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Pushing and pulling optical pressure control with plasmonic surface waves
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The basis for pulling a passive nanostructured material using laser light by establishing a transverse surface
plasmon resonance on the back of a membrane is presented and supported with both theory and numerical
simulations. The total force magnitude and direction can be regulated by electromagnetic resonant modes
interacting with materials that can be adjusted using the material and geometry variables, and with plane-wave
illumination under sinusoidal steady-state conditions. In the situations treated, the structured material is fixed
in position and the force density and hence total force are determined numerically. Simulations indicate that
a silicon nitride film coated with gold and patterned to produce a unit cell having a slot passing through both
materials allows satisfactory surface wave control to facilitate a pulling force with visible wavelengths. When the
plasmon surface wave on the back dominates, pulling occurs, and when the mode on the front has more energy,
the result is pushing. It is also shown that pushing or pulling, regulated by varying the wavelength of the incident
light, is possible, and an example is presented. This work motivates an experimental effort to investigate pulling
with nanostructured media and offers a different paradigm in optomechanics.
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I. INTRODUCTION

While it has been more than a century since experiments
have shown optical radiation can exert a mechanical push-
ing force on a mirror [1,2], in a manner consistent with the
prediction of Maxwell [3], important basic physical questions
remain and fundamentally new opportunities exist related
to the mechanical action of light in material. We present a
class of nanostructured material where an optical resonance
is established on the back that facilitates pulling. A detailed
theoretical development and numerical simulations of fields
and force densities for various examples with a model that
enforces momentum conservation support the concept. In
the regime considered, the structure is strongly scattering,
presenting a different picture to the laser tweezing work of
Ashkin and others [4,5], which have led to instruments impor-
tant to molecular biology [6].

A negative force can be imparted on small particles by
structuring or controlling the incident beam [7–10]. More gen-
erally, field control provides a means to regulate local fields
and power flow, and this can lead to the creation of vortices
[11]. Small particles in a beam trap will of course be moved
with and due to the trap [5]. A medium with gain can have
an associated negative force [12–14]. Evanescent fields from
total internal reflection or waveguide modes may produce an
attractive force on another waveguide or object [15,16]. A
pulling force by design of the background medium param-
eters has been proposed [17]. Control of effective medium
parameters has also been studied in regard to negative forces
[14,18]. However, a beam is generally understood to only
push a mirror or planar interface or passive film. Simulation
results presented indicate that both pushing and pulling can
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be achieved with a single normally incident plane wave on
a nanostructured membrane by exciting a plasmonic mode
cavity resonance on the same side (pushing) or the opposite
side (pulling) of a nanostructured membrane. This is con-
sistent with establishing a cavity resonance that has suitable
asymmetry with respect to the net force direction [19] and
where substantial energy is stored in the fields in the material.
Excitation of such a resonant mode in the material is neces-
sary to achieve pulling by regulating the stored energy of the
resonant field as we describe.

The focus here is on metal-insulator (MI) structures that
support surface plasmon modes, as presented conceptually in
Fig. 1, and we consider a two-dimensional (2D) geometry.
The red arrows indicate the normally incident plane wave and
the gray arrows the direction of the imparted force [pushing
in Fig. 1(a) and pulling in Fig. 1(b)]. If we consider the
shaded region as a metal (Au is assumed in the simulations)
having a dielectric constant ε = ε′ + iε′′, with ε′ < −1, sur-
face (MI) waveguide modes (plasmons) can be exited on the
top (front) and bottom (back) surfaces (shown as resonant
field profiles outside and inside the material in Fig. 1) for
transverse magnetic (TM) fields with a magnetic field per-
pendicular to the plane containing the arrows, assuming a
free-space background. We use a coordinate system such that
TM fields have Hz, Ex, Ey, with Hz perpendicular to the plane
depicted (perpendicular to the plane with the arrows in Fig. 1
and tangential to the top and bottom surfaces). The slot has
a lowest-order [metal-insulator-metal (MIM)] mode (having
Hz, Ex, Ey) that propagates for arbitrarily small slot width and
can provide for resonant coupling through the film [20–22]. A
normally incident plane wave from the top (Hz, Ex) excites the
slot mode and hence the front and back surface waves to some
extent. The evanescent nature of the surface wave confines
the field to the metal interface, and, collectively with the
resonant condition, substantial field energy is stored near the
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FIG. 1. Illustration of pushing (a) and pulling (b) of structures,
relative to the direction of the incident light (red arrow) and associ-
ated with the excitation of resonant plasmon surface waves. The gray
arrows indicate the force direction experienced by the material. In
the pushing case in (a), the dominant surface wave is on the top or
incident beam side, and for the pulling situation in (b), the dominant
transversely resonant plasmon mode is on the back (bottom). A trans-
versely periodic structure is considered, and one period is shown.
Periodic boundary conditions are thus imposed on the left and the
right. All geometries involve a slot passing through the structure that
support a metal-insulator-metal waveguide mode that can provide
resonant coupling through the film as well as scatter-based excitation
of the transverse surface (metal-insulator) mode.

surface and in the material. With a slot cavity resonance in the
longitudinal dimension (the y direction, where the red arrows
in Fig. 1 are in the −y direction), coupling through the film
and excitation of the back surface wave is promoted. Adding
a dielectric layer to the top or bottom surface and adjustment
of the geometry allows either the front [pushing, Fig. 1(a)] or
back [pulling, Fig. 1(b)] to have a large, transversely resonant
surface wave. A surface wave on the top results in a pushing
force (from the force density in the material), indicated by the
gray arrows in Fig. 1(a), and on the bottom a pulling force,
where there is pushing from the back of the material (associ-
ated with the force density in the material in that region), as
illustrated by the gray arrows in Fig. 1(b). Surface waves on
a (lossy) metal have a normal Poynting vector component and
force into the metal, and these can be large with resonance
relative to the contributions from the relatively small incident
photon flux. On this basis, pulling, as in Fig. 1(b), is presented
through simulations with a model based on the work of Ein-
stein and Laub that enforces conservation of momentum [23].

The force theory in various forms used in the simulations
is summarized in Sec. II. The relevant boundary physics is
reviewed in Sec. III, and this motivates the more detailed
derivation of the force density and momentum conservation
conditions at boundaries in Sec. IV. This leads to important
conclusions regarding the treatment of forces in materials

due to electromagnetic fields. Section V presents simulation
results for pushing and pulling forces in nanostructured metal-
dielectric films, and Sec. VI provides a discussion of various
calculations of pulling forces in this situation and more gen-
eral perspectives of force and energy in coherent resonant
systems. The work and related impact are summarized in
Sec. VII.

II. FORCE THEORY FOR SIMULATIONS

We describe the force theory that is used to generate the
simulation results. The approach uses the fields in the material
to describe the optical force density, and is based on the work
of Einstein and Laub [23], which gives

f = ∂P
∂t

× μ0H − ∂μ0M
∂t

× ε0E + ρE + J × μ0H

+ (P · ∇)E + μ0(M · ∇)H, (1)

with f having SI units of N/m3 and P the polarization, H the
magnetic field intensity, M the magnetization, E the electric
field intensity, ρ the electric charge density, J the electric
current density, μ0 the permeability of free space, and ε0 the
permittivity of free space [24–26]. The kinetic force density
in (1) is obtained from

f = −
(

∇ · T + ∂g
∂t

)
, (2)

with g the momentum density and where T is the associated
Einstein-Laub stress tensor, given by [25]

T = 1
2 (ε0E · E + μ0H · H)I − DE − BH, (3)

with I the identity matrix, D the electric flux density, B the
magnetic flux density, and where DE and BH indicate the
relevant tensors, for example,

DE =
⎡
⎣D1E1 D1E2 D1E3

D2E1 D2E2 D2E3

D3E1 D3E2 D3E3

⎤
⎦. (4)

The divergence of the tensor in the (x1, x2, x3) coordinate
system is

∇ · T =

⎡
⎢⎣

∂T11
∂x1

+ ∂T21
∂x2

+ ∂T31
∂x3

∂T12
∂x1

+ ∂T22
∂x2

+ ∂T32
∂x3

∂T13
∂x1

+ ∂T23
∂x2

+ ∂T33
∂x3

⎤
⎥⎦. (5)

Equation (1) assumes the Abraham momentum, which leads
to

g = 1

c2
E × H, (6)

with c the speed of light in vacuum. For electromagnetic
energy in free space, this yields the single-photon momentum
magnitude of h̄k0, where h̄ = h/2π , with h being Planck’s
constant, and k0 is the free-space wave number.

Equation (1) has been used to describe key experiments
[24,25], notably the bulge on a liquid surface due to a laser
[4], and results in the theory of Lorentz in the static limit
[26]. Some important conclusions related to the interpretation
of (2), in regards to metal-dielectric boundaries that support
surface plasmon waves, are pursued in Sec. IV.
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We assume a time-harmonic, monochromatic field de-
scription with frequency dependence exp(−iωt ), along
with an isotropic dielectric response, giving P(r, ω) =
ε0χE (r, ω)E(r, ω), with χE the complex electric susceptibil-
ity (leading to a complex dielectric constant ε = 1 + χE ). The
time average of the force density in the frequency domain
and in source-free dielectric media, from (1), can be thus
written as [27]

〈f〉 = ωμ0

2
Im{P × H∗} + 1

2
Re{(P · ∇)E∗}, (7)

where 〈·〉 is the temporal average, Re{·} is the real part, and
Im{·} is the imaginary part, and P, E, and H are phasors.
Equation (7) is used to obtain the force density in the material,
integrated to form the force, and normalized by the periodic
geometry to form pressure.

Assuming a 2D transversely periodic arrangement with
fields Hz(x, y), Ex (x, y), Ey(x, y) and interest in the y compo-
nent of the force (so the x direction has a periodic boundary
condition with no net total force in that direction), the first
term in (7) yields

ωμ0

2
Im{ŷ · (P × H∗)} = ωμ0ε0

2
Im{χE (EzH

∗
x − ExH∗

z )}.
(8)

For the second term in (7),

(P · ∇)E∗ =

⎡
⎢⎢⎣

Px
∂E∗

x
∂x + Py

∂E∗
x

∂y + Pz
∂E∗

x
∂z

Px
∂E∗

y

∂x + Py
∂E∗

y

∂y + Pz
∂E∗

y

∂z

Px
∂E∗

z

∂x + Py
∂E∗

z

∂y + Pz
∂E∗

z

∂z

⎤
⎥⎥⎦. (9)

In 2D, this leads to

1

2
�{ŷ · (P · ∇)E∗}

= ε0

2
Re

{
χE

(
Ex

∂E∗
y

∂x
+ Ey

∂E∗
y

∂y
+ Ez

∂E∗
y

∂z

)}
. (10)

Equation (7) is implemented as (8) and (10) to form the y
component (normal to the top surface in Fig. 1) of the force
density throughout the material as

〈 fy(x, y)〉 = ωμ0ε0

2
Im{χE (EzH

∗
x − ExH∗

z )}

+ ε0

2
Re

{
χE

(
Ex

∂E∗
y

∂x
+ Ey

∂E∗
y

∂y
+ Ez

∂E∗
y

∂z

)}
.

(11)

Equation (11) is integrated (over one period in the transverse
direction) to form the y-directed, or normal, total force, and
then divided by the relevant transverse dimensions (the period
and unit distance in the space-invariant z direction) to obtain
the pressure.

For monochromatic radiation (single ω), it can be
shown that 〈∂g/∂t〉 = 0 (see the Appendix for a proof).
Consequently, the time-average force density in the material
is, from (2),

〈f〉 = −〈∇ · T〉. (12)

From (12), for sinusoidal steady-state conditions, the force
density in the material is equivalently available from the di-

vergence of the stress tensor. The divergence of T is formed
as (5), and, for example, the divergence of (4) is

∇ · DE =

⎡
⎢⎢⎣

∂ (DxEx )
∂x + ∂ (DxEy )

∂y + ∂ (DxEz )
∂z

∂ (DyEx )
∂x + ∂ (DyEy )

∂y + ∂ (DyEz )
∂z

∂ (DzEx )
∂x + ∂ (DzEy )

∂y + ∂ (DzEz )
∂z

⎤
⎥⎥⎦. (13)

Assuming locally homogeneous media, we have

∇ · DE = ∇ · [(ε0E + ε0χE E)E] (14)

= ε0(1 + χE )∇ · EE, (15)

where we imply piecewise constant χE , as occurs in numerical
solutions with subdomain basis functions, such as in the finite-
element method (FEM) solution of electromagnetic problems.
The relevant component of the time average of the divergence
of (12) thus becomes

〈 fy(x, y)〉 = −1

2
Re{〈ŷ · (∇ · T)〉}

= −1

2
Re

{
∂

∂y

[ε0

2

(|Ex|2 + |Ey|2
) + μ0

2
|Hz|2

]

−ε0(1 + χE )

[
∂
(
ExE∗

y

)
∂x

+ ∂ (|Ey|2)

∂y

]}
. (16)

Equation (16) is implemented numerically.
Application of the divergence theorem to the stress tensor

with elements Ti j for the coordinate system (x1, x2, x3) results
in∫ (

∂Ti1

∂x1
+ ∂Ti2

∂x2
+ ∂Ti3

∂x3

)
dv =

∮
Ti1ds1 + Ti2ds2 + Ti3ds3,

(17)

for i = 1, 2, 3. When the surface integral spans a material in-
terface and contracts to that surface, the closed surface integral
is zero only when the Ti j are continuous across the relevant
boundary. For TM-polarized fields (Hz, Ex, Ey), the discon-
tinuity in the normal electric fields at interfaces results in a
discontinuity in the associated terms of T. With (x1, x2, x3) →
(x, y, z), time-harmonic fields, the stress tensor in (3), and
assuming Hz(x, y), Ex (x, y), Ey(x, y), the time-averaged stress
tensor elements are given by

〈Tyx〉 = − 1
2 Re{DyE∗

x }, (18)

〈Tyy〉 = ε0

4
Re{E · E∗} + μ0

4
Re{H · H∗} − 1

2
Re{DyE∗

y },
(19)

〈Tyz〉 = 0. (20)

Application of the divergence theorem to the stress tensor in
(3) yields the y component of the total time-averaged force
(over one period and unit distance in the space-invariant di-
rection) as

〈Fy〉 =
∮

〈Tyx〉dy dz + 〈Tyy〉dx dz, (21)

where, consistent with (17), an outward normal unit-vector
direction is assumed for each surface, and the ẑ components
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of the closed surface integrals are zero in the 2D situation
considered. Equation (21) can thus be used to also determine
the force on a particular region of material.

We present numerical results for the pressure (pushing
and pulling) for structures like Fig. 1 using (11), (16), and
(21). However, first the boundary conditions for the metal are
considered physically (Sec. III) and mathematically (Sec. IV).
We note the significance of these steps in relation to the
integration of the force density within the spatial support of
the material and access to field resonances in the material to
regulate the force.

III. PLASMONIC SURFACE WAVES AND BOUNDARY
CONDITIONS

A set of experiments measuring the deflection of a nanos-
tructured Au-SiN membrane supporting resonant plasmon
surface waves due to an incident laser beam concluded that
a pressure greater than that on a perfect mirror is possible
[27]. The physical understanding is that this is due to an
asymmetric cavity resonance and the energy associated with
a large number of photons in the material [19]. Adjustment
of the conditions for the plasmon surface wave resonance are
shown to allow for pulling.

Maxwell’s picture [1–3] gives a pressure

P = S

c
(1 + |�|2), (22)

where S is the time-average incident Poynting vector mag-
nitude and � is the field reflection coefficient, and no
transmission through the material is implied. The maximum
pressure from (22) is 2S/c. Experimental evidence indi-
cates that this value was exceeded by utilizing structured
material in the third dimension and from surface plasmon
resonances [27]. Equation (7) is the force density model
used to predict the measured data with tight error tolerances.
This model is used here to investigate pulling forces, under
the assumption that earlier experiments support this posi-
tion. However, there remain open issues related to optical
forces at interfaces that suggest further experiments are in
order.

Interesting aspects of field boundary conditions at material
interfaces have been noted [28]. We consider the physics of
metal-insulator interfaces, as is relevant for forces on nanos-
tructured membranes supporting plasmon surface waves. In
general, the treatment of electromagnetics and optical force
density at nanometer length scales and in nanostructured ma-
terial requires consideration of nonlocal effects in both time
and space [29]. Metal [30] and semiconductor [31] interfaces
have been studied based on (Thomas-Fermi) screening, where
electrons screen the electric field from the positively charged
relatively immobile atoms, leading to wave-vector-dependent
and spatially dependent dielectric functions. These nonlocal
effects have been modeled simply as a modification of the
Drude picture, and an equivalent boundary-layer representa-
tion has been chosen to use local dielectric functions [32]. In
application of a hydrodynamic representation (see, for exam-
ple, [33]), continuity of the normal component of the electric
field across the vacuum-metal interface was sought [34,35],
with the normal polarization going to zero. Such microscopic

models apply to length scales comparable to the (de Broglie)
wavelength in the metal, 0.5 nm or so, and describe the
shortcomings of a sheet charge supporting a step discontinuity
in the normal electric field at the vacuum-metal interface,
and the fact that the electrons are distributed (and screen the
positive charges). This body of work may indicate that there
is no boundary force from the Dirac function associated with
the second term in (7) and the discontinuity of the normal
component of the electric field at a metal-vacuum interface.
This, and hence the integration of (7) within the metal and not
across the boundary, was previously assumed [36] and used to
predict experimental results [27].

One might consider an atomistic treatment of the material,
considering it as a set of voxels (pixels in 2D), which is
equivalent to the model presented by Gordon [37] and consis-
tent with a picture from Shockley [38,39]. This interpretation
involves applying (7) at the atomic scale, where the dipole mo-
ment for each atom, p, has a force according to the local fields
(called the Lorentz force in [37]), but with the form in (7).
In this case, each pixel acts much like an atom. If one varies
the local dipole moment of one of these atoms, the resulting
force (Born approximation for the perturbation) would use the
background field. Each voxel and each atom would conform
to this picture. In 2D, thin sheets of material (metal) have
image charges and do not experience a force in slowly varying
background fields, and it is the long-range variation that would
regulate the evolving force density. This description leads to
a bulk interpretation of (7) without boundary contributions on
each element.

Recent experimental work related to photon drag at a metal
surface has raised important questions about our understand-
ing of optical forces at such interfaces [40]. Surface waves at
metal interfaces provide an interesting situation with regard to
optical forces. It is thus clear that more experimental work is
needed to resolve the underlying physics. As will be described
here based on simulations, it may be possible to pull a struc-
ture, and in fact to push or pull depending on the conditions
of the incident light. Section IV considers the mathematical
development of the optical force density in materials more
completely, notably, in relation to the boundary conditions at
metal-insulator surfaces.

IV. FORCE THEORY AND BOUNDARY CONDITIONS

We pursue a detailed development of the force density in
(1) and the resulting total force that provides a basis for con-
sidering the implications of field boundary conditions. This
establishes the conservation of momentum imposed point-
wise using (1) and enables important new conclusions about
conservation of photon momentum at material boundaries,
supporting use of a force density model within the mate-
rial described in Sec. III. For completeness, we start with
Maxwell’s equations and work through the vector calculus to
arrive at a basic understanding of the influence of boundaries
and aspects of interpretation of a statement of momentum
conservation.

Maxwell’s equations, with all source terms on the right-
hand side, can be written as

∇ × E + μ0
∂H
∂t

= −μ0
∂M
∂t

, (23)
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∇ × H − ε0
∂E
∂t

= ∂P
∂t

+ J, (24)

ε0∇ · E = −∇ · P + ρ, (25)

∇ · H = −∇ · M, (26)

where all quantities have been defined in relation to (1). Note
that material dispersion and loss are incorporated into the
polarization and magnetization through the frequency domain
representation for those quantities. Taking the cross product
of ε0E with (23) and μ0H with (24), and adding the resulting
equations, gives

ε0E × (∇ × E) + μ0H × (∇ × H) + μ0ε0E × ∂H
∂t

− μ0ε0H × ∂E
∂t

= μ0H × ∂P
∂t

− μ0ε0E × ∂M
∂t

+ μ0H × J. (27)

Using the Abraham momentum defined in (6), (27) becomes

ε0E × (∇ × E) + μ0H × (∇ × H) + ∂g
∂t

= μ0H × ∂P
∂t

− μ0ε0E × ∂M
∂t

+ μ0H × J. (28)

We apply the identity

(∇A) · B = (B · ∇)A + B × (∇ × A), (29)

with A = B = E, to write

ε0E × (∇ × E) = 1
2ε0∇ · (|E|2I) − ε0(E · ∇)E, (30)

where

∇E · E = 1

2

⎡
⎢⎢⎣

∂|E|2
∂x

∂|E|2
∂y

∂|E|2
∂z

⎤
⎥⎥⎦ = 1

2
∇ · (|E|2I). (31)

With the identity

(E · ∇)E = ∇ · (EE) − E(∇ · E), (32)

(30) becomes

ε0E × (∇ × E) = 1
2ε0∇ · (|E|2I) − ε0∇ · (EE)

+ ε0E(∇ · E). (33)

Following a similar procedure for H results in

ε0E × (∇ × E) + μ0H × (∇ × H)

= ∇ · TE + ε0E(∇ · E) + μ0H(∇ · H), (34)

with the momentum-flow or stress tensor for the electromag-
netic field given by

TE = 1
2 (ε0E2 + μ0H2)I − ε0EE − μ0HH. (35)

With complete generality, we can thus write (28) as

∇ · TE + ∂g
∂t

= μ0H × ∂P
∂t

− μ0ε0E × ∂M
∂t

+ μ0H × J

− ε0E(∇ · E) − μ0H(∇ · H). (36)

Incorporating the local forces due to P and M into (36) and
making use of the identities

−(∇ · P)E = −∇ · (PE) + (P · ∇)E, (37)

−(∇ · M)H = −∇ · (MH) + (M · ∇)H, (38)

leads to

∇ · T + ∂g
∂t

= μ0H × ∂P
∂t

− μ0ε0E × ∂M
∂t

+ μ0H × J

− ε0E(∇ · E) − μ0H(∇ · H)

− E(∇ · P) − μ0M(∇ · H)

− (P · ∇)E − (M · ∇)H, (39)

with T the Einstein-Laub stress tensor given by (3), formed as

T = TE + PE + MH, (40)

with TE from (35). Substituting

D = ε0E + P, (41)

B = μ0(H + M) (42)

into (39), we have

∇ · T + ∂g
∂t

= μ0H × ∂P
∂t

− μ0ε0E × ∂M
∂t

+ μ0H × J

− ρE − (P · ∇)E − (M · ∇)H. (43)

Equation (43) provides a statement of momentum conserva-
tion at each point in space and at each instant of time. We
consider now momentum conservation in the integral sense.

The point of deriving (43) and hence (1) from basic princi-
ples is to consider the implications with regard to conservation
of momentum at interfaces. From (43), we have

∂g
∂t

= −∇ · T −
[
∂P
∂t

× μ0H − ∂μ0M
∂t

× ε0E + J × μ0H

+ ρE + (P · ∇)E + (M · ∇)H
]
. (44)

Simplifying (44) for nonmagnetic, source-free regions,

∂g
∂t

= −∇ · T −
[
∂P
∂t

× μ0H + (P · ∇)E
]
. (45)

Integrating (45) and applying the divergence theorem
results in∫

v

∫
t

∂g
∂t

dv dt = −
∮ ∫

t
Ti jdskdt

−
∫

v

∫
t

[
∂P
∂t

× μ0H + (P · ∇)E
]

dv dt,

(46)

245124-5



LI-FAN YANG AND KEVIN J. WEBB PHYSICAL REVIEW B 103, 245124 (2021)

where the appropriate permutations of the surface integral
variables are implied. The right-hand side of (46) contains
a surface integral of the stress (momentum-flow) tensor and
a volume integral of the force density. Conservation of mo-
mentum in the context of (46) implies that the left equals
the right. We will consider (46), with an emphasis on the
boundary between two materials, notably between free space
and a metal, where the normal component of the electric field
is discontinuous across the boundary (and hence a surface
plasmon wave can be supported).

In (45) and (46), all fields are continuous across dielectric
boundaries except for the normal component of the electric
field, and for those fields, Gauss’s law leads to the boundary
conditions

n̂21 · (D1 − D2) = ρ = 0, (47)

n̂21 · (P1 − P2) = ρps, (48)

where ρps is the polarization surface charge density at the
interface, and complex εi and χEi, i = 1, 2, are implied. The
electric field boundary condition can be obtained by setting
Pi = ε0χE Ei, and the Dirac function weight for spatial deriva-
tives follows from (48). In 2D and for the transverse electric
(TE) case (Ez, Hx, Hy), all fields are continuous. However,
for TM fields (Hz, Ex, Ey that excite surface plasmon modes),
there is a step in the normal component of the electric field
(Ey) across an interface. This discontinuity of the normal
electric field at an interface has interesting consequences in
relation to (46).

To investigate the conservation condition across a bound-
ary, we focus on the form in (46) as the spatial support of
the integrals contract to a locally planar boundary but span
that interface. The Abraham momentum is represented in the
integral on the left in (46). Consequently, the integral on the
left must be zero, a recognized statement of the conservation
of photon momentum in the classical field sense. We con-
sider a vacuum-metal interface, with the integrals approaching
the boundary from either side (0− and 0+). A discontinuous
normal electric field at the metal-vacuum boundary results
in a discontinuous Tyy (assuming a boundary at y = 0). This
nonzero result for the closed surface integral as it contracts to
the interface is precisely compensated by the Dirac term asso-
ciated with (P · ∇)E, so that the sum of the two integrals on
the right of (46) approaches zero. The discontinuous normal
electric field in the cross-product term has zero contribution to
the normal (y-directed) force density across the boundary, so it
is only (P · ∇)E that provides the compensation for a discon-
tinuous Tyy. Within the conservation condition in (46), there is
thus the question of how to apply the boundary condition in
a physically meaningful manner. Because there are two terms
on the right of (46), precisely how to treat each to accomplish
this is worthy of consideration.

In the TM field case, we have mathematical choices for
the interpretation of the two integrals on the right of (46).
These are termed options that strictly enforce the conservative
properties indicated in (46), but in reality, the physics (see
Sec. III) and experimental results must dictate the selection.
At this point, relevant experimental information is lacking.

Option (i). The Dirac boundary term from the volume
integral [due to (P · ∇)E across the interface] is added to
the closed surface integral of the momentum-flow (stress)
tensor, a step that is equivalent to adding a Tyy boundary term
that removes the step discontinuity in Tyy. This results in Tyy

being effectively continuous across the interface. Even in the
perfect mirror case, continuity of Tyy across a planar interface
can be used in the limit that the skin depth approaches zero.
This means that the volume integral of the force density is
performed only within the material and not across the bound-
ary interface. The continuity of the stress tensor elements
is widely seen as a measure of conservation of momentum
and hence a requirement [41–44]. This is consistent with
the tensor describing the rate of flow of momentum [45] or
energy [46] and hence needing to be a continuous variable or
a conserved quantity, as presented by Schwinger [47]. In this
physical situation, there is no time-average force on the differ-
ential surface layer as the thickness of that layer approaches
zero. Such local momentum flux conservation is inherent in
the general application of the electromagnetic stress tensor in
typical classical field situations [48]. With this option, inte-
gration of the force density within the material gives the same
result as the integral of the divergence of the stress tensor,
through the divergence theorem, with the Dirac contribution,
so the integral of the stress tensor within and around the
material boundary is consistent and identical to that from the
volume density. This happens because the step discontinuity
in Tyy is removed or compensated by the Dirac contribution
from the term (P · ∇)E in force density. With this interpreta-
tion, both integrals on the right of (46) yield the same total
force, and momentum flow across the boundary is preserved.
This approach is consistent with integration applied in the
quantum regime [49] and was used to describe measurements
of structured membrane deflection when plasmon modes are
supported [27].

Option (ii). The potential step in Tyy at the boundary is
retained, so that the closed surface integral of the stress ten-
sor across the boundary is nonzero. Consequently, a Dirac
boundary term is retained in the force density. While this is
difficult to implement numerically, application of the diver-
gence theorem with a discontinuous Tyy leads to the force from
a closed surface integral external to the material. Ascribing
the total force to each term in (46) yields a different force
result to option (i), except for situations where Tyy is contin-
uous. A physical force is thus attributed to the infinitesimal
boundary layer. While this may not be consistent with the
microscopic physics (Sec. III), the force on this boundary
layer and associated with the induced surface charge has been
described previously [39] and also used when considering
waves obliquely incident on a mirror [50]. An experiment
to determine this Dirac boundary force has yet to be done,
although this relates to the findings of Jones and Leslie [51].

Option (iii). Some portion of the weight of the Dirac term
[from (P · ∇)E] is added to the surface integral term, leaving
a contribution remaining in the volume integral. This case is a
weighted form of options (i) and (ii), and may be interesting,
depending on the surface physics determined from experi-
ments in these situations.

Related to the discussion in Sec. III, there is evidently
interesting and unknown physics to explore involving optical
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FIG. 2. Pressure on a planar vacuum-Au interface with a nor-
mally incident plane wave from the top having a free-space
wavelength of 633 nm and an intensity (time-average power density)
equivalent to 1 mW over 1-μm radius circle. A dielectric constant of
εAu = −11.8 + i1.23 is assumed. (a) Time-average y-directed Poynt-
ing vector as a function of position into a planar Au surface, which is
at y = 0. (b) Time-average y-directed force density (〈 fy〉) in Au. The
integrated force gives a pressure on Au with a magnitude that is just
a little less (−2.08 N/m2) than the perfect mirror result of −2.12
N/m2 (2S/c). (c) The stress tensor elements 〈Tyy(x)〉 along various
surfaces. The legend indicates the vertical position in relation to the
Au surface. (d) Calculated 〈Tyy(x = 0, y)〉 from y = −100 to 100 nm.

forces at surfaces that remains to be addressed experimentally.
We will assume option (i) in simulations because it is consis-
tent with the microscopic physics discussed in Sec. III and
general understanding of conservations principles, and with
prior experiments [27]. Importantly, doing so opens oppor-
tunities for accessing internal material field resonances. Our
position is to present simulations based on this description
and allow future experiments to dictate the ultimate physical
situation. The effective forced continuity of Tyy means that
the net contribution from a continuous stress tensor across
the interface, which is consistent with an established picture
(where the stress tensor external to the structure can be inte-
grated) [48], will also yield the same result, i.e., this allows
the external stress tensor integral to provide the same force as
integration of the force density inside the material (and with-
out the Dirac boundary term). We should note, however, that
the surface screening at the vacuum-metal interface described
in Sec. III might result in the situation where, even for TM
fields, both the integrals across the boundary on the right of
(46) are zero.

V. RESULTS

We first present the reference case of the pressure on a
planar Au surface in vacuum, determined using the theory
from Sec. II. Figure 2 shows numerical force density and
pressure simulations for a Au film that is sufficiently thick at
200 nm to be considered semi-infinite. A 633-nm plane wave
is normally incident from the top (Hz, Ex). For Au, a dielectric

constant of εAu = −11.8 + i1.23 is assumed [52]. The dimin-
ishing time-average Poynting vector into the metal in Fig. 2(a)
is consistent with the force density calculation using (7) and
shown in Fig. 2(b). Applying the divergence theorem to the
stress tensor in (3), the relevant tensor component (〈Tyy〉) from
(19) is plotted in Fig. 2(c) at several positions just above and
into the Au, and the continuous (across the boundary) 1D plot
is shown in Fig. 2(d). The value of 〈Tyy〉 at or above the surface
and at any point in free space provides the pressure on the
Au surface, as is standard practice [48]. The numerical results
from integration of the force density in Fig. 2(b) are identical
to those from the stress tensor in Fig. 2(d).

Now we turn to forces on nanostructured material, as il-
lustrated in Fig. 1. A numerical field solution is required to
determine the average force density in (7), and we use the
FEM [53]. All calculations are done in the frequency domain
and with phasors. The vector electric field is determined di-
rectly and the magnetic field obtained as a secondary result.
These fields are used to obtain the force density in (7), imple-
mented in the same software environment. This force density
is numerically integrated throughout the material and then
normalized according to the unit-cell dimension to determine
the time-average pressure in the direction normal to the struc-
tured film [Py = 〈Py(t )〉 N/m2]. In all cases, a single plane
wave is normally incident on the structured films considered
with a power density of 318 MW/m2 (= 318 × 106 W/m2),
equivalent to a 1-mW beam having a 1-μm radius circular
spot. Rounded corners with a 2-nm-radius quarter circle are
used to artificially avoid field singularities. Following numeri-
cal convergence studies of the pressure, as the mesh density is
increased (as the size of the triangular elements used to define
the local, subdomain basis functions is reduced), a suitably
small mesh size was selected for the simulation results.

The initial structured material we consider is a Au film
with a periodic slot array, as shown in Fig. 3(a), where 	 is
the period, W is the slot width, and T is the Au thickness. A
periodic boundary condition is placed at the left and right. As
in all calculations, the total field is obtained as a superposition
of the incident field and the scattered field, and the scattered
field FEM solution uses a perfectly matched layer (PML) at
the top and bottom to simulate unbounded space. The incident
field is the field that exists with free space everywhere and no
scattering structures. A 633-nm plane wave with H out of the
plane (Hz, Ex) is normally incident from the top (shown by the
red arrows). Referring to Fig. 3(a), the top surface is the front
(in all but one situation treated, the incident field side) and the
bottom surface is the back. The time-averaged y-directed force
density in the material is formed using (7), and the collective
y-directed pressure (Py), assuming a z-invariant structure, is
calculated by integrating the force density over the unit-cell
area (in the x-y plane) and dividing by the unit-cell width
(	), with unit distance in the z direction. With the incident
field having H = ẑHz, surface plasmon modes are excited at
the metal-vacuum interfaces (MI modes), and an MIM mode
exists in the slot [20]. Fixing the slot width (W ) at 60 nm
and varying 	 yields the transverse resonance condition for
the top surface and bottom surface plasmon modes (at the
Au-vacuum interfaces). The resonant condition is found to
be 	 = 620 nm, which is close to the plasmon surface wave
wavelength [54]. Fixing both W (60 nm) and 	 (620 nm), and
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FIG. 3. Simulation of the pressure on a periodic nanoslotted Au
film with plane-wave illumination and a wavelength of 633 nm.
(a) Geometry with parameters: period 	, slot width W = 60 nm,
and Au thickness T . The plane wave with H out of plane is incident
from the top (front), and the intensity is equivalent to 1 mW over a
1-μm radius circle. (b) Calculated time-averaged y-directed pressure
with 	 = 620 nm, and T varying from 100 to 500 nm. The dashed
red line indicates the pressure on a perfect mirror with the same
intensity, and the dashed black line is zero pressure. The region
above the dashed black line is pulling and that below is pushing,
because the incident plane wave is in the −y direction. (c) Calculated
time-averaged y-directed power density on the bottom (back) side of
the Au membrane with respect to T , determined by 	−1

∫
	
〈Sy(x)〉dx.

varying the film thickness (T ), we find the pressure varies as
in Fig. 3(b), and has positive and negative values. The dashed
black line is zero pressure and positive pressures indicate
pulling because the plane wave is incident from the top and
in the −y direction. Figure 3(c) plots the calculated y-directed
power density on the back side of the Au membrane with re-
spect to T [determined from 	−1

∫
	

Sy(x)dx in free space and
below the Au film], showing the resonant coupling features
associated with the slot MIM mode. Comparing Figs. 3(b)
and 3(c), we see that a pulling pressure is promoted when
the power coupled to the back side of the Au membrane is
near its largest magnitude. The resonances in Figs. 3(b) and
3(c) are separated by half a wavelength for the lowest-order
MIM mode, corresponding to resonant coupling through that
waveguide mode. The key point is that effective excitation
of the back surface wave is associated with coupling light
through the structure, and this results in a net pulling force,
in the direction opposite to that of the incident light.

Figures 4(a), 4(c), and 4(e) show the spatial distributions
of the electric field component magnitudes and the relevant
force density distribution, respectively, for the largest pushing
pressure case in Fig. 3(b), with −5.77 N/m2 (T = 203 nm),
and Figs. 4(b), 4(d), and 4(f) those for the largest pulling pres-
sure, 0.77 N/m2 (T = 232 nm). The dominant electric field
magnitude for the slot MIM mode is |Ex|, shown in Figs. 4(a)
and 4(b), making clear the resonance situation in Fig. 4(b)
and for T = 232 nm that aids establishing the surface wave
resonance on the back and hence pulling. The plots for |Ey| in
Figs. 4(c) and 4(d) highlight the MI surface wave resonances

FIG. 4. The magnitude of the electric field components and the
time-averaged y-directed force density for the largest pushing pres-
sure case [(a), (c), and (e)], with T = 203 nm, and the largest pulling
pressure [(b), (d), and (f)], with T = 232 nm, from Fig. 3(b).

on the top (front) and bottom (back) Au-vacuum interfaces.
These figures indicate more energy in the top surface wave
in Fig. 4(c) for T = 203 nm, leading to the large pushing
pressure shown in Fig. 3(b), and the enhanced bottom surface
wave in Fig. 4(d) and the pulling pressure for T = 232 nm in
Fig. 3(b). The y component of the time-average force density
[〈 fy(r, t〉] is shown in Figs. 4(e) and 4(f), where blue is a push-
ing force density and red is a pulling force density, and these
confirm the contribution of the top and bottom surface waves
to the net pressure. The MIM slot mode facilities coupling to
the back of the Au film, and the MI mode on the back provides
pulling. From these two cases (T = 203 and 232 nm), it is
clear that the surface waves on the top and the bottom of the
Au film compete with each other and therefore decrease the
magnitude of the collective pressure. We therefore conclude
that the pressure could be increased if the top (for pushing)
or the bottom (for pulling) surface wave is enhanced relative
to that on the other side. For reference, the field magnitudes
and force density for the T = 140 nm case from Fig. 3 are
shown in Fig. 5, making clear that a weaker surface wave
resonance is excited because the slot is not resonant, and this
modest excitation of the top surface wave resonance results in
a total (pushing) pressure of −3.8 N/m2. As a reference, the
pressure on a perfect mirror with this incident power density
(318 MW/m2) is 2Si/c = −2.12 N/m2 [the red dashed line in
Fig. 3(b)]. We also thus learn that excitation of surface wave
resonances can lead to a pressure greater than that on a perfect
mirror, and by regulating a transverse resonance condition,
either pushing or pulling is achieved.
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FIG. 5. The field solution and force density when T = 140 nm,
from Fig. 3, away from the slot cavity MIM mode resonance: (a) |Ex|,
(b) |Ey|, and (c) 〈 fy〉. Without the effective excitation of the MIM
mode in (a), the top and bottom surface wave enhancement in (b) and
hence the force density in (c) are reduced. A modest excitation of top
surface wave results in collective pushing pressure of −3.8 N/m2.

One approach to regulate the surface wave is to modify the
resonance condition through control of the surface plasmon
mode phase constant by adding a dielectric film. This adds
a practical aspect because experiments and applications may
involve membranes, and earlier optical deflection experiments
used silicon nitride (SiN) membranes [27]. Figure 6(a) shows
an arrangement with a SiN film (50 nm thick, εSiN = 4) on
top of Au of variable thickness T , and where the intent here
with illumination from the top with a vacuum wavelength of
633 nm is to enhance the pushing pressure. The modified
wavelength of the top MI surface wave will depend on the
thickness of the SiN layer. By adjusting 	 and T , we find
an enhanced pushing pressure of −20.3 N/m2, with 	 = 418
nm and T = 304 nm (and fixed W = 60 nm). This occurs
with a resonant top surface wave that is excited due to scatter
associated with the slot, as is clear in the electric fields and
force density in Figs. 6(b)–6(d). By suppressing the bottom
surface wave and the pulling force density (because the MI
mode at the back is not on resonance), and with contribu-
tion from the SiN layer, the pushing pressure magnitude is
enhanced beyond that for a single Au layer membrane in
Fig. 3. The integral of the force density in SiN and Au allows
decomposition of the contributions: −0.8 N/m2 (pushing) in
the SiN film and −19.5 N/m2 in the Au. Use of (21) and the
internal boundaries in Fig. 6(e) produce a similar pressure.

By placing the 50-nm SiN film on the bottom of the Au
layer, as in Fig. 7(a), we show that more effective pulling
is possible. Again fixing W = 60 nm and scanning 	 and
T , we find an enhanced pulling pressure of 10.22 N/m2

for 	 = 420 nm and T = 320 nm, leading to the results of
Figs. 7(b)–7(d). Now the resonant MIM mode in the slot
[Fig. 7(b)] promotes the surface wave mode on the back
[Au/SiN/vacuum region, as shown in Fig. 7(c)] and a large
force density on the back [Fig. 7(d)] that is dominated by the
pulling force density (red), producing a net pulling pressure.
In this case, the surface wave on the top has been suppressed.

FIG. 6. The field solution and force density for an enhanced
pushing pressure (−20.3 N/m2) by adding a 50-nm SiN layer (εSiN =
4) to the top (front) of a Au film. (a) Parameters: 633-nm inci-
dent plane wave from the top (intensity equivalent to 1 mW over
1-μm radius circle), 	 = 418 nm, W = 60 nm, and T = 304 nm.
(b) |Ex| and (c) |Ey|. (d) Time-averaged y-directed force density. (e)
Boundaries used to form the integral of the stress tensor, assuming
application of the divergence theorem. The dashed line indicates the
region of surface integration. Note that the dashed lines are placed
only on one-half of the structure in the figure, but the corresponding
pressure is calculated on both halves of the structure (the entire
structure). We calculate the time-averaged pressure using Tyy(x) for
surfaces (1) and (2), and Tyx (y) for surfaces (3) and (4). Blue (1 nm
inside Au): −17.968 N/m2. Green (1 nm inside SiN): −0.708 N/m2.
Red (1 nm outside Au and SiN): −1.166 N/m2. Yellow (1 nm inside
Au and SiN): −1.192 N/m2. The sum of the calculated pressures
from the blue- and green-dashed boundaries is very close to that
determined from the force density result in (d), while the calculated
pressure from the yellow-dashed boundary differs. The calculated
pressure from the red-dashed boundary is very similar to that ob-
tained by applying (22).

Note also the regions of positive and negative force density
along the slot in Fig. 7(d). As in the pushing case of Fig. 6, en-
ergy is coupled into the Au/SiN/vacuum (MI) surface wave,
but in Fig. 7 this is predominantly on the back. The calculated
pulling pressure in SiN is 2.06 N/m2 and in Au is 8.16 N/m2.
The enhanced total pulling pressure magnitude for the case
in Fig. 7 (10.22 N/m2) is less than the pushing pressure of
Fig. 6 (−20.3 N/m2). We attribute this lower magnitude to the
influence of the degrees of freedom and efficacy of coupling
energy through the slot to the back of the structure.

From a separate calculation, the average of the divergence
of the stress tensor in the material was used, as given in (16),
and that result for the force density is shown in Fig. 7(e). In
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FIG. 7. The field solution and force density with an enhanced
pulling pressure (10.22 N/m2) from a periodic slot array in a Au
film having a 50-nm SiN layer (εSiN = 4) on the bottom (back).
(a) Parameters: 633-nm incident plane wave from the front (intensity
equivalent to 1 mW over 1-μm radius circle), 	 = 420 nm, W = 60
nm, and T = 320 nm. (b) |Ex| and (c) |Ey|. (d) Time-averaged y-
directed force density. (e) The y component of the force density
determined from the time-averaged divergence of the stress tensor
in (16), yielding a pressure of 10.31 N/m2. (f) Indication of the
boundaries used to form the surface integral of the stress tensor. The
dashed line indicates the region of surface integration. The average
pressure is calculated using Tyy(x) for surfaces (1) and (2), and Tyx (y)
for surfaces (3) and (4). Note that the dashed lines are placed only
on one-half of the structure in the figure, the corresponding pressure
is calculated on both halves of the structure (the entire structure).
Blue (1 nm inside Au): 7.904 N/m2. Green (1 nm inside SiN):
1.98 N/m2. Red (1 nm outside Au and SiN): −0.97 N/m2. Yellow
(1 nm inside Au and SiN): −1.918 N/m2. The sum of the calculated
pressures from the blue- and green-dashed regions is very similar
to the pressure calculated from the force density in (d), while the
calculated pressure from the yellow-dashed region is different. The
calculated pressure from red-dashed regions is very similar to the
result from (22). (g) The y-directed power density, where the red
region indicates positive values and in the direction opposite to the
Poynting vector associated with the incident plane wave.

this case, the pressure obtained is 10.31 N/m2. This result dif-
fers slightly from that determined using the result in Fig. 7(d),
where the force density in (7) is integrated [Fig. 7(d)], only

FIG. 8. The magnitude of the electric field components and the
time-averaged y-directed force density for a finite-width structure
having the same unit-cell parameters as the periodic pulling pressure
case in Fig. 7. Parameters: 10 unit cells; scattered field solution
with a PML on the top, bottom, left, and right; 633-nm plane wave
(Hz, Ex) normally incident from the top; and an incident power den-
sity equivalent to 1 mW over 1-μm radius circle. Simulated: (a) |Ex|;
(b) |Ex| near the center of the structure; (c) |Ey|; (d) |Ey| near the
center; (e) 〈 fy〉; and (f) 〈 fy〉 near the center. The calculated pressure
is 10.55 N/m2, obtained by integrating the force density and then
divided by the full width of the structure.

because of numerical precision. In both cases, very dense
meshes have been used, in the neighborhood of λ0/600, where
λ0 is the free-space wavelength, 633 nm in this case. While
use of (7) is preferable from a computational perspective, the
agreement with the independent calculations in Figs. 7(d) and
7(e) is notable. Similar results are obtained from the use of
(21) and with the internal boundaries in Fig. 7(f).

Figure 8 shows simulated results for a finite number of
unit cells and with the same unit-cell parameters (material
arrangement and dimensions) as for Fig. 7, which assumed a
periodic structure (transverse periodic boundary conditions)
and that exhibited pulling [noted by the predominance of
a pulling force density near the bottom and at the back in
Fig. 7(d)]. There are 10 unit cells, and in the scattered field
solution, a PML is used on all boundaries (top, bottom, left,
and right), simulating unbounded space. A plane wave having
Hz is again normally incident from the top with a wavelength
of 633 nm and an intensity equivalent to 1 mW over 1 μm
radius spot. The structure size of 10 unit cells is representative
of what might be achieved in an experiment with a Gaussian
beam. Figures 8(a) and 8(b) show |Ex|, Figs. 8(c) and 8(d)
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FIG. 9. Calculated wavelength-dependent pressure for a
dielectric-clad Au membrane with a slot showing pushing (negative
pressure) and pulling (positive pressure), depending on wavelength.
(a) Geometry with 40-nm SiN (refractive index n = 2 at 633 nm,
approximated as constant over the wavelength range used) on the
bottom (back) and a 10-nm dielectric with three different refractive
indices on the top (front): n = 1.5, 2, 2.5. A plane wave is normally
incident from the top (front) with an intensity corresponding to 1
mW over 1-μm radius circle. (b) Calculated pressure: n = 1.5 (blue
curve), n = 2 (green curve), and n = 2.5 (red curve) with T = 306
nm, 	 = 460 nm, and W = 60 nm.

|Ey|, and Figs. 8(e) and 8(f) the relevant component of the
time-averaged force density 〈 fy〉. Figures 8(b), 8(d), and 8(f)
provide an expanded scale along the x direction to more easily
compare the local solutions with those for the periodic case
in Fig. 7. The |Ex| plots make the MIM slot mode clear.
Likewise, the results for |Ey| demonstrate the MI-based lateral
surface waves at the top and bottom, with the fields at the
bottom (back) being more pronounced. As expected, away
from the ends of the finite structure, all figures show results
that are very close to their periodic case counterparts. The
calculated pulling pressure, obtained by integrating the force
density in the material and then dividing by the full width of
the structure, is 10.55 N/m2, which is very similar to the value
from the periodic arrangement in Fig. 7 (10.22 N/m2). Fig-
ure 8(c) shows two interesting features for |Ey| at the top of the
structure, the obvious short-length-scale magnitude variation
corresponding the MI surface plasmon wavelength [as evident
in Fig. 7(c)], but also a longer-length-scale beat, presenting
about three periods and hence representative of a mode with a
wavelength of approximately two periods of this larger-scale
standing wave. This appears to be a chain waveguide mode,
along the lines treated previously in relation to plasmon par-
ticle waveguides [21]. The effective wavelength for this mode
presumably depends on the slot width, in addition to the metal
parameters (Au at 633 nm). Our conclusion from these results
for a finite-width structure is that pulling is also displayed in a
manner consistent with the periodic structure. As the number
of periods reduces, the field solution and the net force will of
course change.

Consider now the situation where the incident wavelength
is varied, and the possibility of pushing or pulling, depending
on wavelength of the incident plane wave. Figure 9(a) shows
a Au film with a 10-nm dielectric layer of variable refractive
index (n = √

ε = 1.5, 2, 2.5) on the top and a 40-nm SiN
layer on the bottom. The differing films on the top and bottom
produce different MI surface wave wavelengths at a given
free-space wavelength, allowing each to be in the vicinity of
a resonance at different free-space wavelengths. We find in-
teresting results when the Au thickness (T ) is 306 nm and the

period (	) is 460 nm, and the wavelength-dependent pressure
calculated is shown in Fig. 9(b). The refractive index of both
dielectric films is assumed independent of wavelength in this
example. The wavelength-dependent dielectric constant of Au
is used [52]. In Fig. 9(b), all three top dielectric film refractive
indices result in both positive and negative pressures, depend-
ing on wavelength, including the SiN case (n = 2). For SiN
film on top (green curve), the pushing pressure is −3 N/m2

around 570 nm and the pulling pressure is 6 N/m2 at 630 nm.
The magnitude of the largest pushing and pulling pressure and
the corresponding wavelength can be adjusted by changing
the refractive index of the top dielectric layer, as Fig. 9(b)
indicates: n = 1.5 results in the largest pulling pressure
(blue, about 8 N/m2) and a smaller pushing pressure (about
−2 N/m2); n = 2.5 and the red curve exhibit a balanced
magnitude between maximum pushing and pulling pressure,
around 4 N/m2. There are of course other ways to vary the
degrees of freedom in such a three-layer system.

The magnitudes of the calculated pressures warrant com-
ment. At the macroscopic material level, the optical pressure
on a planar surface in free space has been described by (22)
[2,3]. This yields a maximum pressure (for a plane wave) of
2S/c N/m2, a result that is consistent with (7) for a plane wave
normally incident on a planar mirror (and a planar Au film
and a wavelength of 633 nm produces a result just slightly
lower). This perfect mirror case (2S/c) involves a net pho-
ton momentum exchange of 2h̄k0. However, with structured
media and the establishment of resonant optical fields, it has
been shown to be possible to exceed this pressure [27,36] by
exploiting the dimension normal to the mirrored surface and
by virtue of mode resonance. This can be understood as an
asymmetric cavity effect [19], where the stored photon energy
increases the differential force on the two mirrors. In the
results presented here, there are cavity resonances associated
with surface plasmon modes, and these allow regulation of
both the magnitude and direction of the total force. The dashed
red line in Fig. 3(b) shows the pressure on a perfect mirror illu-
minated by a plane wave with the time-average power density
used for these calculations. The nanostructured material and
the resonances established can produce pulling and pushing
pressures that are greater than for a perfect mirror. This is the
case for the pushing pressure of Fig. 6, the pulling pressure of
Fig. 7, and the peak pressures in Fig. 9(b). The influence of
the surface waves and the establishment of resonances on the
force is considered further in Sec. VI.

VI. PULLING OF A STRUCTURE WITH AN INCIDENT
PLANE WAVE

All of the simulation results presented involve sinusoidal
steady-state conditions, so the fields in and surrounding the
structures are established over infinite time. In practice, the
time required to approximately create these conditions is on
the order of the cavity lifetime. This is sufficiently short that
we anticipate negligible motion of any portion of the material
during this optical excitation period under modest flux rate
conditions that are representative of an experimental situation.
Regardless, in the situations considered, the structures have a
fixed spatial arrangement for the calculation of the fields and
hence the force. In an experiment and upon deflection, the
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microscopic and macroscopic geometry (including the object
position) will change according to various issues pertaining
to the optical and mechanical properties of the structures
involved.

The idea of large energy and force from a resonant system
or reservoir is not new. During our history, there have been
extensive studies of pendulums (by a number of scientific
luminaries), and these were key in time keeping and hence
of substantial importance. Instead of inserting energy after
many periods (as in winding up a clock), a small external
force could be applied coherently each period and at the top
of the swing, where the potential energy is the maximum and
the kinetic energy is zero. At the bottom of the swing, the
kinetic energy can be much greater than the energy externally
imparted coherently each cycle to maintain motion. There is
thus much more energy in the resonant system than externally
added in each cycle, and this translates to a large force that
could be imparted at the bottom of the cycle in either direction,
where the kinetic energy is a maximum. This is analogous to
the situation with a flux of photons incident in Fig. 1 and there
being many more in the transverse resonant modes associated
with the surface plasmon modes. The optical cavity forms a
reservoir of photons, where the energy and force is associated
with the reservoir, and is not bound by the steady stream of in-
cident photons. Such a reservoir of energy to be tapped exists
in an internal combustion engine in a car that is idling with
an external fuel line having a small flow of the appropriate
petroleum product from another storage vessel, just enough
to maintain the tank level. When the driver decides to engage
the drive train and accelerate (let us forget about the refilling
fuel line), the energy per unit time available to propel the car
far exceeds that being input (for a while). Here, the petroleum
drip is analogous to the incident photon flux and the car tank
the resonant optical mode populated with photons.

Next, we reinforce the conceptual picture of how the
structure depicted in Fig. 1 can be pulled by a plane wave.
Periodicity results in zero net force parallel to the metal sur-
face (the other direction where there is a component of the
Poynting vector), leaving the normal component of the force
to push or pull. The primary pushing and pulling described
through the results in Sec. V are associated with the MI
surface wave and enhanced by the presence of the dielectric
film. The MI surface waves have significant energy content
near to the surface (in free space and in the material). These
modes propagate and resonate parallel to the metal surface,
are evanescent into free space, and have a component of
the real part of the time-average Poynting vector into the
metal. When a transverse resonance has been established with
some appreciable quality factor (Q) that is proportional to
the cavity lifetime, the resonant fields associated with the MI
plasmon have a concomitant number of photons transferring
momentum per unit time to the material that is large relative
to the photons in the incident plane wave. The situation of
primary interest here is when the resonance is strong on the
bottom (back) and diminished on the top (front). Photons in
this state impart a force primarily in the upward direction,
characteristic of a surface plasmon mode where the force
transverse to their propagation direction is into the metal (and
of course there is a component of the Poynting vector into
the metal accounting for the dissipative loss). For the periodic

FIG. 10. The structure used in Fig. 7 is again considered, but with
a plane wave incident from the bottom: 633-nm incident plane wave
(Ex, Hz), with an intensity equivalent to 1 mW over 1-μm radius
circle, 	 = 420 nm, W = 60 nm, and T = 320 nm. (a) |Ex|, showing
the slot mode. (b) |Ey|, indicating the surface wave on the bottom and
in the neighborhood of the Au-SiN interface. (c) The time-averaged
y-directed Poynting vector component. (d) The force density deter-
mined from (7) showing a large pushing force contribution from the
Au-SiN region that it similar in character to the pulling (incident field
from the top) situation in Fig. 7(d).

structure considered (in the transverse direction) and the 2D
field situation, this results in a net upward force and pressure,
where the direct pressure from the incident flux of photons is
less than from the resonant state. It is thus a resonant cavity
mode excited by virtue of a resonant MIM slot mode that
enables pulling.

To illustrate the influence of the surface wave, we consider
the pulling case of Fig. 7, again using (7), but instead with a
plane wave incident from the bottom. In the pulling situation
of Fig. 7, a plane wave is normally incident from the top (Au
side) and the dominant force density is near the bottom and the
SiN-Au region. This results in pulling and a positive pressure
because the light is incident in the −y direction in this case.
Consider now that same geometry, as shown in Fig. 7, but
with the plane wave with the same intensity incident from
the bottom (in the +y direction). The calculated results are
presented in Fig. 10. Figures 10(a) and 10(b) show the electric
field magnitudes, making clear the slot mode (from |Ex|) and
the surface wave (from |Ey|) at the bottom (Au-SiN region).
Figure 10(c) shows the y component of the time-average
Poynting vector, with substantial positive amplitudes in the
slot and the Au-SiN region at the bottom, and suggestive of a
pushing force density. The resulting force density, determined
from (7), is shown in Fig. 10(d). The force density is large
on the incident (bottom) side and in the Au-SiN region. This
results in pushing and hence a positive pressure. In this situa-
tion, there is less impact of the surface wave on the top, which
is excited through the slot. This example is shown to illustrate
the point that excitation of the surface wave on the bottom
produces a dominant positive force density there and hence a
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positive y-directed pressure. With illumination from the top,
as in Fig. 7, force density near the bottom produces pulling.

For the planar Au film in Figs. 2(a) and 2(b), the Poynt-
ing vector indicates the direction of the force density and
pressure. We now consider the local Poynting vector for the
pulling structure of Fig. 7. The calculated y component of the
time-averaged Poynting vector [Sy(x, y) = −1/2 Re{ExH∗

z }]
is given in Fig. 7(g). Note the relatively large negative
(−y-directed and dark blue) values in the slot region and,
importantly, the positive (y-directed and red) region associ-
ated with the MI surface plasmon mode at the bottom. The
positive (red) Poynting vector region describes photons that
are responsible for providing a pulling force on the structure.
With a period of 	 = 420 nm, there is only one diffraction
order that propagates in free space, that with kx = 0. From the

separation equation, ky =
√

k2
0 − (2mπ/	)2, and all plane-

wave components except m = 0 are evanescent. In the far
field, the phase fronts are thus planar and the real part of
the time-average Poynting vector is independent of position.
However, in the near field, where the total field involves the in-
finite Fourier spectrum and the contribution of the evanescent
fields, the Poynting vector varies with position, as at the top
of the structure in Fig. 7(g). Integrating this Poynting vector
over x with a fixed y value, and normalizing by the period,
provides the power divided by the period, hence a density.
The transmitted power density can be obtained from the to-
tal fields (incident plus scattered). Use of the incident fields
gives the incident power density, and with the scattered fields
above the structure, the scattered power density can be formed
(separate from the total power flow and possible because
the background medium is lossless). The respective power
densities, integrated along x and then divided by 	, yield
Si = −3.18 × 108 W/m2 (incident); Sr = 7.07 × 107 W/m2

(reflected); St = −8.08 × 107 W/m2 (transmitted). The cal-
culated dissipated power density Sd is 1.67 × 108 W/m2. The
signs correspond to the unit-vector cross products in forming
the Poynting vector components and indicate the power flow
direction with respect to the y axis, and Si − (St − Sr ) = −Sd ,
as required for conservation of energy. An estimate of the
pressure magnitude formed by the −(|Si| + |Sr | − |St |)/c =
−1.03 N/m2, but this neglects the photons interacting with
the material in the near field and in the resonant surface wave
states.

We return to the pushing and pulling force cases considered
in Figs. 6 and 7, respectively, in relation to options (i)–(iii),
and interpretation of the force, along with application of the
divergence theorem in Sec. IV. The normal electric field com-
ponents to each boundary are discontinuous (TM fields with
Hz, Ex, Ey), according to the dielectric constants involved,
dictated by (48). The force has contributions associated with
surface waves that are evanescent in the direction normal to
the metal surfaces (for both the MI and MIM modes). Fig-
ures 6(e) and 7(f) show the integration boundaries used for
the application of (21), where the force is found from the
surface integral of the stress tensor elements. The blue and
green dashed lines are just inside the Au and SiN boundaries.
The sum of those integrations within locally homogeneous
media, in each case (see the captions for Figs. 6 and 7), gives
a pressure (the integrated result, normalized by 	) that is very

close to that obtained from the integral of the force densities
(differing only because of the precise integration boundary
node locations and numerical precision). This is consistent
with option (i). However, an integration around the yellow
dashed boundary just inside the material but encompassing the
Au-SiN interface yields a different force because of the dis-
continuous normal component of the stress tensor across the
interface due to the discontinuity of the normal electric field.
With the boundary just outside the material, shown as the red
dashed lines in Figs. 6(e) and 7(f), the numerical pressure
stress tensor results differ from using the force density within
the material from (7), but are similar to the Maxwell picture
in (22), with a total pressure of −1.03 N/m2 for the situation
in Fig. 7 (also obtained by the total power flow estimate). This
is the result from option (ii), where the stress tensor across
the boundary is discontinuous. Moving the singularity in the
force density at the material boundaries, to enforce continuity
of the local stress tensor element, produces an external net
stress tensor force that is equal to that from an integration of
the internal force density, i.e., this is option (i). As presented in
Sec. IV, this relates to the interpretation of the physical force
on the material, and the pulling results of Sec. V are based on
the interpretation in option (i).

We delve further into the application of (21) and the stress
tensor character on various boundaries for the pushing case
of Fig. 6 and the pulling situation in Fig. 7, in a man-
ner consistent with option (ii) and where the stress tensor
elements have discontinuities associated with discontinuous
normal components of the electric fields at boundaries. The
specific planar boundaries indicated by the dashed lines in
Figs. 11(a) and 12(a) are used to investigate the spatially

FIG. 11. The stress tensor element 〈Tyy(x)〉 along various sur-
faces for the pushing case of Fig. 6. (a) Simulation arrangement,
where the dashed lines indicate the different surfaces considered
for application of (21). Blue: 1 nm inside the surface; green: 1 nm
outside the surface; red: 50 nm outside the surface. (b) Calculated
〈Tyy(x)〉 for the top three dashed lines from (a). The average pressures
for those boundaries are blue: −3.158 N/m2; green: −1.319 N/m2;
red: −1.319 N/m2. (c) Calculated 〈Tyy(x)〉 for the bottom three
dashed lines from (a). The pressures averaged over x are 1.813 N/m2

(blue); 0.156 N/m2 (green); 0.156 N/m2 (red).
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FIG. 12. The stress tensor element 〈Tyy(x)〉 along various sur-
faces for the pulling case of Fig. 7. (a) Simulation arrangement,
where the dashed lines indicate the surfaces used to evaluate the
stress tensor. Blue: 1 nm inside the surface; green: 1 nm outside the
surface; red: 50 nm outside the surface. (b) Calculated 〈Tyy(x)〉 for
the top three dashed lines from (a). The average pressures are −4.148
N/m2 (blue); −1.3 N/m2 (green); −1.3 N/m2 (red). (c) Calculated
〈Tyy(x)〉 for the bottom three dashed lines from (a). The average
pressures are 1.816 N/m2 (blue); 0.27 N/m2 (green); 0.27 N/m2

(red).

dependent stress tensor for the pushing and pulling geome-
tries, Figs. 6 and 7, respectively. For these boundaries, only
Tyy in (21) contributes. For the pushing situation in Fig. 11(b),
two boundaries just above the structure and in free space (red,
50 nm above; green, 1 nm above) and one just into the SiN
and spanning the slot (1 nm below the top surface, blue) are
shown. Note how the local 〈Tyy(x)〉 changes with the y position
of the boundary, even above the structure and in free space,
according to the near fields. However, the total surface integral
result, the sum over the top and bottom surfaces, is unchanged
when integrating in free space, as the free-space boundary is
changed. This can be understood by the force density being
zero in free space. Figure 11(c) shows the corresponding stress
tensor results for the surfaces indicated near the bottom of
the structure in Fig. 11(a). One obviously sees the character
of the MIM slot mode in Figs. 11(b) and 11(c). However, it
is interesting to note the changing sign of 〈Tyy(x)〉, in par-
ticular, close to the Au interface. Turning now to the pulling
situation depicted in Fig. 12, the changing roles of the results
for 〈Tyy(x)〉 for the boundaries near the top and bottom are
clear. Also clear in Fig. 12(c) is the oscillating character of
〈Tyy(x)〉, where positive values correspond to local pulling. We
thus note that use of option (ii), which is consistent with the
Maxwell description in (22), provides information related to
pulling.

We conclude by reiterating that the enablers for enhanced
pushing or pulling are the associated MI surface wave reso-
nances. These MI modes are excited by the slot, and when it
is resonant for the MIM mode and the bottom surface wave is
resonant, with the front tuned off resonance, pulling can occur.
This situation is anecdotal in that other resonant arrangements
will presumably behave similarly.

VII. CONCLUSIONS

A rigorous theory for optical forces has been presented
and evaluated for situations where the normal component of
the electric field is discontinuous across material boundaries.
Notably, this occurs for plasmonic surface waves at metal-
dielectric interfaces. Using an established position where the
momentum-flow (stress) tensor is continuous across bound-
aries, resonances in the surface plasmon modes can be
regulated to provide for a pulling force. With such resonant
conditions, and the evanescent nature of the surface wave that
confines the fields to the metal interface, substantial energy
is stored in the material, and this leads to enhanced pressure
and opportunities for pulling. The pulling force from a surface
wave on the bottom of the material can be understood as being
due to the same physical phenomenon that leads to pushing
when the surface wave is excited on the top, but with an
oppositely directed force because of the nature of the fields
and local force density associated with the surface wave. The
results presented motivate experimental studies to investigate
related optical force phenomena.

In all cases, the object is fixed in position and the elec-
tromagnetic excitation is sinusoidal steady state. In practice,
there needs be an excitation time duration that is adequate
to excite the resonant modes in the structure, with the ob-
ject fixed in position. The effect can be understood as being
based upon the wave nature of light, where the associ-
ated photons transfer momentum in a manner consistent
with the asymmetric cavities formed by the respective res-
onant plasmon surface waves. With the establishment of a
dominant plasmon surface wave on the top (front), push-
ing occurs, but with a dominant surface wave on the back
(bottom), pulling results. Earlier concepts that allow pulling
with a laser beam involved use of tweezer traps or structured
beams and small particles that perturb the field. To the con-
trary, in our work, the scattered field is large and regulated
to promote pushing or pulling, and the force is enhanced
through resonances. The multilayer structured membranes
simulated have a complex force density that may result in
strain that in turn leads to local deformations or optical ma-
terial property changes, providing an interesting dimension in
optomechanics.

The understanding that field resonances in materials can
be used to regulate optical forces should lead to new classes
of optomechanical devices and associated application spaces.
For instance, pushing and pulling of a structure, depending
on wavelength, provides a new dimension in remote control.
This could also be used in conjunction with photomotility
to regulate the position of material and a mirror. The effect
might be used in integrated optics, for instance, in a flow
cytometry arrangement, or for all-optical routing of signals.
New opportunities in mechanical cooling should exist based
on this work. Finally, use of nanostructured material in op-
tomechanics could be utilized for nonreciprocal elements.
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APPENDIX: SINUSOIDAL STATE TIME-AVERAGE FORCE DENSITY

For the case of sinusoidal fields [exp(−iωt ), with a single ω], we show that〈
∂g
∂t

〉
= 0. (A1)

This result is utilized in forming (12).
Consider the time-averaged electromagnetic force due to monochromatic light, with E(t ) = ê Re{E exp(−iωt )} and H(t ) =

ĥ Re{H exp(−iωt )}, and ê × ĥ = ŝ. For the Abraham momentum situation, and using E = E ′ + iE ′′ and H = H ′ + iH ′′, we
have

∂

∂t
(E × H) = ŝ

∂

∂t
(Re{Ee−iωt }Re{He−iωt })

= ŝ[Re{−iω(E ′ + iE ′′)(cos ωt − i sin ωt )}Re{(H ′ + iH ′′)(cos ωt − i sin ωt )}
+ Re{(E ′ + iE ′′)(cos ωt − i sin ωt )}Re{−iω(H ′ + iH ′′)(cos ωt − i sin ωt )}]

= ŝ[(−ωE ′ sin ωt + ωE ′′ cos ωt )(H ′ cos ωt + H ′′ sin ωt ) + (E ′ cos ωt + E ′′ sin ωt )

× (−ωH ′ sin ωt + ωH ′′ cos ωt )]. (A2)

Therefore, the time average becomes〈
∂

∂t
(E × H)

〉
= ŝ[−ωE ′H ′′〈sin2 ωt〉 + ωE ′′H ′〈cos2 ωt〉 + ωE ′H ′′〈cos2 ωt〉 − ωE ′′H ′〈sin2 ωt〉] = 0. (A3)
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