternative to (b) when the horizontal (vertical)
Weyl points all have equal chirality.

the topology at half-filling, and more generally at a filling
ν ∈ 2Z + 2.

The above results are directly transferable to the kz = 0
and kz = π planes of the 3D Brillouin zone, which leads to
a (z0

2, zπ
2 ) ∈ Z2

2 classification. If the two symmetry indicators
are distinct, e.g., (z0

2, zπ
2 ) = (1, 0), they indicate the presence

of C2z protected Weyl points (at half-filling) on the XR high-
symmetry axis, on top of the four Weyl points on the kz = 0
plane, while the plane at kz = π has CEF topology. These
thus form a Z2 indicated octuplet of Weyl points (i.e., the CW
topology). It is interesting to note that by C4 symmetry the
Weyl points in plane must all have the same chirality, while
the Weyl points on the XR axis must all be of the opposite
chirality by C2T symmetry, which leads to the configuration
of Fig. 6(a) where the plane with CEF topology is colored in
green. If we reverse the indicators, i.e., (z0

2, zπ
2 ) = (0, 1), the

plane with CEF topology moves to kz = 0 and the plane with
the Weyl nodes moves to kz = π .

When both symmetry indicators are nonzero (obtained
from above through a band inversion at R) both planes are
stable nodal and we either obtain two quadruplets of Weyl
points of opposite chirality in each horizontal plane as illus-
trated in Fig. 6(b) [after the annihilation on the vertical axes
of the nodes with opposite chirality visible in Fig. 6(c)], or we
have two octuplets of Weyl points with all Weyl points on the
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horizontal planes with the same chirality and all Weyl points
on the vertical axes with the opposite chirality as shown in
Fig. 6(d).

Only when both symmetry indicators are zero do we re-
trieve a gapped 3D phase where both planes kz = 0 and kz =
π are fragile topological. Our classification thus characterizes
and refines the earlier prediction of a Z2 symmetry indicator
for the 3D MSG75.5 (PC4) phases [35]. As a side remark,
we note that planes hosting the four TRIM {�, M, Z, A} char-
acterized by (nonsymmorphic) TRS, i.e., is an antiunitary
symmetry squaring to −1 and inverting the momentum, give
rise to a nonsymmetry indicated Z2 index of a strong two-
dimensional TI [32]. We note that the nonsymmorphic TRS
squares to −1 over the whole plane that contains the four
TRIMPs. Therefore, restricting any 3D model on that plane,
it can be seen effectively as a 2D system with TRS and the
index can be computed in the same way as the Kane-Mele Z2

invariant [78].
For completeness, let us also mention the axion insulating

phases protected by C2T , i.e., the three-dimensional gapped
topological phases indicated by the difference in the second
Stiefel Whitney class between the two C2T symmetric planes
kz = 0, π [29,30,42,79]. This phase requires that C2T squares
to +1 on both planes and, contrary to its parent phases with
inversion symmetry [36], it is not symmetry indicated.

The mechanism discussed so far is directly transferable to
the other tetragonal AFM candidate MSG81.37 (PC 4̄) and its
FM counterpart MSG81.33 (P4̄), where the fourfold rotoin-
version point symmetry S4 takes the place of C4. The only
differences with MSG75.5 (PC4) are the reversal of chirality
of the Weyl points under the action of S4 = IC4z symmetry
and, for the 3D gapped phase, the existence of an additional
z′

2 ∈ Z2 symmetry indicator [35] of a strong 3D TI protected
by S4-symmetry and (nonsymmorphic) TRS [80] (see also
Appendix D 3 where this symmetry indicator is derived for
MSG81.36 (Pc4̄) for which it is the unique symmetry indicator
of the 3D gapped phase, similarly to MSG81.38 (PI 4̄)). The
nontrivial value of the symmetry indicator z′

2 in Eq. (D4),
corresponding to the indicator z2 identified for MSG81.33
(P4̄) in Ref. [36], indicates a 3D axion topological insulating
phase with a nontrivial axion angle π [36] and a quantized
magnetoelectric response [28,81].

We conclude this section by noting the candidate
MSSG77.17 (PC42) that has a Z2 symmetry indicator [35]
which indicates C2T protected Weyl semimetallic phases, as
in MSG75.5 (PC4), but now with a minimal connectivity of
bands of 4, i.e., the filling must be ν ∈ 4Z + 4. The 2D gapped
phases at kz = 0, π are thus either trivial, or host the second
Stiefel Whitney topology that is not symmetry indicated, since
the nontrivial Euler class topology only exists within two-
band subspaces.

V. COEXISTENCE OF NODAL AND SUBDIMENSIONAL
TOPOLOGIES

In the previous MSG candidates we were guided by the
possibility of having a nontrivial symmetry indicator of the
3D gapped phase, signaling the possibility of splitting groups
of bands (possibly EBRs) into (fragile) topological bands,
see also Appendix D. We now address a class of MSGs

that host a similar mechanism that nonetheless appear trivial
from a standard symmetry indicator or topological quantum
chemistry perspective. At the crux of the argument lies the
observation that these MSGs host groups of bands (possibly
EBRs) that can be split at planes in the Brillouin zone, host-
ing the same (stable) topological features, while their total
three-dimensional band structure must be connected. Conse-
quently, within these “trivial” groups of bands, i.e., in the
sense that they lack 3D symmetry indicators, the in-plane
nontrivial signatures must coexist with symmetry indicated
nodal structures located away from the (possibly) gapped
planes. We discuss below one example where the connectivity
of the three-dimensional EBR by itself indicates the presence
of protected Weyl points in the direction perpendicular to the
2D topological planes. It thus has stable 3D signatures, such
as Fermi arcs [82], which topological origin is independent
of the 2D topologies and their signatures. Since the 3D sym-
metry indicators are blind to this kind of coexistence, these
topological phases can thus only be perceived in this refined
context of subdimensional topology.

We emphasize that our use of subdimensional topol-
ogy is distinct from the usual correspondence between the
topological charges of a d-dimensional node, with codimen-
sion δ within a d + δ=D-dimensional Brillouin zone, and
the p-dimensional gapped topologies for δ − 1 � p � D −
1 [46,83]. The archetypal example of this usual decent ap-
proach is the stability of a Weyl point being captured by
the Chern number of a gapped sphere surrounding it [84].
We discuss below such as a situation for the case of Weyl
nodes protected by the screw axis 42 with a chirality χ = ±2
captured by gapped Chern planes with C = 2 mod 4. Many
correspondences of this kind have been formulated recently
for new types of crystal-symmetry protected gapped topolo-
gies, e.g., Refs. [83,85–87].

In contrast, the new subdimensional topology, we are re-
ferring to is independent of the charges of the Weyl nodes
protected by the screw symmetry, since we show that the
Chern number must be zero on the 2D planes that host the
subdimensional topology. This leads to the prediction of new
phases with coexisting topological features, i.e., the man-
ifestations of the nodal topology in 3D together with the
manifestations of the nontrivial subdimensional topology.

A. Case study of MSG77.18 (PI42)

As an example, we take MSG77.18 (PI 42) that hosts
the mechanism discussed for MSG75.5 (PC4) as a 2D
subdimensional topology. The coset decomposition of the
AFM compatible MSG77.18 (PI 42) in terms of its FM
partner MSG77.13 (P42) is G77.18/G77.13 = (E |0)G77.13 +
(E |τd )′G77.13 with τd = a1/2 + a2/2 + a3/2, where T is the
primitive Bravais lattice and G77.13 is generated by (C4z|τ3)T
with τ3 = a3/2. We consider the Wyckoff position (WP)
2a [69] that is spanned by the sublattice sites rA = a1/2 and
rB = a2/2 + a3/2. The same sites correspond to WP 2c of
MSG77.13. Populating the sites with s-electronic orbitals and
both spin-z-1/2 components we get the Bloch orbital basis
|ϕ, k〉 with ϕ = (ϕA↑, ϕA↓, ϕB↑, ϕB↓) forming an elemen-
tary band representation which we write EBR2a

77.18. EBR2a
77.18
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resembles EBR2b
75.5 except that it is indecomposable over the

3D Brillouin zone.
An other important difference with MSG75.5 (PC4) is the

algebra of symmetries at kz = π . Taking a point on the kz = π

plane k̄ = (kx, ky, π ), the C2T symmetry in MSG77.18 (PI 42)
is represented for EBR2a

77.18 by

〈ϕ, k̄|(C2z|τd )′ |ϕ, k̄〉 = eikC2zτd 〈ϕ, k̄|ϕ, IC2zk̄〉(σx ⊗ iσx )K
= eikC2zτd 〈ϕ, k̄|ϕ, k̄ − b3〉(σx ⊗ iσx )K
= eikC2zτd T̂ (−b3)(σx ⊗ iσx )K, (19)

with T̂ (−b3) = diag(eirA·K, eirA·K, eirB·K, eirB·K )K=−b3 =
diag(1, 1,−1,−1). We thus find the square to be
〈ϕ, k̄|[(C2z|τd )′]2 |ϕ, k̄〉 = −14×4, i.e., the C2T symmetry squares
to −1. The bands hence exhibit a twofold Kramers degeneracy
over the whole kz = π plane

1. Model and band structure

We illustrate this with the following minimal 3D extension
of Eq. (4) which we rewrite as H[ f1, f2, f3, g1, g2](k),

H ′(k) = H[ f1, f ′
2, f ′

3, g1, g′
2](k)

+ ρ1h1(k)σx ⊗ σz + ρ2h2(k)σy ⊗ σz, (20)

where the new lattice form factors are now extended to 3D
momentum space,

f ′
2(k) = (cos δ′

1k − cos δ′
2k + cos δ′

3k − cos δ′
4k)/2,

f ′
3(k) = (cos δ′

1k + cos δ′
2k + cos δ′

3k + cos δ′
4k)/2,

g′
2(k) = (sin δ′

1k − i sin δ′
2k − sin δ′

3k + i sin δ′
4k)/2,

h1(k) = (sin δ′
1k + sin δ′

2k + sin δ′
3k + sin δ′

4k)/2,

h2(k) = (sin δ′
1k − sin δ′

2k + sin δ′
3k − sin δ′

4k)/2, (21)

with δ′
1,2 = δ1,2 + a3/2, and δ′

3,4 = −δ1,2 + a3/2, and with
the new real parameters ρ1, ρ2 ∈ R (we take ρ1 = −1 and
ρ2 = −2/5).

We show the band structure of model Eq. (20) in Fig. 7(a)
where the kz-axis covers [0, 2π ], and the other axis corre-
sponds to the successive paths �X and XM within the plane
kz = 0. The band structure along the high-symmetry lines is
shown in Figs. 8(a) and 8(c) after a band inversion at X. We
note the twofold degeneracy at kz = π which explains the
degeneracies along ZR and RA in Figs. 7(a), 8(a), and 8(c).

Importantly, the compatibility relations along the C4-
symmetric axes �Z and MA imply that the EBR cannot
be split [69], see Appendix D 2. Indeed, the fourfold screw
symmetry 42 ≡ (C4z|τ3) imposes an exchange of branches
between the Kramers doublets of � and Z (M and A), see the
coIRREPs given in Table II retrieved from [69]. This leads
to two 42-protected nodal points on the �Z line (respectively,
the MA line) at half-filling [marked by circles in Fig. 7(a)],
and more generally at a filling ν ∈ 4Z + 2. We note that this
exchange of IRREPs along the 42-axes originates from the
monodromy of the irreducible representations of the screw
symmetry 42 [6,66,69,83,88].

2. Chirality of Weyl nodes protected by a screw axis 42

Following the algebraic argument of Ref. [6], see also
Ref. [83], we now derive the symmetry enforced chirality

E

E

FIG. 7. Subdimensional gapped phases within a 3D indecompos-
able EBR, illustrated by (a) EBR2a

77.18 and (b) EBR2c
77.13 obtained by

breaking TRS through a Zeeman coupling. The Weyl nodes imposed
at half-filling by the screw axis 42 are marked with colored circles
indicating the sign of the symmetry-imposed chiralities.

of χ = 2 mod 4 for each Weyl point protected by 42. Let us
start with a sphere S surrounding one of the Weyl points,
say the one on the upper half of the �Z line. We fix the
south pole at � and the north pole at Z, see Fig. 9(a). Then,
we divide the sphere in four quarters, one of which, let us
call it S , is bounded by an oriented loop ∂S ≡ l = lb ◦ la
(which we read as first la followed by lb) with la = C4zl

−1
b

(where l−1
b is the reversed oriented path), see Fig. 9(a). Since

we can recompose the total sphere through C4z actions, i.e.,
S = S ∪ C4zS ∪ C2

4zS ∪ C3
4zS , the Chern number of the two

occupied bands over the gapped sphere thus reads

e−i2πC[S] = (e−iγB[l] )4 = e−i4γB[l], (22)

by the invariance of the Berry curvature under rotation sym-
metry [6], and where γB[l] is the Berry phase of the two
occupied bands over the loop l = lb ◦ la, i.e., (see the def-
inition of symmetry transformation of the Wilson loop in
Appendix A)

e−iγB[l] = detW[l] = det(W[lb] · W[la])

= det
(
R�

42
· W[la]−1 · (

RZ
42

)−1 · W[la]
)

= det
(
R�

42
· (

RZ
4

)−1) = χ42 (�5)χ42 (�7)

iχ42 (Z5)iχ42 (Z8)

= (−i)2 = −1, (23)

where R�
42

= eiC4zk� ·τ3 S�
42

(�i� j ) = S�
42

(�i� j ) and RZ
42

=
eiC4zkZ ·τ3 SZ

42
(ZiZ j ) = iSZ

42
(C4zkZ · τ3 = b3/2 · a3/2 = π/2)

are defined in terms of the representation of symmetry (g|τg)
in the valence band basis Sk

(g|τg)(kik j ) for a coIRREP kik j at

a momentum k, and χ4(ki ) is the character of the IRREP ki

given in Table I (we have χ4(Zi ) = χ4(�i ) [69]). Therefore
γB[l] = π mod 2π and we conclude that the Chern number
over the whole sphere, and thus the chirality of the Weyl
point inside, is C[S] = 2 mod 4. Very interestingly, we find

245127-11



BOUHON, LANGE, AND SLAGER PHYSICAL REVIEW B 103, 245127 (2021)

FIG. 8. Band structure along high-symmetry lines for EBR2a
77.18

(a) with z0
2 = 0 and (c) with z0

2 = 1, and for EBR2c
77.13 obtained

through Zeeman splitting (b) from (a) and (d) from (c).

a quadratic dispersion in the (kx, ky)-plane at a fixed kz from
each Weyl point at half-filling in Fig. 7, see also [88].

While the above derivation based on the symmetry reduc-
tion of Wilson loop, first developed in Refs. [6,83] adapting
the Wilson loop techniques developed eariler to assess gapped
topological phases in Refs. [13,77,89–91], is completely gen-
eral and can be readily transferred to any other context (i.e.,
any other space group, with or without spin-orbit coupling),
we note some later alternative approaches in Ref. [88,92].

3. AFM topological phases

We now discuss the global topology of the AFM topolog-
ical phases for MSG77.18 (PI 42). We first note that EBR2a

77.18
can be gapped over the planes kz = 0, π . The 2D topology
at kz = 0 for EBR2a

77.18 is the same as the topology discussed
for EBR2b

75.5, that is CEF topology versus stable nodal (CW
topology) indicated by z2 in Eq. (10). We therefore can define
a subdimensional z0

2 ∈ Z2 symmetry indicator. We have seen
that on the kz = π plane the C2T symmetry squares to −1,

Γ
X

M

Z R

X’ M’

A

Γ X
M

Z R
A

FIG. 9. Chirality of χ = 2 mod 4 for each Weyl point protected
by the 42 screw axis on the �Z and MA lines, at half-filling (ν ∈
4Z + 2), derived from the symmetry reduction of the Wilson loop
(see text).

such that there is no (real) Euler class topology. Nevertheless,
we show in Fig. 10 the C4-symmetric Wilson loop on the
plane kz = π for the model for MSG77.18 (PI 42) Eq. (20),
over (a) the conduction and (b) valence bands. The winding
of Wilson loop for the conduction bands indicates a crystalline
(non-Euler) fragile (CF) topology.

We now determine how the subdimensional topologies (at
kz = 0, π ) interact with the topology of the 42-symmetry pro-
tected Weyl points. We first note that the Chern number at
half-filling vanishes on the kz = 0, π -planes as a consequence
of C2T symmetry (see the discussion below Eq. (11) for
kz = 0, and at kz = π , we have F ≡ 0 by [C2T ]2 = −1). As
a consequence, we can deform the sphere S of Fig. 11(a)
into the pyramid P of Fig. 11(b), while conserving the Chern
number, i.e., C[S] = C[P] = 2 mod 4. This equality can be
readily verified through the symmetry reduction of the Wilson
loop W[ld ◦ lc ◦ lb ◦ la] similarly to the above derivation for S
but now using both C4z and C2z transformations [6]. We note
that even if there are nodal points on the kz = 0 plane (for
z2 = 1), by C4 symmetry they must contribute to an increase
of the Chern number by ±4, which leaves the quantity mod 4
unchanged. An other consequence of C2T symmetry is that
any Weyl point above the kz = 0 plane must have its mirror
symmetric image underneath (kz → IC2zkz = −kz) with the
same chiral charge. Combining the top of the pyramid in
Fig. 9(b) with its mirror image in the kz direction, we obtain
an octahedron O = P ∪ mzP that wraps the pair of Weyl points
on the �Z line, and over which there is a total Chern number
(chirality) of C[O] = (2 + 2) mod 8 = 4 mod 8.

We note that O divides the 3D Brillouin zone in two sym-
metric halves. Invoking the Nielsen-Ninomiya cancellation

FIG. 10. C4-symmetry Wilson loop for the conduction (a) and
valence (b) bands of EBR2a

77.18 at kz = π .

245127-12



TOPOLOGICAL CORRESPONDENCE BETWEEN MAGNETIC … PHYSICAL REVIEW B 103, 245127 (2021)
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(a) (b)

FIG. 11. Topology at half-filling of the 3D EBR2a
77.18 for (a) z0

2 =
0 and (b) 1. The colored dots represent the Weyl points and their
chirality, with χ = ±1 for the small dots, and χ = ±2 for the big
dots, of the crystalline Weyl (CW) phases. The double Weyl points
on the vertical axes are protected by the screw 42 symmetry, see
Sec. V A 2. The plane with crystalline Euler fragile (CEF) topology
is colored in green, and the plane with (C4-symmetry protected)
crystalline fragile (CF) topology is colored in purple. TRIM (time
reversal invariant) momenta are indicated as open circles.

theorem [93], it follows that the total chirality inside O (say
+4), must be compensated by the total chirality inside the
complement of O (−4), see Fig. 9. We then arrive for z2 = 0
to the configuration of Fig. 11(a), where the green (purple)
plane hosts a CEF (CF) topology, and where each red (blue)
point mark a Weyl point with χ = +2 (rep. χ = −2). We fi-
nally conclude that this phase must exhibit large double Fermi
arcs in the surface spectra connecting pairs of projected Weyl
nodes of opposite chirality across the surface Brillouin zone.
Also, by inverting IRREPs at X , i.e., setting z0

2 = 1, we get
the octuplet of Weyl points discussed above in the 3D phase
of MSG75.5 (PC4), leading to the configuration of Fig. 11(b).
This last case must exhibit an exotic coexistence of Fermi arcs
generated by different sets of Weyl points with qualitatively
distinct topological origins.

Our subdimensional analysis has thus allowed us to iden-
tify new phases with the coexistence of 2D and 3D nodal
topological features.

4. AFM-FM correspondence

We now consider the effect of breaking the nonsymmor-
phic TRS, i.e., inducing a transition from the AFM phase
of MSG77.18 (PI 42) to the FM phase of MSG77.13 (P42).
This can be done by including a Zeeman splitting as we did
for MSG75. We show the band structure in Figs. 7(b), and
along the high-symmetry lines in Figs. 8(b) and 8(d) after
a band inversion at X . We find that all the Kramers degen-
eracies are split leaving gapped bands on the kz = 0 and π

planes. Similarly to the case of MSG75.1 (P4), the topology
of the gapped bands at fixed kz are characterized through
symmetry indicated Chern numbers (i.e., with CC topology).
Interestingly, for moderate Zeeman coupling, the four bands
remain fully connected along the C4-symmetric axes through
the persistence of the C4-symmetry protected Weyl nodes, as
indicated by the IRREP order at �, Z , M, and A, as it is clearly
shown in Figs. 8(b) and 8(d).

We note however that, by relaxing the pairing conditions
(i.e., from 2D coIRREPs to 1D IRREPs), there are more
combinatorial ways of connecting the bands allowed by the
compatibility relations for MSG77.13 (P42). In particular, the
bands can be ordered at {�, Z, M, A} as to avoid Weyl points
at half-filling (more generally at a filling ν ∈ 4Z + 2).

5. Stable 3D signatures

We emphasize that the rational of subdimensional topolo-
gies thus works in two manners. Firstly, because the total 3D
EBR is connected, and thus trivial, these phases are missed
by previous schemes. Reciprocally, the presence of in plane
topology together with the nodes to make the EBR globally
connected implies the coexistence of topological signatures
of qualitatively distinct origins. On one hand, the connectivity
condition directly induces symmetry indicated Weyl points,
and in turn, Fermi arcs in the surface spectra. On the other
hand, the subdimensional topology is either gapless, in which
case it induces additional Weyl points and thus additional
Fermi arcs, or it is gapped fragile topological, in which case
it induces corner modes [56]. In this sense, this mechanism
can thus be used to find new topological signatures that are
directly detectable via the usual routes of, e.g., angle resolved
photoemission spectroscopy, quantum oscillation techniques
or scanning tunneling microscopy.

B. Generalization

We end by generalizing our subdimensional topology
scheme and search systematically for candidate MSGs hosting
the planar topologies discussed so far—that is, CEF, CF, and
CW phases for the AFM cases and CC phases for their FM
counterpart—and the outlined mechanisms relating them. Re-
markably, our results are directly transferable to all tetragonal
MSGs with the point groups C4 and S4, i.e., comprising space
group families SG75-SG82. For each family we then consider
all the Shubnikov type IV AFM MSGs and the one type I FM
MSG. This amounts to a total of 26 MSGs which we list in
Table III, where we give the type of planar topologies for
kz = 0 and kz = π , and the list of EBRs hosting these. On
top of the single EBRs that split on both planes, kz = 0 and
kz = π , and which must necessarily host a nontrivial planar
topology of type indicated, we have also listed the sums of
EBRs that can lead to a listed topology upon the permutation
of their IRREPs. Whenever there is the choice CEF/CW, the
topology is determined by the ordering of IRREPs. We note
that [C2T ]2 = ±1 indicates CEF or CEF/CW (+1) versus CF
(−1) topology 4[94] as the only alternative since the Chern
number must vanish. Finally, all FM candidates acquire CC
topology when obtained from their AFM parents through
Zeeman splitting. In particular, every nodal AFM phase at
half-filling must give rise to a nontrivial Chern FM phase
at half-filling, thus constituting a systematic correspondence

4In case of CEF, the quantization of the Wilson loop over the base
path �X�′ follows either from the condition that ξ�

2 (1) = ξ�
2 (2)

[equivalently, ξM
2 (1) = ξM

2 (2)], or if both � and X are TRIMs in
which case the Wilson loop phases are also Kramers degenerate at
{0, 0} or {π, π}.
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between necessarily nontrivial topological phases associated
to MSG representations.

VI. CHIRAL FERMIONS AT HIGH-SYMMETRY
MOMENTA AND LARGE FERMI ARCS

All the MSGs of the table with point group C4 (i.e., the type
IV AFM MSG75.4-MSG81.36, and the type I FM MSG75.1-
MSG80.29) have only proper symmetries, a consequence of
which is that any crystal structure that explicitly breaks all
symmetries not included in their MSG must be chiral, i.e.,
enantiomorphic (the SGs 75-76-77-78-79-80 are all among
the 65 Sohncke space groups with no inversion, no mir-
ror, nor rotoinversion symmetries [95]). Then, the absence
of improper symmetry allows the existence of Weyl nodes
at high-symmetry momenta, i.e., with nonvanishing Chern
numbers. This is the rationale for the chiral Fermions found
in many (nonmagnetic) material candidates with a Sohncke
space group [6,96–100].

We have noted that MSG75.5 (PC4) and MSG77.18 (PI 42)
exhibit Weyl nodes at every TRIMP at a filling 2Z + 1.
MSG77.18 must also exhibit Weyl nodes on the �Z- and
MA-lines at a filling 4Z + 2 due to the monodromy of the
irreducible representation of the screw axis 42. The same
results apply to the FM parents MSG75.1 (P4) and MSG77.13
(P42). The Weyl points at high-symmetry momenta for all the
other MSGs of the table can be found similarly.

In Ref. [6], we have given a detailed analysis of the sym-
metry indicated higher Chern number generated by the Weyl
points locked on a screw axis at half-filling, and derived the
necessary existence of large Fermi arcs due to the compensa-
tion of chirality across the Brillouin zone. This analysis can be
readily transferred to the present situation (e.g., here C = ±2
on the 42-axes). Large Fermi arcs has also been reported in
other nonmagnetic chiral materials [97,98].

In the next section, we discuss the fate of the Weyl points
when extra improper point symmetries are included.

We now turn to the MSGs with rotoinversion symmetry
IC4z. Since the chirality of Weyl points is reversed under IC4z,
the Kramer’s degeneracies at the TRIMPs (which are also
IC4z invariant momenta) cannot form Weyl nodes at the filling
2Z + 1. Instead, each double degeneracy at a TRIMP on the
kz = 0 plane is continued as a nodal line for all values of
kz [69].

VII. RAISING AND LOWERING OF SYMMETRIES

So far, we have focused on the topological correspondence
between representations of magnetic space groups with the
tetragonal point groups C4 and S4. We now briefly address the
effect of adding and removing unitary symmetries.

A. Magnetic Dirac fermions

Let us start by including extra unitary symmetries to
MSSG75.5 (PC4). If we include one extra vertical mirror sym-
metry, say my, the MSG is promoted to MSG99.169 (PC4mm)
with the (unitary) point group C4v (4mm). Remarkably the
four bands become all connected through a fourfold mag-
netic Dirac node at M, similarly to the examples discussed
in Ref. [55].

The same happens for MSG89.93 (PC422), obtained by
including one horizontal π -rotation symmetry (say C2y) lead-
ing to the point group D4 (422), as well as for MSG83.49
(PC4/m), obtained by including the basal mirror symmetry mz

leading to the point group C4h (4/m).
The structural chirality is lost for MSG99.169 (PC4mm)

and MSG83.49 (PC4/m), thus preventing the existence of
Weyl nodes at the TRIMPs, i.e., the Weyl points are absorbed
within vertical nodal lines on the C4z-axes, and, respectively,
within a global twofold Kramer’s degeneracy. For MSG89.93
(PC422) instead, the structural chirality, and thus the Weyl
nodes, are preserved.

We note that the introduction mz allows the definition of
C4-symmetry indicated mirror Chern numbers [13,80,101].
The systematic study of the magnetic topological phases for
the next magnetic superspace groups, however, lies beyond
the scope of the present work.

B. Weyl phases protected by [C2T ]2 = +1

The symmetry indicator Eq. (10) and its interpretation in
terms of a Z2 quantized Berry phase Eq. (11), derived here
for MSG75.5 (PC4), can be readily applied to many other
MSGs with gapped 2D planes in the Brillouin zone where
[C2T ]2 = +1. The simplest example MSG3.4 (Pa2), obtained
by forgetting the C4 symmetry, has a Z2 symmetry indicator
that readily corresponds to z2 Eq. (10) [35]. For many MSGs
though, there are symmetry indicated nodal points between
the gapped planes, i.e., similarly to MSG77.18 (PI 42), such
that they cannot be identified by a (3D) symmetry indicator
and they have been listed as trivial [35].

C. Chern and Weyl phases of type I MSGs

We have discussed in detail the transition from the AFM
Weyl phase of MSG75.5 (PC4), and MSG77.18 (PI 42), to
the subdimensional Chern insulating FM phases of MSG75.1
(P4), and MSG77.13 (P42), respectively, obtained upon the
breaking of the nonsymmorphic TRS. The effect of breaking
TRS is to unlock the Weyl nodes that were pinned on the C2T
planes, so that they move within the Brillouin zone. We con-
clude that the symmetry indicator Z4 of the type I MSG75.1
(P4) [35] indicates a Weyl semimetallic phase, while there
is no symmetry indicator for MSG77.13 (P42) [35] with a
Weyl semimetallic phase that must be assessed in terms of
subdimensional topology.

In the same way as we predict many AFM phases with C2T
protected Weyl nodal phases, we predict many FM Weyl nodal
phases indicated by subdimensional Chern phases upon the
breaking of the nonsymmorphic TRS.

VIII. CONCLUSIONS

In conclusion, starting from the specific case study, MSG
75.5 (PC4), we find that specific Wyckoff positions (2b) in
this magnetic ground group necessarily results in (fragile)
topological bands. In this regard we formulated a first generic
model exhibiting fragile topology in the context of magnetic
space group symmetries. Breaking the essential symmetry by
a Zeeman term then relates the underlying AFM-compatible
MSG with a FM counterpart in the same space group

245127-14



TOPOLOGICAL CORRESPONDENCE BETWEEN MAGNETIC … PHYSICAL REVIEW B 103, 245127 (2021)

family and ensures that the fragile topology gaps into bands
with finite Chern number. After translating the Z2 symmetry
indicator of the AFM MSG into a quantized Berry phase
of a stable topological semimetallic phase, which originates
from the combination of C4 symmetry and C2T -protected
Euler class topology, we also discuss a similar correspondence
to FM Chern phases. We thus unveil a systematic corre-
spondence between necessarily nontrivial topological phases
associated with MSG representations. Moreover, we then pro-
mote this mechanism to three spatial dimensions, where we
also find novel phases characterized by the concept of sub-
dimensional topologies. The latter feature the same in-plane
mechanism but have 3D elementary band representations that
are fully connected. As a result, the nontrivial 2D topol-
ogy must coexists with nodes away from the high-symmetry
planes, e.g., Weyl points, giving rise to additional topological
nodal features, such as Fermi arcs, that can be diagnosed
with established experimental methods. As a result, our work
culminates in an exhaustive list of tetragonal MSGs (with
the point groups C4 and S4) and their EBR content hosting
the above correspondence. We have then addressed the ef-
fect of adding and removing unitary symmetries that lead
to the identification of magnetic Dirac (fourfold) points, and
have outlined how the symmetry indicated Weyl semi-metallic
phases protected by C2T can be found in numerous MSGs as
a result of our refined subdimensional topological analysis.
Given the generality of these insights and relevance of pa-
rameters to access this physics, we hope our results pave the
way for new pursuits in topological band structures. In fact,
we anticipate that this coexistence effect, i.e., of gapped sub-
dimensional topology together with independent topological
nodes, can also occur in the nonmagnetic context culminating
in novel gapped-nodal topological phases.

Note added. We finally note that our results agree with
expressions for magnetic EBRs, compatibility relations and
symmetry indicators tabulated in Ref. [36], which was posted
during the finalizing stages of this manuscript. We comment
here on Ref. [101] that appeared recently and has some
overlap with our work. Among many results not covered by
our work, they give a complete list of MSGs that have z2

(called z4 in their work) as one of the 3D symmetry indica-
tors, including some of the MSGs discussed here. While the
scope of our work was more restricted, our approach based
on subdimensional topologies, i.e., allowing symmetry indi-
cated nodes between gapped planes, leads us to predict many
more MSGs with C2T protected Weyl semi-metallic phases.
Ref. [101] also considers other Weyl semi-metallic phases
in type I MSGs protected by IC4z symmetry, among which
are MSG81.33 (P4̄) and MSG82.39 (P4̄). Alternatively, these
FM phases can be readily obtained, upon the breaking of the
nonsymmorphic TRS, from the (subdimensional) AFM Weyl
phases of the following type IV MSG81.36 (Pc4̄), MSG81.37
(PC 4̄), MSG81.38 (PI 4̄), and MSG82.42 (Ic4̄), all listed in our
table.
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APPENDIX A: WILSON LOOP WINDING FOR THE
FRAGILE TOPOLOGICAL PHASE

We algebraically derive the symmetry obstruction on the
winding of Wilson loop over one quarter of the Brillouin zone,
and following over the whole Brillouin zone, for the valence
(conduction) subspace of the split EBR2b

75.5. For this we choose
the patch of the Brillouin zone bounded by l�X�′ and l�M�′ ,
see Fig. 2(c) (blue dashed). We design a flow starting with the
base path l�X�′ and ending with l�M�′ . Defining the Wilson
loop phases

{ϕ1, ϕ2} = Arg[eig{W[l�X�′ ]}],
{ϕ′

1, ϕ
′
2} = Arg[eig{W[l�M�′ ]}], (A1)

they must extrapolate smoothly between {ϕ1, ϕ2} and {ϕ′
1, ϕ

′
2}

as we smoothly deform the base path from l�X�′ to l�M�′ .
The Wilson loop over an oriented base path l : k1 → k2 is
defined through Wk2←k1 = 〈u, k2|Ŵ |u, k1〉 where |u, k1〉 is
the matrix of Bloch eigenvectors of the band subspace un-
der consideration, and Ŵ = ∏k2←k1

k P (k) with the projector
P (k) = |u, k〉〈u, k|.

We now show that the crystal symmetries act as an obstruc-
tion imposing the quantization of Wilson loop phases. First,
we find

W[l�X�′ ] = W�′←X · WX←�

= R�
2 · W−1

X←� · (
RX

2

)−1 · WX←�, (A2)

where Rk̄
2 = 〈u, Dπ k̄|Û (C2z )|u, k̄〉 is the sewing matrix of

symmetry C2z at the high-symmetry point k̄ in the valence
Bloch eigenvectors basis (with Û (C2z ) = 1 ⊗ −iσz the rep-
resentation of C2z in the orbital basis |ϕ, k〉, and Dπ is the
rotation matrix by π around the z axis). Writing |u, k̄ + K〉 =
T̂ †(K )|u, k̄〉 where T̂ (K ) = diag(eirAK, eirAK, eirBK, eirBK ) ac-
counts for the phase factors due to the displacements of the
sublattice sites with respect to the origin of the unit cell, we
can rewrite Rk̄

2 = 〈u, k̄|T̂ (Dπ k̄ − k̄)Û (C2z )|u, k̄〉 which guar-
antees that the arbitrary gauge phase factors are removed, and
use |u, Dπ k̄〉 = Û (C2z )|u, k̄〉.Rk̄

2.
† in the following. We note

that at C2z-invariant momenta, i.e., Dπ k̄ = k̄ + K with K a re-
ciprocal lattice vector, we have [T̂ (K )Û (C2z ), H (k̄)] = 0 and
Rk̄

2 is diagonal. Since for the fragile phase [z2 = 0 mod 2, see
Eq. (10), we have RX

2 = (±)diag(i, i) and R�
2 = diag(i,−i)

(see Table I), we readily find

{ϕ1, ϕ2} = {0, π} mod 2π. (A3)

We emphasize that the quantization of the Wilson loop over
�X�′ comes from the repetition of the IRREPs at X (equiva-
lently at �). An alternative source of Wilson loop quantization
is when both � and X are TRIMs in which case the Wilson
loop phases are Kramers degenerated at {0, 0} or {π, π}.

Considering now the base path l�M�′ , we have

W[l�M�′ ] = W�′←M · WM←�

= R�
4 · W−1

M←� · (
RM

4

)−1 · WM←�, (A4)
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where Rk̄
4 = 〈u, Dπ/2k̄|Û (C4z )|u, k̄〉 = 〈u, k̄|T̂ (C4zk̄ −

k̄)Û (C4z )|u, k̄〉 is the representation in the basis of Bloch
eigenvectors of C4z at k̄, with, in the orbital basis |ϕ, k〉,
Û (C4z ) = σx ⊗ M4 where M4 = diag(e−iπ/4, eiπ/4), and we
have used |u, Dπ/2k̄〉 = Û (C4z )|u, k̄〉.Rk̄

4.
†.

Using parallel transported Bloch eigenvectors the Wil-
son loop becomes diagonal, and we write W̃M←� =
diag(eiϕa , eiϕb ). The above expression thus reduces to

W̃[l�M�′ ] = R̃�
4 · (e−iϕa 0

0 e−iϕb

) · (R̃M
4 )−1 · (eiϕa 0

0 eiϕb

)
. (A5)

Since at C4z-symmetric momenta the parallel transported
Bloch eigenvectors are also eigenvectors of the C4z operator,
we retrieve irreducible representations R̃�

4 = (±)diag(ω,ω∗)
and R̃M

4 = (±)diag(ω,−ω∗), where the signs depend on the
coIRREPs realized at � and M (see Table I).

The quantization of the Wilson loop W̃ [l�M�′ ] depends
on the relative spin-z components of the parallel transported
Bloch eigenstates at � and M, see the discussion in Ref. [38].
Writing R̃k̄

4 = diag(ξ k̄
4 (�a), ξ k̄

4 (�b)), we find

W̃[l�M�′ ] =
(

ξ�
4 (�a)/ξM

4 (Ma) 0
0 ξ�

4 (�b)/ξM
4 (Mb)

)
. (A6)

Assuming the same spin-z component at � and M, e.g., with
(�a, Ma, �b, Mb) = (�5, M8, �7, M5) (see Table I), we find

{ϕ′
1, ϕ

′
2} = {π/4, π/4} mod 2π. (A7)

This matches exactly with the direct numerical evaluation of
the Wilson loop shown in Fig. 2(e) in the main text. If instead
we assume opposite spin-z components at � and M, e.g., with
(�a, Ma, �b, Mb) = (�5, M5, �7, M8) (see Table I), we find

{ϕ′
1, ϕ

′
2} = {0, π} mod 2π. (A8)

This later quantization thus corresponds to a system where
there is a twisting spin texture from � to M, which would
require strong Rashba-type spin-orbit coupling.

It thus follows that, in the absence of a twisted spin texture,
the Wilson loop phases must wind from {ϕ1, ϕ2} = {0, π} to
{ϕ′

1, ϕ
′
2} = {π/4, π/4} mod 2π , as we scan over one quarter

of the Brillouin zone through the deformation of the base
path from l�X�′ to l�M�′ . There is thus a minimal wind-
ing of (�ϕ1,�ϕ2) = (ϕ′

1, ϕ
′
2) − (ϕ1, ϕ2) = (+π/2,−π/2).

By the action of C4 symmetry we can recover the whole
Brillouin zone for which we predict a minimal winding of
the Wilson loop phases of 4(�ϕ1,�ϕ2) = (+2π,−2π ). This
precisely predicts algebraically the numerical evaluation of
the Wilson loop over the whole Brillouin zone shown in
Fig. 2(d).

We finally conclude that the valence (conduction) subspace
of the split EBR2b

75.5 is topologically nontrivial as indicated by
the finite winding of Wilson loop phases.

APPENDIX B: DERIVATION OF FORMULA EQ. (14) AND
EQ. (11)

We give here the algebraic derivation of the Wilson loop
over lq = �M ′XM� [red loop in Fig. 2(c)] as given in
Eq. (11), from which Eq. (14) readily follows by reducing
to a single band subspace. We use the algebraic Wilson loop
techniques developed in Refs. [13,77] and [6,38,83].

It is convenient to decompose the Wilson loop into the
contributions of each segment that connects two successive
high-symmetry points, i.e., W[lq] = WdWcWbWa, with

Wa = 〈u, �|Ŵ |u, M〉, Wc = 〈u, X |Ŵ |u, M ′〉,
Wb = 〈u, M ′|Ŵ |u, �〉, Wd = 〈u, M|Ŵ |u, X 〉, (B1)

where M ′ = M − b2.
We now use symmetries to rewrite Wa and Wd , as

Wa = 〈u, �|Ŵ |u, M〉 = 〈u,C4z�|Ŵ |u,C4zM
′〉

= R�
4 · 〈u, �|Û †(C4z )ŴÛ (C4z )|u, M ′〉 · (

RM ′
4

)†

= R�
4 · W−1

b · (
RM ′

4

)†
,

Wd = 〈u, M|Ŵ |u, X 〉 = 〈u,C2zM”|Ŵ |u,C2zX’〉
= RM”

2 · 〈u, M”|Û †(C2z )ŴÛ (C2z )|u, X’〉 · (
RX’

2

)†

= RM”
2 · 〈u, M ′|T̂ (−b1)Û †(C2z )ŴÛ (C2z )|T̂ †(−b1)u, X’〉 · (

RX’
2

)†

= RM”
2 · W−1

c · (
RX’

2

)†
, (B2)

where M” = M ′ − b1 and X’ = X − b1. We thus have

Det W[lq] = Det
[
RM”

2 · (
RX’

2

)† · R�
4 · (

RM ′
4

)†]
. (B3)

Defining the irreducible representation of the symmetry
(g|τg) in the basis of Bloch eigenstates as

Sk̄
g = e−i gk̄·τgRk̄

g, (B4)

and substituting in the above expression, we get

Det W[lq] = ei Nocc [(M−X )·τC2z +(�−M )·τC4z ]

× Det
[
SM

2 · (
SX

2

)† · S�
4 · (

SM
4

)†]
= ei Nocc [(M−X )·τC2z +(�−M )·τC4z ]

Nocc∏
i=1

ξ�
4 (i)ξM

2 (i)

ξM
4 (i)ξX

2 (i)
,

(B5)
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FIG. 12. Berry phase flows for the four split bands of MSG75.1
(P4) as obtained from gapping the fragile topological MSG75.5
(PC4) phase. Bands 1 and 4 have Chern number C = +1. Bands 2
and 3 exhibit Chern number C = −1.

where Nocc is the number of occupied bands, and ξ k̄
g (i) is

the eigenvalue of the symmetry (g|τg) of the ith band at the
high-symmetry momentum k̄. For magnetic space groups with
symmorphic C4z and C2z symmetries (i.e., τC4z = τC2z = 0) as
MSG75.5 (and MSG75.1), it simplifies to

Det W[lq] =
Nocc∏
i=1

ξ�
4 (i)ξM

2 (i)

ξM
4 (i)ξX

2 (i)
. (B6)

APPENDIX C: NUMERICAL COMPUTATION OF BERRY
PHASE FLOWS FOR MSG75.1 (P4)

We present here the numerical evaluation of the nontriv-
iality of the case MSG75.1 (P4), i.e., for the model Eq. (4)
with an additional Zeeman coupling. In Fig. 12, we show the
numerically obtained Berry phase for the individual bands
of the band structure in Fig. 5 obtained for the model of
MSG75.1 (P4). These evaluations corroborate the analytical
results. That is, each band shows a finite Chern number C.
While bands 2 and 3 exhibit a value of C = 1, the other two
bands have opposite Chern number. Finally, we also show in
Fig. 13 the Berry phase of the bands as obtained from gapping
the stable nodal topological MSG75.5 (PC4) band structure of
Fig. 3. As described in the main text, the resulting spectrum
features a single band (band number two in this case) with
Chern number C = −3, whereas the others exhibit a Chern
number C = 1.

APPENDIX D: DETAILS ON SYMMETRY INDICATOR
ANALYSIS

We here give further detail on the symmetry indicator anal-
ysis for some of the MSGs considered.

FIG. 13. Berry phase flows for the four split bands of MSG75.1
(P4) obtained from the gapping of the stable nodal phase of
MSG75.5 (PC4). Bands 1, 3, and 4 have Chern number C = +1.
Bands 2 has has higher Chern number C = −3.

1. Symmetry indicators for MSG75.5 (PC4)

MSG75.5 (PC4) is derived from SG75 by including the
operator (E |τ )′ with τ = 1

2 (a1 + a2). We can thus classify
the possible band structures for our model by considering
the IRREPs of SG75, and pair them appropriately to form
coIRREPs of MSG75.5 (PC4), as described in Ref. [35]. The
full compatibility relations [23] and EBRs for SG75 can be
found on the Bilbao Crystallographic Server [69]. Using their
notation (see also Table I), the compatibility relations for the
� point are given by

�5 → Z5, �6 → Z6, �7 → Z7, �7 → Z8. (D1)

The compatibility relations between M and A display a similar
structure. Finally, the compatibility relations between X and R
are

X 3 → R3, X 4 → R4. (D2)

From the above relations it is evident that it suffices to con-
sider the points �, X , and M as the compatibility relations
uniquely link IRREPs at these points to all IRREPs at all
other high-symmetry points in the 3D BZ [23]. To form the
coIRREPs, we consider the additional constraints imposed by
the antiunitary symmetries. These can be determined from the
Herring rule [57] applied at each high-symmetry point. We
only consider spinful IRREPs. At � and M (and A and Z),
this gives pairing of inequivalent IRREPs. At X (and R), no
additional pairing is required. To determine which IRREPs
are paired to form the coIRREPs at � and M, we pair rep-
resentations of g with representations of AgA−1, where g is an
element of the unitary little group at � or M and A = (E |τ )′.
The allowed pairings at � are �5�7, �6�8 and the pairings at
M are M6M7, M5M8.

The magnetic EBRs for the MSG75.5 (PC4) can be found
from the EBRs for SG75 [69]. We note that the vector τ

relates WP 1a (0, 0) and 1b (1/2, 1/2) in SG75, so the
EBRs from these WPs are paired. Similarly, τ maps WP
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2c (0, 1/2), (1/2, 0) in SG75 to itself, so we pair EBRs at
WP 2c directly. We can uniquely determine which EBRs are
paired, by realizing that the magnetic EBRs must satisfy the

magnetic compatibility relations detailed above. This gives
the following magnetic EBRs for MSG75.5 (PC4) (using the
WP labels from SG75):

(1a : 1E1 + 1b : 2E2) ↑ G = (�6�8, M6M7, 2X 3), (1a : 1E2 + 1b : 2E1) ↑ G = (�5�7, M5M8, 2X 3),

(1a : 2E1 + 1b : 1E2) ↑ G = (�6�8, M5M8, 2X 4), (1a : 2E2 + 1b : 1E1) ↑ G = (�5�6, M6M7, 2X 4),

(2c : 1E + 2c : 2E ) ↑ G = (�5�6�7�8, M5M6M7M8, 2X 42X 3).

To compute the symmetry indicators, as described in Ref. [35], we compute the Smith normal form of the matrix of EBRs. This
gives the indicator group for MSG75.5 (PC4) as Z2, in agreement with [35].

From our magnetic EBRs, we see that it is not possible to construct a band structure with an odd number of bands in the X 3

(or equivalently the X 4) IRREP from an integer combination of magnetic EBRs. Every other combination consistent with the
compatibility relations can be constructed from the magnetic EBRs. Thus, the Z2 indicator can be conveniently computed as

nX 3
mod 2, (D3)

in agreement with the expression in the main text.

2. Symmetry indicators for MSG77.18 (PI42)

MSG77.18 (PI 42) is formed from SG77, by including the operator (E |τ )′ with τ = 1
2 (a1 + a2 + a3). For the C4 symmetric

points (�, Z, M, A), the Herring test gives the same result as for 75.5. At X , the Herring test gives that the antiunitary
symmetries impose no further degeneracies, whereas at R, the Herring test gives that each IRREP must be doubly degenerate.
Additional degeneracies are imposed by the nonsymmorphic symmetry elements of SG77. For the C4 symmetric points, the
nonsymmorphic symmetries constrain that the IRREPs must switch partners when moving through the BZ. This enforces gap
closings along the kz direction, which acts as an obstruction to defining two-band subspaces across the entire BZ, see Figs. 7(a)
and 7(c). Thus the minimal connectivity of bands in the BZ is 4. The symmetry indicator group can be computed as before.
WP 2c (0, 1/2, z), (0, 1/2, z + 1/2) of SG77 goes into WP 2a of MSG77.18 (PI 42), and the two spinful site-symmetry IRREPs
glue together. Similarly, WP 2a (0, 0, z), (0, 0, z + 1/2) and 2b (1/2, 1/2, z), (1/2, 1/2, z + 1/2) of SG77 go into WP 4b of
MSG77.18 (PI 42), and by checking the compatibility relations, we realize that IRREPs 1E pairs with 2E at the different sites.
Thus we get three spinful magnetic EBRs, which are given by (using the WP labels from SG77):

(2c : E1 + 2c : E2) ↑ G = (�5�6�7�8, Z5Z6Z7Z8, M5M6M7M8, A5A6A7A8, 2X 32X 4, 2R32R4),

(2a : E1 + 2b : E2) ↑ G = (�5�6�7�8, Z5Z6Z7Z8, M5M6M7M8, A5A6A7A8, 4X 3, 4R3),

(2a : E2 + 2b : E1) ↑ G = (�5�6�7�8, Z5Z6Z7Z8, M5M6M7M8, A5A6A7A8, 4X 4, 4R4).

Using the Smith normal form decomposition as before, we see that there’s no nontrivial indicator in this MSG, in agreement
with Ref. [35].

3. Symmetry indicator for MSG81.36 (Pc4̄)

As a final example, we here compute the symmetry indicators for MSG81.36 (Pc4̄), as an example of an MSG with S4

rotoinversion symmetry. This MSG is generated from SG81 by including the operator (E |τ )′ with τ = 1
2 a3. SG81 is similar to

SG75, but the C4 rotations are combined with inversion. The Herring test gives that the C2 IRREPs must glue together at the
C2 symmetric points X and R. At the C4 symmetric points, the Herring test glues together �5�7 and �6�8, respectively, and
similarly at M. At Z, Z5Z8 and Z6Z7 glue together respectively, and similarly at A. This assignment satisfies the compatibility
relations, so the minimal connectivity of bands in the BZ is 2, and two-band subspaces can be defined throughout the BZ.

To compute the symmetry indicator group, we note that τ connects WP 1a (0, 0, 0) and 1b (0, 0, 1/2) of SG81 to form
magnetic WP 2a. Similarly, WP 1c (1/2, 1/2, 0) and 1d (1/2, 1/2, 1/2) of SG81 connect to form magnetic WP 2c. Some of
the nonmaximal WPs of SG81 become maximal WPs for MSG81.36 (Pc4̄), e.g., WP 2e (0, 0, z), (0, 0,−z) of SG81 goes into
maximal magnetic WP 2b (0, 0, 1/4), (0, 0, 3/4), and similarly for nonmagnetic WP 2 f going into magnetic WP 2d . As the
EBRs at these WPs have to satisfy compatibility relations, however, it is straightforward to investigate which site-symmetry
IRREPs to pair. This gives the following magnetic EBRs (labelled using the WPs of SG81):

(1a : 1E1 + 1b : 2E1) ↑ G = (�6�8, Z6Z7, M6M8, A6A7, X 3X 4, R3R4),

(1a : 1E2 + 1b : 2E2) ↑ G = (�5�7, Z5Z8, M5M7, A5A8, X 3X 4, R3R4),

(1a : 2E1 + 1b : 1E1) ↑ G = (�6�8, Z5Z8, M6M8, A5A8, X 3X 4, R3R4),

(1a : 2E2 + 1b : 1E2) ↑ G = (�5�7, Z6Z7, M5M7, A6A7, X 3X 4, R3R4),
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(1c : 1E1 + 1d : 2E1) ↑ G = (�6�8, Z6Z7, M5M7, A5A8, X 3X 4, R3R4),

(1c : 1E2 + 1d : 2E2) ↑ G = (�5�7, Z5Z8, M6M8, A6A7, X 3X 4, R3R4),

(1c : 2E1 + 1b : 1E1) ↑ G = (�6�8, Z5Z8, M5M7, A6A7, X 3X 4, R3R4),

(1c : 2E2 + 1d : 1E2) ↑ G = (�5�7, Z6Z7, M6M8, A5A8, X 3X 4, R3R4),

(2e : 1E + 2e : 2E ) ↑ G = (�5�6�7�8, Z5Z6Z7Z8, M5M6M7M8, A5A6A7A8, 2X 32X 4, 2R32R4),

(2 f : 1E + 2 f : 2E ) ↑ G = (�5�6�7�8, Z5Z6Z7Z8, M5M6M7M8, A5A6A7A8, 2X 32X 4, 2R32R4).

Computing the Smith normal form gives a single Z2 factor. Inspecting the solution space, we see that the corresponding indicator
is given by whether the IRREPs at the C4 invariant points contain an odd or an even number of representations with subscript 5
(or any other subscript). Thus an explicit expression for the symmetry indicator is

z′
2 = n�5

+ nZ5
+ nM5

+ nA5
mod 2. (D4)

It has been shown in [36] for MSG81.33 (P4̄) that this symmetry indicator relates to a 3D axion topological insulating phase.
We finally note that our results in this Appendix agree with general expressions for magnetic EBRs, compatibility relations

and symmetry indicators in Ref. [36], which we became aware of during the finalizing stages of this manuscript.

[1] X.-L. Qi and S.-C. Zhang, Topological insulators and super-
conductors, Rev. Mod. Phys. 83, 1057 (2011).

[2] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[3] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, The space
group classification of topological band-insulators, Nat. Phys.
9, 98 (2012).

[4] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106,
106802 (2011).

[5] R.-J. Slager, The translational side of topological band insula-
tors, J. Phys. Chem. Solids 128, 24 (2019), spin-Orbit Coupled
Materials.

[6] A. Bouhon and A. M. Black-Schaffer, Global band topology
of simple and double dirac-point semimetals, Phys. Rev. B 95,
241101(R) (2017).

[7] T. Bzdušek, QuanSheng Wu, A. Rüegg, M. Sigrist, and A. A.
Soluyanov, Nodal-chain metals, Nature (London) 538, 75
(2016).

[8] J. Höller and A. Alexandradinata, Topological bloch oscilla-
tions, Phys. Rev. B 98, 024310 (2018).

[9] B.-J. Yang and N. Nagaosa, Classification of stable three-
dimensional dirac semimetals with nontrivial topology, Nat.
Commun. 5, 4898 (2014).

[10] M. Nakagawa, R.-J. Slager, S. Higashikawa, and T. Oka, Wan-
nier representation of floquet topological states, Phys. Rev. B
101, 075108 (2020).

[11] F. N. Ünal, A. Eckardt, and R.-J. Slager, Hopf characterization
of two-dimensional floquet topological insulators, Phys. Rev.
Research 1, 022003(R) (2019).

[12] K. Shiozaki, M. Sato, and K. Gomi, Topological crystalline
materials: General formulation, module structure, and wallpa-
per groups, Phys. Rev. B 95, 235425 (2017).

[13] C. Fang, M. J. Gilbert, and B. A. Bernevig, Bulk topological
invariants in noninteracting point group symmetric insulators,
Phys. Rev. B 86, 115112 (2012).

[14] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-
Hermitian Boundary Modes and Topology, Phys. Rev. Lett.
124, 056802 (2020).

[15] M. Taherinejad, K. F. Garrity, and D. Vanderbilt, Wannier cen-
ter sheets in topological insulators, Phys. Rev. B 89, 115102
(2014).

[16] N. Marzari and D. Vanderbilt, Maximally localized general-
ized wannier functions for composite energy bands, Phys. Rev.
B 56, 12847 (1997).
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