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Accurate ground-state energies of Wigner crystals from a simple real-space approach
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We propose a simple and efficient real-space approach for the calculation of the ground-state energies of
Wigner crystals in one, two, and three dimensions. To be precise, we calculate the first two terms in the
asymptotic expansion of the total energy per electron which correspond to the classical energy and the harmonic
correction due to the zero-point motion of the Wigner crystals. Our approach employs Clifford periodic boundary
conditions to simulate the infinite electron gas and a renormalized distance to evaluate the Coulomb potential.
This allows us to calculate the energies unambiguously and with a higher precision than those reported in the
literature. Our results are in agreement with the literature values with the exception of harmonic correction of the
two-dimensional Wigner crystal, for which we find a significant difference. Although we focus on the ground
state, i.e., the triangular lattice and the bcc lattice in two and three dimensions, respectively, we also report the
classical energies of several other common lattice structures.
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I. INTRODUCTION

The uniform electron gas (UEG) [1,2], otherwise known
as jellium, has proven to be a very useful model for
the understanding of electron interactions. In particular in
the solid state the UEG can be used to study a variety
of phenomena, such as plasmon oscillations [3], electron
screening [4], the quantum Hall effect [5], and Wigner lo-
calization [6–10]. Moreover, by combining the UEG with
density-functional theory (DFT) predictive calculations can be
performed on both solids and molecules. Thanks to quantum
Monte Carlo calculations [11] the correlation contribution
to the ground-state energy of the UEG as a function of
the density is accurately known. These data have been used
to approximate the unknown exchange-correlation energy of
DFT [12–14].

Almost a century ago, it was predicted by Wigner [6]
that in the limit of an infinitely dilute UEG the electrons
crystallize at fixed positions in space, thus forming a crystal
lattice. Wigner crystals were later experimentally realized in
one and two dimensions and have been shown to exhibit in-
teresting properties [15,16]. However, numerical calculations
were required to determine the ground-state crystal structures
in both two and three dimensions. By comparing the ener-
gies of several Bravais lattices it was concluded that in two
dimensions the electrons crystallize in the triangular struc-
ture [17], while in three dimensions they crystallize in the bcc
structure [6,18–20].
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The energy per electron of a Wigner crystal EWC can be

written as an asymptotic expansion in powers of r
− 1

2
s [21]:

EWC ∼ η0

rs
+ η1

r3/2
s

+ η2

r2
s

+ η3

r5/2
s

+ · · · , (1)

where rs is the Wigner-Seitz radius. The first term on the right-
hand side is the energy corresponding to a classical charge
distribution; the second term is a correction due to the zero-
point motion in the harmonic approximation, while η2, η3, . . .

correspond to anharmonic corrections. In this work we will
focus on the calculation of η0 and η1. These parameters have
been calculated in the past using reciprocal-space approaches.
Here we will show that they can also be calculated within a
simple real-space method. We note that Eq. (1) assumes that
the electrons are discernible [6]. However, for large rs the
corresponding error is negligible since the correction falls off
exponentially with rs.

For the three-dimensional (3D) Wigner crystal the first
accurate calculation of the classical ground-state energy per
electron was done by Fuchs and Fowler [18]. They ob-
tained η3D

0 = −0.89593 Ha. This value was later refined to
η3D

0 = −0.895929 Ha by Hasse and Avilov [20]. The first
estimation of the harmonic correction was done by Wigner,
who found η3D

1 = 2.7 Ry [22]. This result is quite close to
those obtained two decades later by Coldwell-Horsfall and
Maradudin and by Carr; they found η3D

1 = 1.319 Ha [23] and
η3D

1 = 1.33 Ha [21], respectively. Using the same approach as
Carr but with an improved integration over the Brillouin zone,
Nagai and Fukuyama found the most accurate value to date,
i.e., η3D

1 = 1.32862 Ha [24].
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TABLE I. Summary of the most accurate literature values (in Ha)
of the coefficients η0 and η1.

1D 2D 3D
linear lattice triangular lattice bcc lattice

η0 −1.106 103 [17] −0.895 929 [20]
η1 0.359 933 [25] 0.795 [17] 1.328 62 [24]

Both the classical ground-state energy per electron and
the harmonic correction of the two-dimensional (2D) Wigner
crystal were calculated by Bonsall and Maradudin [17]. They
found η2D

0 = 1.106103 Ha and η2D
1 = 0.795 Ha. To the best

of our knowledge this is the only calculation of η2D
1 in the

literature. Below we will show that we obtain a value with
much higher precision that differs significantly from the value
of Bonsall and Maradudin.

In one dimension the classical ground-state energy per
electron diverges because of a nonintegrable singularity in
the one-dimensional (1D) Coulomb potential in the origin.
Therefore, we will not consider the calculation of η1D

0 . We
note, however, that regularization techniques can be used for
the Coulomb potential to allow for its calculation [25–27].
Instead, η1D

1 can be calculated without problems, and its value
has been determined with high accuracy [25–27]. Its six-digit
approximation is η1D

1 = 0.359933 Ha. In Table I we summa-
rize the most accurate values for η0 and η1 that can be found
in the literature.

The goal of this work is twofold: (1) to present a simple
and general real-space approach for the calculation of the
coefficients η0 and η1 and (2) to achieve a larger precision of
those coefficients, in particular for η1, for Wigner crystals in
two and three dimensions. We will use an approach based on
Clifford boundary conditions and a renormalized distance [28]
that we previously successfully applied to the calculation of
Madelung constants [29,30].

This paper is organized as follows. In Sec. II we describe
the theoretical details of our real-space approach. In Sec. III
we discuss our results for the energies of the Wigner crystals.
Finally, in Sec. IV we draw our conclusions. We use Hartree
atomic units (h̄ = e = me = a0 = 1) throughout this work.

II. THEORY

A. The jellium model

The Hamiltonian of an infinite uniform electron gas with a
uniform positive background that ensures the charge neutral-
ity of the system is given by

Ĥjellium = −
∑

i

∇2
�ri

2
+ Ûee + Ûbb + Ûeb, (2)

in which the electron-electron, electron-background, and
background-background contributions to the Coulomb poten-
tial are given by, respectively,

Ûee = 1

2

∑
i, j
i �= j

1

|�ri − �r j | , (3)

Ûeb = −
∑

i

∫
d�r n

|�r − �ri| , (4)

Ûbb = 1

2

∫
d�r

∫
d�r ′ n2

|�r − �r ′| , (5)

where n is the uniform positive background density. The
charge neutrality of the system is imposed by assuming that
the constant electron density is equal to the positive back-
ground density n. Individually, each term in Eq. (2) diverges,
but their sum is finite, except for the one-dimensional uniform
electron gas.

At low density the electrons form a Wigner crystal with
the electrons localized at the lattice positions of a crystal.
Therefore, we can perform a Taylor expansion of the Coulomb
potential around the equilibrium lattice vectors �R of the elec-
trons in the Wigner crystal,

Ĥjellium = −1

2

∑
i

∇2
�ri
+ Û0 + Û2 + · · · , (6)

in which

Û0 = 1

2

∑
i, j
i �= j

1

| �Ri − �Rj |
−

∑
i

∫
d�r n

|�r − �Ri|
+ Ûbb, (7)

Û2 = 1

2

∑
mn

∑
αβ

∂mα∂nβÛee|�rx= �Rx∀x

× (rm,α − Rm,α )(rn,β − Rn,β ), (8)

where the Greek letters α and β denote Cartesian components.
Since the classical energy U0 is a minimum, the contribution
of the first-order term in the expansion, Û1, vanishes. Fur-
thermore, only variations in Ûee contribute to Û2 since Ûbb

is independent of the electronic coordinates and variations
in the electronic position do not change Ûbe because of the
uniformity of the background. In this work we will consider
the first three terms on the right-hand side of Eq. (6). This
allows us to calculate the first two coefficients in Eq. (1).

Defining the relative coordinates �um = �rm − �Rm, we can
rewrite the first three terms of Eq. (6) in the following general
form [21]:

Ĥ = Û0 − 1

2

∑
i

∇2
�ui

+ 1

2

∑
mn

∑
αβ

Cαβ ( �Rm − �Rn)um,αun,β ,

(9)
in which the real symmetric matrix C is defined as

Cαβ ( �Rm − �Rn)

= 1

2
∂mα∂nβ

∑
i, j
i �= j

1

|�ui − �u j + �Ri − �Rj |

∣∣∣∣
�ux=0∀x

, (10)

where the derivatives are now with respect to �u.
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Thanks to the translational invariance of the system we can
use the following Fourier transformation:

�um = 1√
N

∑
k

ei �Gk · �Rm �vk, (11)

�vk = 1√
N

∑
m

e−i �Gk · �Rm �um, (12)

where N is a normalization constant and the vectors �Gk can
be interpreted as reciprocal lattice vectors, so Eq. (9) can be
rewritten as

Ĥ = Û0 +
∑

k

[
−1

2
∇2

�vk
+ 1

2

∑
αβ

C̃αβ ( �Gk )vk,αv∗
k,β

]
, (13)

with

C̃αβ ( �Gk ) =
∑

l

Cαβ ( �Rl )e
i �Gk · �Rl (14)

being a real symmetric d × d matrix, with d = 1, 2, 3 being
the dimensionality of the lattice. Finally, using the eigenvec-
tors of C( �Gk ), we can perform an orthonormal transformation
to arrive at

Ĥ = Û0 +
∑

k

∑
α

[
−1

2
∂2

k,α + 1

2
ω2

k,αq2
k,α

]
, (15)

where ω2
k,α are the eigenvalues of C̃( �Gk ) and �qk are normal

modes. The expression inside the square brackets in the above
equation is the Hamiltonian of a quantum harmonic oscillator
in one dimension for which the eigenenergies are known.
Therefore, the total ground-state energy per electron of the
Wigner crystal can be written as

EWC ∼ η0

rs
+ η1

r3/2
s

+ · · · , (16)

with

η0

rs
= U0

N
, (17)

η1

r3/2
s

= 1

2N

∑
k

∑
α

ωk,α. (18)

The jellium problem pertains to a system with an infinite num-
ber of electrons in an infinite volume at constant density. In
practical calculations we can, of course, deal with only a finite
number of electrons in a finite volume. However, we would
like to preserve the translational symmetry of the jellium
model. Therefore, we impose periodic boundary conditions
(PBC) with respect to a finite supercell. Unfortunately, the
long-range Coulomb potential is not periodic, and it does not
vanish at the borders of any finite supercell, even a very large
one. Therefore, as explained in the next section, we impose
Clifford boundary conditions with a renormalized distance.

B. Clifford boundary conditions

We will use Clifford boundary conditions, which means
that we define a supercell that has the topology of a Clifford
torus, i.e., a finite, flat, and borderless manifold. A Clifford
supercell is linked to a Euclidean supercell defined in Rd . The

Clifford supercell is then obtained by joining opposite sides
of the Euclidean supercell without deformation. This can be
achieved by defining the Clifford supercell in the embedding
space Cd (alternatively, it can also be achieved in R2d ).

Let us consider a general orthorhombic lattice in d dimen-
sions and define �aα to be the orthogonal generating vectors of
a unit cell in Rd . Then a general vector �v inside the unit cell
can be written as

�v =
∑

α

xα�aα, (19)

where 0 � xα < 1. We define a Euclidean supercell (ESC) as
the right parallelepiped in Rd generated by the vectors �Aα

given by

�Aα = Kα�aα, (20)

where Kα are positive integers. The ESC thus contains
∏

α Kα

copies of the unit cell. A general vector �r ESC in the ESC can
thus be written as

�r ESC = �v +
∑

α

kα�aα =
∑

α

rα�aα, (21)

with rα = xα + kα and 0 � kα � Kα − 1.
We now define the Clifford supercell (CSC) as the Clifford

torus in which the opposite borders (either points, edges, or
faces, depending on d) of the corresponding ESC are con-
nected without deformation. A general vector �r CSC in the
CSC should respect the translational symmetry of the Clifford
torus. This can be achieved by writing �r CSC according to

�r CSC =
∑

α

Kα

2π i
[ei2πrα/Kα − 1]�aα. (22)

We note that the above expression is the classical equivalent
of the PBC position operator proposed by some of us in a
quantum context [28]. The above definition satisfies a number
of important constraints. In particular, it satisfies the transla-
tional symmetry, it reduces to the standard position operator
in the appropriate limit, and the corresponding definition of
the distance is real and gauge invariant [see Eq. (23)] [28].

In order to evaluate Coulomb potentials we have to define
the distance between two points in the CSC. We note that
a possibility would be to define the distance as the smallest
difference between two points on the Clifford torus. How-
ever, such a distance would have discontinuous derivatives
in those points of the CSC that correspond to the midpoints
of the edges of the corresponding ESC. This definition of
the distance would yield discontinuous forces in these points,
which is unphysical. Therefore, we choose the distance to be
the Euclidean norm in Cd because it is both uniquely defined
and yields continuous derivatives. In other words, the distance
is defined in the embedding space of the Clifford torus. This
distance rCSC

i j = |�r CSC
i − �r CSC

j | is given by

rCSC
i j =

√∑
α

L2
α

π2
sin2

(
π

Lα

[riα − r jα]

)
, (23)

where we used �aα · �aβ = 0 for α �= β and Lα = Kα|�aα|, with
Lα being the length of an edge of the ESC. We will evaluate
the Coulomb potentials in Eqs. (7) and (8) using the above
renormalized distance. In Fig. 1 we show an illustration of a
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FIG. 1. Pictorial illustration of a Clifford supercell for the trian-
gular lattice of the two-dimensional Wigner crystal. The equilibrium
positions of the electrons are located at the vertices. The dashed red
line represents the renormalized distance between two electrons used
in the Coulomb potential. It is the shortest distance in the embedding
space of the Clifford torus. We note that a true Clifford torus has a
flat surface which is impossible to represent graphically.

CSC for a two-dimensional Wigner crystal and the renormal-
ized distance between the electrons.

C. The 3D Wigner crystal

With the renormalized distance the background-
background contribution in the 3D CSC is given by

Û CSC
bb = N2

2V

∫
V

dx dy dz√
L2

x
π2 sin2

[
πx
Lx

] + L2
y

π2 sin2
[

πy
Ly

] + L2
z

π2 sin2
[

πz
Lz

] ,

(24)
where, thanks to the periodicity of the CSC, we could reduce
the two volume integrals to only one and we used n = N/V ,

which ensures the charge neutrality of the 3D CSC supercell,
with V = LxLyLz being the volume of the supercell. With the
changes in variable θx = πx

L , θy = πy
L , and θz = πz

L the above
expression can be rewritten according to

Û CSC
bb = N2

2π2

∫ π

0

∫ π

0

∫ π

0

dθxdθydθz√
L2

x sin2 θx + L2
y sin2 θy+ L2

z sin2 θz

.

(25)

The triple integral in the above equation can be readily
calculated. For example, in the case of a cubic supercell, i.e.,
L = Lx = Ly = Lz, we obtain the following result:

Û CSC
bb = N2γc

L
(L = Lx = Ly = Lz ), (26)

with γc = 1.4305055275.
Thanks to the periodicity and uniformity of the posi-

tive background, each electron contributes exactly the same
amount to the summation in the expression of the electron-
background contribution in the CSC. Therefore, without loss
of generality, we can choose to consider explicitly only the
contribution of an electron located at the origin and multiply
by N . We can thus write the electron-background contribution
according to

Û CSC
eb = −N2

V

∫
V

dx dy dz√
L2

x
π2 sin2

[
πx
Lx

]+ L2
y

π2 sin2
[

πy
Ly

]+ L2
x

π2 sin2
[

πz
Lz

] ,

(27)
where we once more used n = N/V . We note that in the spe-
cial case L = Lx = Ly = Lz the integral in the above equation
can be made independent of L in a way similar to what was
done for Ûbb. By comparing Eqs. (24) and (27) we find the
following identity between Ûbb and Ûeb in the CSC:

Û CSC
eb = −2Û CSC

bb . (28)

Finally, the classical electron-electron contribution Û0,ee in the
CSC is given by

Û CSC
0,ee = 1

2

∑
i, j

i �= j

1√
L2

x
π2 sin2

[
π
Lx

(xi − x j )
] + L2

y

π2 sin2
[

π
Ly

(yi − y j )
] + L2

z

π2 sin2
[

π
Lz

(zi − z j )
] . (29)

This is the only contribution that depends on the details of
the lattice structure, i.e., the equilibrium positions of the elec-
trons.

In the following we will focus on the bcc lattice since
it yields the ground-state energy of a 3D Wigner crystal. A
strategy similar to that described below can be used for other
lattices. For the bcc structure it is convenient to use a cubic su-
percell, i.e., L = Lx = Ly = Lz, and to define the equilibrium
positions of the electrons according to �Ri = (π/3)1/3rs�ni, with
�ni being a vector of three integers, all even or all odd [21].
Therefore, L = (π/3)1/3(2Ns)rs, with Ns being the number
of electrons per side. The total classical bcc energy U0 =

U CSC
0,ee − U CSC

bb per electron can thus be written as

U0

N
=

(
3
π

)1/3

2Nsrs

{
π

2

N∑
i=1

(∑
α

sin2
[πniα

2Ns

])−1/2

− γcN

}
. (30)

Since U0/N = ηbcc
0 /rs, we can easily obtain ηbcc

0 from the
above expression.

By working out the derivatives in Eq. (10) while using the
renormalized distance given in Eq. (23) and then inserting
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the definition of �Ri for the bcc lattice, i.e., �Ri = (π/3)1/3rs�ni,
we obtain the following expression for the C matrix:

CNs
αβ (�0) = − 3π2

8N3
s

δαβ

r3
s

∑
�ni �=�0

[
cos

[
πniα
Ns

]
{∑

α′ sin2[πniα′/(2Ns)]
}3/2

−
3
4 sin2

[
πniα
Ns

]
{∑

α′ sin2[πniα′/(2Ns)]
}5/2

]
, (31)

CNs
αβ (�ni ) = 3π2

8N3
s

1

r3
s

[
δαβ cos

[
πniα
Ns

]
∑

α′ {sin2[πniα′/(2Ns)]}3/2

−
3
4 sin

[
πniα
Ns

]
sin[πniβ

Ns
]∑

α′ {sin2[πniα′/(2Ns)]}5/2

]
(�ni �= �0), (32)

where the summation in Eq. (31) is over all �ni �= �0 inside the
CSC. We note that in the limit Ns → ∞ we have the following
identity:

lim
Ns→∞

CNs
αα (�0) = 1

r3
s

. (33)

The matrix C̃ given in Eq. (14) can be rewritten as

C̃Ns (�nk ) =
∑

�ni

CNs (�ni ) cos

(
π �nk · �ni

Ns

)
, (34)

where we used that �Gk = 2π �nk/(2Ns). To obtain ηbcc
1 it suf-

fices to diagonalize C̃Ns (�nk ) ∀ k, take the square root of the
eigenvalues, and add them up according to Eq. (18).

D. The 2D Wigner crystal

The derivation of the various terms of the Coulomb po-
tential in two dimensions for the CSC are analogous to those
of the 3D Wigner crystal discussed in the previous section.
The background-background and electron-background contri-
butions in the CSC are given by

Û CSC
bb = −Ûeb

2
= N2

2π

∫ π

0

∫ π

0

dθxdθy√
L2

x sin2 θx + L2
y sin2 θy

,

(35)
where we used the fact that in 2D n = N/(LxLy). We note
that in the special case L = Lx = Ly we obtain the following
analytical expression:

Û CSC
bb = −Ûeb

2
= N2

2
√

πL
G2,2

3,3

(
1, 1, 1

1/2, 1/2, 1/2

∣∣∣∣1
)

, (36)

where G is the Meijer G function. The classical electron-
electron contribution in the 2D CSC is given by

Û CSC
0,ee = 1

2

∑
i, j
i �= j

1√
L2

x
π2 sin2

[
π
Lx

(xi − x j )
]+ L2

y

π2 sin2
[

π
Ly

(yi − y j )
] .

(37)

In the following we will focus on the triangular lattice
since it yields the ground-state energy of a 2D Wigner crystal.
For the triangular lattice it is convenient to use a rectangular

supercell and to define the equilibrium positions of the elec-

trons according to �Ri = rs

√
π/(2

√
3)(nix, niy

√
3)T , with nx

and ny being two integers, both even or both odd. Therefore,

Lx = rs

√
2π/

√
3Ns, and Ly = rs

√
2π

√
3Ns. The total classi-

cal energy U0 = U CSC
0,ee − U CSC

bb per electron of the triangular
lattice can thus be written as

U0

N
= 1

Nsrs

[ √
π

2
√

2

N∑
i=1

31/4√
f (�ni )

− γt N

]
, (38)

where γt = 0.7839363355 and

f (�ni ) = sin2
[πnix

2Ns

]
+ 3 sin2

[πniy

2Ns

]
. (39)

By working out the derivatives in Eq. (10) while using
the renormalized distance given in Eq. (23) and then insert-
ing the definition of �Ri for the triangular lattice, i.e., �Ri =
rs

√
π/(2

√
3)(nx, ny

√
3)T , we obtain the following expression

for the C matrix:

CNs
αβ (�0) = −

(
π

√
3

2N2
s

)3/2
δαβ

r3
s

∑
�ni �=�0

[
cos

[
πniα
Ns

]
f (�ni )3/2

−
3
4 (

√
3)δαy (

√
3)δβy sin2

[
πniα
Ns

]
f (�ni )5/2

]
, (40)

CNs
αβ (�ni ) =

(
π

√
3

2N2
s

)3/2
1

r3
s

[
δαβ cos

[
πniα
Ns

]
f (�ni )3/2

−
3
4 (

√
3)δαy (

√
3)δβy sin

[
πniα
Ns

]
sin

[πniβ

Ns

]
f (�ni )5/2

]
(�ni �= �0),

(41)

0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05

-0.895932

-0.895931

-0.895930

-0.895929

� �
3
D

0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07

Ns
-2

-1.106102600

-1.106102595

-1.106102590

-1.106102585

� �
2
D

FIG. 2. The coefficient η0 (in Ha) as a function of N−2
s for the 3D

bcc lattice and the 2D triangular lattice. The dots at N−2
s = 0 indicate

the extrapolated values obtained according to Eq. (45).

245125-5



ESTEFANIA ALVES et al. PHYSICAL REVIEW B 103, 245125 (2021)

TABLE II. Numerical values of η2D
0 (in Ha) for the square and

triangular 2D crystal structures.

η2D
0

Lattice This work Literature [17]

Square −1.100244420 −1.100 244
Triangle −1.106 102 587 −1.106 103

where the summation in Eq. (40) is over all �ni �= �0 inside the
CSC. A procedure similar to that described for the 3D bcc
lattice in the previous section then leads to η2D

1 .

E. The 1D Wigner crystal

As mentioned in the Introduction, in one dimension the
classical ground-state energy per electron diverges because
of a nonintegrable singularity in the 1D Coulomb potential.
Therefore, we will focus here on the calculation of η1. In one
dimension the C matrix defined in Eq. (10) is just a scalar that
is given by

CN (0) = π3

8N3

1

r3
s

N−1∑
n=1

1 + cos2[πn/N]

| sin[πn/N]|3 , (42)

CN (n) = − π3

8N3

1

r3
s

1 + cos2[πn/N]

| sin[πn/N]|3 (n �= 0). (43)

We note that in the limit N → ∞ we have the following
identity:

lim
N→∞

CN (0) = ζ (3)

2r3
s

(44)

in terms of the Riemann ζ function.

III. RESULTS

We summarize here the results obtained for η0 and η1 for
various lattices in the limit of the infinite systems. To estimate
the coefficients η0 and η1 for the infinite CSC we extrapolate
the coefficients of finite-size CSCs with the following power
function:

η(Ns) = η∞ + AN−2
s , (45)

where A and η∞ are the fit coefficients. This power func-
tion has also proven to work well for the extrapolation of
Madelung constants [29].

TABLE III. Numerical values of η3D
0 (in Ha) for several 3D

crystal structures.

η3D
0

Lattice This work Literature [20]

Simple cubic −0.880 059 440 −0.880 059
bcc −0.895 929 255 −0.895 929
fcc −0.895 873 614 −0.895 874
hcp −0.895 838 120 −0.895 838

0 2e-09 4e-09 6e-09 8e-09 1e-08

Ns
-2

0.359933150

0.359933155

0.359933160

0.359933165

0.359933170

� �
1
D

2e-07 4e-07 6e-07 8e-07 1e-06

0.81368575

0.81368580

0.81368585

0.81368590

0.81368595

� �
2
D

2e-05 4e-05 6e-05 8e-05 0.0001

1.32862

1.32864

1.32866

1.32868

� �
3
D

FIG. 3. The coefficient η1 (in Ha) as a function of N−2
s for the 3D

bcc lattice, the 2D triangular lattice, and the 1D linear lattice. The
dots at N−2

s = 0 indicate the extrapolated values obtained according
to Eq. (45).

A. The classical energy η0

In Fig. 2 we report η3D
0 and η2D

0 as a function of N−2
s for the

bcc and triangular lattices, respectively.
We can use the same strategy to find the ground-state

energy for any crystal structure. For the sake of completeness
we report in Tables II and III the ground-state energies of the
most common crystal structures in two and three dimensions,
respectively. As expected, we find that in two dimensions the
triangular lattice is lower in energy than the square lattice,
while in three dimensions, it is the bcc lattice that has the
lowest energy, although the differences from the fcc and hcp
lattices are small. Our results are in perfect agreement with
the literature values, while with our approach we can easily
obtain several more digits.

B. The harmonic correction, η1

In Fig. 3 we report η1 as a function of N−2
s for one, two,

and three dimensions. Again, the results are close to linear,
and we can extrapolate to the infinite-size CSC with the power
function of Eq. (45). We report the extrapolated values in
Table IV. We see that for the 1D and 3D Wigner crystals our
results are in agreement with the most accurate values found
in the literature. Instead, for the triangular 2D Wigner crystal
our result is significantly different from the literature value.

TABLE IV. Numerical values of η1 (in Ha) for Wigner crystals
in one, two, and three dimensions.

η1

Lattice This work Literature

1D (linear) 0.359 933 0.359 933 [25]
2D (triangular) 0.813 686 0.795 [17]
3D (bcc) 1.328 624 1.328 62 [21]
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TABLE V. Summary of the coefficients η0 and η1 (in Ha) ob-
tained in this work.

1D 2D 3D
linear lattice triangular lattice bcc lattice

η0 −1.106 103 −0.895 929
η1 0.359 933 0.813 686 1.328 624

IV. CONCLUSIONS

We have presented a simple real-space approach for the
calculation of the ground-state energy of Wigner crystals in
one, two, and three dimensions. Our approach yields values
with high precision for the first two terms in the asymptotic

expansion of the energy per electron of Wigner crystals. Our
results are in agreement with the values found in the literature
with the exception of the harmonic correction to the zero-point
energy of the 2D triangular Wigner crystal, for which we
found a significantly larger value than the one in the literature.
We summarize our results in Table V. Finally, we note that
all our results were obtained with simple computer codes of
no more than a few hundred lines, all of which are freely
available [31].
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