
PHYSICAL REVIEW B 103, 245116 (2021)

Self-energy self-consistent density functional theory plus dynamical mean field theory

Sumanta Bhandary 1,2,* and Karsten Held 1

1Institute of Solid State Physics, TU Wien, 1040 Wien, Austria
2School of Physics and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland

(Received 15 May 2020; revised 18 September 2020; accepted 26 May 2021; published 11 June 2021)

We propose a hybrid approach which employs the dynamical mean field theory (DMFT) self-energy for the
correlated, typically rather localized orbitals and a conventional density functional theory (DFT) exchange-
correlation potential for the less correlated, less localized orbitals. We implement this self-energy (plus charge
density) self-consistent DFT+DMFT scheme in a basis of maximally localized Wannier orbitals using WIEN2K,
WIEN2WANNIER, and the DMFT impurity solver W2DYNAMICS. As a test-bed material we apply the method
to SrVO3 and report a significant improvement as compared to previous d+p calculations. In particular, the
position of the oxygen p bands is reproduced correctly, which has been a persistent hassle in DFT+DMFT
before, and has unwelcomed consequences for the d-p hybridization as well as for the correlation strength.
Taking the (linearized) DMFT self-energy also in the Kohn-Sham equation bypasses the uncertainty of the
“double-counting” problem of DFT+DMFT and yields very similar quasiparticle renormalized bands on the
“DFT” and “DMFT” side.
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I. INTRODUCTION

Density functional theory (DFT) [1,2] is by far the most
widely used method in solid state physics, owing to its im-
mense success in predicting solid state properties such as
crystal structures, ionization energies, electrical, magnetic,
and vibrational properties. However, treating electron correla-
tions within an effectively single-particle framework makes it
inadequate, even with the best available exchange correlation
potentials, for an important class of materials: strongly corre-
lated electron systems. This is the realm of dynamical mean
field theory (DMFT) [3–5] which incorporates local, dynamic
correlations, and has been merged with DFT for the calcu-
lation of realistic correlated materials [6–10]. In DMFT, the
electrons can stay at a lattice site or dynamically hop between
lattice sites in order to suppress double occupation and hence
the cost of the Coulomb interaction, without any symmetry
breaking unlike in the static DFT+U approach [11]. The
method has been successfully applied to transition metals [7]
and their oxides [12], molecules [13,14], adatoms [15], and
f -electron systems [16,17], thus proving its versatility.

The early developments in this direction are “one-shot”
DFT+DMFT [18–25] calculations. In a “one-shot” calcula-
tion, first a DFT calculation is converged for a given material.
Subsequently, the DFT Hamiltonian is supplemented with a
local Coulomb interaction for the correlated orbitals and this
problem is solved within the DMFT framework. The physical
properties such as the spectral function, susceptibility, or mag-
netization are calculated from this “one-shot” DMFT solution
of a DFT derived Hamiltonian.
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Subsequently, the charge self-consistent (CSC) DFT+
DMFT method has been implemented and applied. Here, the
total electronic charge density is updated after the DMFT
calculation, now including effects of electronic correlations.
With this updated charge density, the Kohn-Sham equation of
DFT is solved, a new Hamiltonian is derived which is solved
by DMFT, etc. Both cycles, DFT and DMFT, are converged
simultaneously. The physical properties are calculated from
the converged solution. The correlation-induced change in the
charge density can be significant. Hence, for some materials
using CSC leads to a major correction; for other materials the
corrections are minute. Incorporation of this CSC correction
in a site-to-site charge transfer has been studied extensively
[18–24]. More recently, also the effect of the interorbital and
momentum-dependent charge redistribution has been studied
[25].

While DFT provides a reasonable starting point for both
“one-shot” and CSC DFT+DMFT, the incompatibility of the
DFT and DMFT approach is seen in many occasions, e.g.,
in so-called “d + p” DMFT calculation for transition metal
oxides [24,26–31]. The reason behind this is that in DFT
the p bands are too close to the Fermi level. Hence, there
is a too strong intermixture of d and p bands and the d
orbitals are not strongly correlated. Within the framework
of DFT+DMFT, one consequently needs to introduce an
adjustment to the d-p splitting, adjusting it either to the exper-
imental oxygen p position [31,32], adding a d-p interaction
parameter [26], or modifying the double-counting [24,29]
or exchange-correlation potentials [33,34]. For example, in
SrVO3, the proper renormalization of the t2g band has been
obtained with an additional shift applied to the O p bands
which is as large as 5 eV relative to the t2g bands [32], for
correcting the position of the O p bands to that observed in
experiment.
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FIG. 1. Schematic representation of the �-SC DFT+DMFT. In a one-shot DFT+DMFT calculation, the DFT Hamiltonian is not updated
and both the DFT and DMFT cycles close individually, i.e., we have the orange and green arrows in the schematic. In a �-SC DFT+DMFT
calculation, neither DFT nor DMFT is iterated individually. Instead, both steps are closed together, i.e., we have the green and the purple
arrows in the schematic, but not the orange ones.

There have been considerable efforts to improve on the ex-
change part of the exchange-correlation potential. Approaches
in this direction include GW [35]+ DMFT [36–39] and
quasiparticle self-consistent GW (QSGW) [40,41] + DMFT
[42,43]; also hybrid functionals [44] instead of the more
widespread local density approximation (LDA) or generalized
gradient approximation (GGA) exchange-correlation poten-
tial can be employed. But, all of these approaches do not
solve the problem of the wrong position of the oxygen p
bands. In this paper, we propose an alternative self-energy
self-consistent (�-SC) DFT+DMFT scheme. For the corre-
lated orbitals, i.e., those that acquire a Coulomb interaction
in DMFT, �-SC DFT+DMFT takes the (linearized and Her-
mitianized) DMFT self-energy as the exchange-correlation
potential in a similar way as proposed by Schilfgaarde and
Kotani [40,41] for QSGW. That is, when solving the Kohn-
Sham equation, these correlated orbitals sense the (linearized
and Hermitianized) DMFT self-energy instead of the con-
ventional LDA or GGA exchange-correlation potential. For
the less correlated orbitals, that do not acquire an inter-
action in DMFT, the GGA is still employed. The method
is self-consistent, for both electronic charge density and
self-energy, avoiding the double-counting ambiguity. We em-
ploy the approach to SrVO3 and find that it renders the
correct position of the oxygen p orbitals. This indicates
that using the Hermitianized DMFT self-energy provides
a better Kohn-Sham potential for the correlated orbitals
than conventional GGA potentials. A further advantage is
that the “DFT” and “DMFT” parts of the calculation now
show similar quasiparticle-renormalized spectra around the
Fermi energy.

The outline of the paper is as follows: In Sec. II, we
introduce the �-SC DFT+DMFT. In this section, we first
recapitulate the conventional steps of DFT in Sec. II A, the
projection onto Wannier functions in Sec. II B, and DMFT in
Sec. II C. Carrying out these three steps constitutes a so-called
one-shot DFT+DMFT calculation, whereas, as discussed in
Sec. II D, in a CSC scheme the charge recalculated after the
DMFT is fed back to the Kohn-Sham equation to obtain a new
one-particle Kohn-Sham Hamiltonian until self-consistency
is obtained. The decisive step of this paper, described in
Sec. II E, is to take not only the charge but also the DMFT self-
energy as the exchange-correlation potential of the correlated
orbitals when going back to the Kohn-Sham equation after
the DMFT step. The proper subtraction of the Hartree term to
avoid a double counting is discussed in Sec. II F. An overview
of the method in form of a flow diagram of the individual steps
as well as of the full �-SC DFT+DMFT scheme is provided
in Sec. II G and Fig. 1. Section III presents the results for
SrVO3 and SrRuO3, and Sec. IV a summary and outlook.

II. METHODOLOGY

In this section, we present the formalism and im-
plementation of self-energy self-consistency (�-SC). The
actual implementation is based on the maximally local-
ized Wannier functions (MLWF) and extends our previous
CSC DFT+DMFT [25] implementation. Let us emphasize
that the �-SC is a major improvement on the CSC: not
only the charge but, based on the DMFT self-energy, also
the exchange-correlation potential of the Kohn-Sham equa-
tions is changed. Specifically, our starting point is a DFT
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calculation within WIEN2K [45], followed by a DMFT cal-
culation which is performed with W2DYNAMICS [46] using
continuous-time quantum Monte Carlo (CTQMC) [47] as
an impurity solver. The identification of localized orbitals
in DMFT is done with WIEN2WANNIER [48], an interface
between WIEN2K [45] and WANNIER90 [49]. In �-SC, the self-
consistency does not only include an update of the charge in
the Kohn-Sham equation, but further modifies the exchange-
correlation potential on the basis of the linearized DMFT
self-energy. This step, distinguishing our work from previous
DFT+DMFT implementations, is presented in Sec. II E. This
way, genuine effects of electronic correlations are included in
the exchange-correlation potential and a double counting is
avoided.

A. DFT cycle

Let us start by defining the central quantities of the �-
SC DFT+DMFT: the electronic charge density as the key
quantity in DFT and the Green’s function (or the related
self-energy) as the central component of DMFT. The charge
density at a given spatial position r is given by the equal-time
Green’s function or as a sum of all Matsubara frequency:

ρ(r) = 1

β

∑
n

G(r, r; iωn)eiωn0+
, (1)

while the local DMFT Green’s function defined with localized
Wannier orbitals χm is given by

Gmm′ (iωn) =
∫

dr dr′χ∗
m(r)χm′ (r′)G(r,r′;iωn). (2)

Here m, m′ denote the orbitals on the same site, β is the inverse
temperature, and the convergence of the summation over Mat-
subara frequencies ωn = (2n + 1)π/β is ensured by the factor
eiωn0+

. The full Green’s function for the solid appears in both
equations and can be written as

G(r, r′; iω) = 〈r| [iωn + μ − ĤKS − ��̂]−1 |r′〉 . (3)

Here, μ is the chemical potential and ĤKS the one-particle
Hamiltonian of the Kohn-Sham equation consisting of the
kinetic energy operator T̂ and the effective Kohn-Sham (KS)
potential V̂KS. ��̂ = �̂ − �̂dc is the effective local self-
energy, where �̂ is the DMFT self-energy and �̂dc is the
double-counting correction. In �-SC, the latter is determined
explicitly, as detailed in Sec. II F. In a DFT calculation, the
KS potential V̂KS has an explicit dependence on the total
electronic charge ρ(r) and consists of an external poten-
tial V̂ion due to the nuclei (ions), a Hartree potential V̂H ,
describing the electron-electron Coulomb repulsion, and an
exchange-correlation potential V̂xc, i.e., V̂KS = V̂ext + V̂H +
V̂xc. Altogether this yields

ĤKS = T̂ + V̂ext + V̂H + V̂xc. (4)

There are several widely employed approximations of the
latter term, such as using LDA [50], GGA [51], or hybrid
functionals [52,53]. For our calculations on �-SC, we have
employed GGA-PBE [51] but this is of little importance as
the potential will be later replaced by a newly formulated one
that is obtained from the self-energy �̂.

The DFT self-consistency cycle (“DFT cycle”) hence con-
sists of the following two steps: (i) The calculation of the
exchange-correlation potential from the electronic charge dis-
tribution ρ(r) → VKS(r). (ii) The solution of the Kohn-Sham
equation [written in Eq. (3) in form of a Green’s function]
and the recalculation of the charge [through Eq. (1)] provide
together the second step VKS(r) → ρ(r).

B. Wannier projection

Our starting point is a self-consistent DFT calculation with
a converged electronic charge density. At this point, Vxc is
calculated with GGA. The next step is to construct a localized
orbital basis, which is required in DMFT that treats local
correlations. For this purpose, we utilize MLWFs which can
be obtained by taking a Fourier transformation of the DFT
Bloch waves |ψνk〉:

|wαR〉 = �

(2π )3

∫
BZ

dk e−ikR
C∑

ν=1

Uνα (k) |ψνk〉. (5)

Here, Û (k) represents the (unitary) transformation matrix be-
tween the DFT Bloch states and the MLWFs. ν (α) denotes the
band (orbital) indices of the Bloch waves (Wannier functions)
and � is the volume of the unit cell. It is to be noted that,
here and in the following, hats denote matrices (operators)
in the orbital indices. C defines an isolated band window of
Bloch waves that typically includes, e.g., the d or t2g orbitals
of a transition metal oxide or, as in our example below, t2g

plus oxygen p orbital. In the scheme of maximally localized
Wannier functions [49], the spread (spatial extension) of the
Wannier functions describing the DFT band structure in the
given energy window is minimized, and Û (k) is obtained from
this minimization.

In general, the target bands are “entangled” with other, less
important bands, at least at a few k points. That is, there exists
an “outer” band window Co(k) that consists of more Bloch
functions than the number of target bands, implying Co(k) �
C at each k point. These bands are projected out by a so-called
“disentanglement” procedure:

|wαR〉= �

(2π )3

∫
BZ

dk e−ikR
C∑

ν ′=1

Co(k)∑
ν=1

Vνν ′ (k)Uν ′α (k) |ψνk〉.
(6)

Here, V̂ (k) is a rectangular Co(k) × C disentanglement ma-
trix. The band indices ν, ν ′ label the bands in Co(k) and C,
respectively. Technically, it is advantageous to represent the
Wannier orbitals in k space, which is obtained with a Fourier
transformation:

|wαk〉 =
∑

R

eikR |wαR〉 =
∑
ν ′ν

Vνν ′ (k)Uν ′α (k) |ψνk〉 (7)

and the corresponding Wannier Hamiltonian is calculated:

ĤW
KS (k) = Û †(k)ĤKS(k)Û (k), (8)

ĤW
KS (k) = Û †(k)V̂ †(k)ĤKS(k)V̂ (k)Û (k). (9)

The two equations correspond to the case without and with
disentanglement.
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C. DMFT cycle

The Hamiltonian is supplemented with a local Coulomb in-
teraction, and the resulting lattice problem is solved in DMFT
by mapping it onto an auxiliary impurity problem, which is
solved self-consistently in DMFT [4,5]. Here, either the non-
interacting Green’s function Ĝ(iωn) of the impurity problem
or the local self-energy can be considered as a dynamical
mean field. The DMFT formalism consists of the following
four steps: (i) The k-integrated lattice Dyson equation yields
the local interacting Green’s function Ĝ(iωn),

Ĝ(iωn) = 1

nk

∑
k

[
iωn+μ−ĤW

KS (k)−�̂(iωn)+�̂dc
]−1

, (10)

from the local self-energy �̂ and one-particle Kohn-Sham
Hamiltonian ĤW

KS ; nk k points are considered in the reducible
Brillouin zone. At this point, one usually starts with the
Hartree energy as the first guess for �̂ for a faster con-
vergence, which corresponds to �̂ = �̂dc. (ii) The impurity
Dyson equation provides the noninteracting Green’s function
G of the Anderson impurity model

Ĝ(iωn)−1 = �̂(iωn) + [Ĝ(iωn)]−1. (11)

(iii) Solving the Anderson impurity problem (AIM) defined
by Ĝ and the Coulomb interaction U gives interacting Green’s
function

Ĝ(iωn),U
AIM−→ Ĝimp(iωn). (12)

To this end, we employ the continuous-time quantum Monte
Carlo method [47], as implemented in the W2DYNAMICS

program package [46]. (iv) Applying the impurity Dyson
equation a second time once again gives the self-energy

�̂(iωn) = Ĝ−1(iωn) − Ĝ−1
imp(iωn). (13)

In the DMFT self-consistency cycle (“DMFT cycle”), the
obtained self-energy is now used again in step (i) to recal-
culate a new local Green’s function until a convergence is
achieved. The “one-shot DFT+DMFT” ends after a full DFT
cycle and one subsequent DMFT cycle. Physical quantities,
e.g., spectral function, susceptibility, etc., are extracted at this
point. Both in a charge CSC and �-SC DFT-DMFT one goes
instead back to the DFT part as discussed in the following.

D. Recalculation of the charge density

For the �-SC approach, we now go one step further. We
construct a new electronic charge density (as has been done
before) and a new exchange correlation potential for the corre-
lated subspace. The total charge density is separable into two
parts: (i) the correlated part ρc(r), formed by the correlated or-
bitals (typically the d or f orbitals) and (ii) the noninteracting
part ρrest(r), formed by the rest of the system, i.e.,

ρ(r) = ρc(r) + ρrest(r). (14)

Including the DMFT correlations, ρc(r) can be calculated
from the local DMFT Green’s function as follows:

ρc(r) = 1

nk

∑
k,αα′

〈r|wαk〉 NW
αα′ (k) 〈wα′k|r〉. (15)

Here, NW
αα′ (k) = 〈c†

αkc
α′k〉 is the expectation value of the oc-

cupation operator in the localized Wannier orbitals basis α,
α′ which can be directly calculated from the equal time (or
Matsubara sum) of the corresponding DMFT Green’s function
Ĝ, which is again a matrix with respect to the orbitals. For a
faster convergence of the Matsubara sum, it is advisable to
express N̂W as

N̂W (k) = 1

β

∑
n

[Ĝ(k, iωn) − Ĝ∗(k, iωn)] + f̂ (k). (16)

Here, the functional behavior of Ĝ at higher frequency is
considered by a model Green’s function Ĝ∗, and f̂ provides
the analytical frequency sum of Ĝ∗:

Ĝ∗(k, iωn) = [iωn − ĥ(k)]−1, (17)

ĥ(k) = [ − μ + ĤW
KS (k) + �̂(∞) − �̂dc], (18)

f̂ (k) = 1

2

(
1 − tanh

[
β

2
ĥ(k)

])
. (19)

Note that ĤW
KS is, in general, not diagonal in Wannier repre-

sentation. To calculate the analytical sum f̂ , we diagonalize
ĥ(k). If vαi is the ith eigenvector and wi the ith eigenvalue of
ĥ(k), we get

f̂ ′
i (k) = 1

2

(
1 − tanh

[
β

2
wi(k)

])
, (20)

f̂αα′ (k) = vαi f ′
i (k)(vα′i )

∗. (21)

The operator NW is then transformed to the Bloch basis uti-
lizing the unitary and the disentanglement matrices Û (k) and
V̂ (k):

N̂ (k) = Û (k)N̂W (k)Û †(k), (22)

N̂ (k) = V̂ (k)Û (k)N̂W (k)Û †(k)V̂ †(k). (23)

From this, the correlated charge density is finally obtained as

ρc(r) = 1

nk

∑
k

Co∑
νν ′=1

Dk
ν ′ν (r)Nνν ′ (k). (24)

The remaining density ρrest(r) is calculated within DFT and
added to ρc(r) to obtain the total electronic charge density.

E. Recalculation of the exchange-correlation potential from the
DMFT self-energy

The next step is the key aspect of the �-SC DFT+DMFT
approach: recalculating the exchange-correlation potential for
the next iteration step on the DFT side. The Hartree potential
VH (r) is calculated as usual from the total density, includ-
ing the effect of electronic correlations on the density. The
exchange-correlation (xc) potential for the next step is, how-
ever, not derived from the total charge density (e.g.. using the
GGA functional) as in previous CSC DFT+DMFT calcula-
tions. Instead, we split the xc potential into two parts:

V̂ DFT
xc = V̂ c

xc + V̂ rest
xc . (25)

Here, V̂ c
xc corresponds to the xc potential for the correlated

subspace and V̂ rest
xc accounts for the xc of the rest of the system.
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We now approximate these two xc potentials: We calculate
V̂ DFT

xc and V̂ c
xc from the GGA xc potential at the correspond-

ing densities ρ(r) and ρc(r), respectively. This would yield
exactly the same GGA xc potential if the charges are well
separated, which is however hardly the case in practice.

From these, we obtain also the difference V̂ rest
xc = V̂ DFT

xc −
V̂ c

xc. This xc potential, V̂ rest
xc , for the uncorrelated orbitals is the

first part of our xc potential. The linearized and Hermitianized
DMFT self-energy is added as the second part. Through the
total xc potential V̂ DFT

xc calculated from ρ(r), it includes the
core-valance interaction and the interaction between corre-
lated and uncorrelated subspace. Even after subtraction of
V̂ c

xc, V̂ rest
xc will still possess that part of the interaction. Only

the xc potential stemming from the interaction within the
correlated subspace is taken out in V̂ rest

xc . The aforementioned
interaction part would be missing if the total charge density is
divided between the correlated and the uncorrelated parts and
potentials are calculated subsequently.

As every used xc potential, V̂ rest
xc is an approximation for all

xc contributions except for those in the correlated subspace.
Similar subtractions of the d contributions to the exchange-
correlation potential have been done before [33,34,54], but not
the next step: using the DMFT self-energy instead of V̂ c

xc .
That is, we employ a new xc potential within the correlated

subspace V̂ c
xc, which is given by the (linearized and Hermi-

tianized) DMFT self-energy �. By construction, �̂ is local
(in Wannier space) and represented in Matsubara frequencies.
Because of this frequency dependence, � cannot be employed
directly in the one-particle Kohn-Sham equation. But, one can
take the real part of �̂ at the most relevant frequency ω for
every k point which is Re�̂(ω = εk ).

A further complication emerges from the fact that at least
CTQMC calculation requires an analytical continuation for
getting the self-energy at real frequencies. Maybe other ap-
proaches such as matrix-product states [55] can avoid these
hassles in the future. For the time being this makes a direct
implementation with Re�̂(ω = εk ) impractical.

However, as we focus on the low-energy part of the spec-
trum, we can linearize the self-energy around zero frequency

�̂(ω) ≈ �̂lin(ω) = Re�̂(0) + ω
∂�̂

∂ω

∣∣∣∣
ω=0

. (26)

This linearized self-energy is still frequency dependent.
Hence, it still cannot be included in the Kohn-Sham equation
which is based on a frequency-independent Hamiltonian. But
we can now use

Re�̂(ω = εk ) ≈ �̂lin(ω = εk )

= Re�̂(0) + [εα (k)−μDMFT]
∂�̂

∂ω

∣∣∣∣
ω=0

. (27)

That is, the ω dependence of the DMFT self-energy matrix
in Eq. (26) is replaced by a k dependence in Eq. (27), tak-
ing ω = εα (k) at the most important frequency, namely, the
quasiparticle energy. This way we have obtained a Hermi-
tian operator describing the self-energy at the quasiparticle
energies.

On the technical side we can estimate the (constant plus)
linear behavior as follows:

Re�̂(0) = Re[�̂(ωn → 0+)], (28)

∂ Re�̂(ω)

∂ω

∣∣∣∣
ω=0

= Im[�̂(iωn)]

ωn

∣∣∣∣
ωn→0

. (29)

For the results below we take the limit ωn → 0 in Eq. (29) by
simply considering the value at the lowest Matsubara frequen-
cies, but more complicated fitting procedures may be taken.

We also have to take into account that the DMFT self-
energy contains a Hartree contribution. This is to be subtracted
from the xc potential since the same is already included in the
effective KS potential, i.e.,

�̂′W (k) = �̂lin(k) − �̂H . (30)

Here, one can deduce the Hartree term of DMFT as

�
H↑
i = Uni↓ +

i′ �=i∑
i′

[(U − 2J )ni′↓ + (U − 3J )ni′↑] (31)

from the spin-orbital-resolved occupations ni′↑ of the Wannier
orbitals, and the equivalent formula for the opposite spin.

When we recalculate the Kohn-Sham states with the lin-
earized DMFT self-energy, we need the exchange-correlation
potential in real space r. Hence, we now have to transform the
(linearized) self-energy back to the Bloch basis utilizing the
preobtained transformation matrices (the formulas are without
and with disentanglement, respectively):

�̂′(k) = Û (k)�̂′W (k)Û †(k), (32)

�̂′(k) = V̂ (k)Û (k)�̂′W (k)Û †(k)V̂ †(k). (33)

Finally, the exchange-correlation potential within the corre-
lated subspace can be written on a radial grid as

V d
xc(r) = 1

nk

∑
k

Co∑
νν ′=1

Dk
ν ′ν (r)�′(k)νν ′ . (34)

In the Kohn-Sham equation we henceforth employ the xc
potential V̂ rest

xc + V d
xc(r) or the following one-particle Hamil-

tonian instead of Eq. (4):

ĤKS = T̂ + V̂ext + V̂H + V̂ rest
xc + V̂ c

xc. (35)

F. Exact double-counting subtraction

In the �-SC formalism, the part of the self-energy used
as exchange correlation within the correlated subspace is now
explicitly defined through Eq. (35). One can hence subtract
this contribution exactly when calculating the DMFT Green’s
function in Eq. (10), simply by setting

�̂dc(k) = �̂lin(k), (36)

where �̂lin(k) comes from the previous iteration. Let us re-
mind the reader that the k dependence of the double counting
originates from the linearization process where we replaced
approximately ω ≈ εα (k) when going from Eq. (26) to (27).

Let us note again that the Hartree term enters ĤKS only
once in form of �̂H but not in V̂ c

xc thanks to the subtraction
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in �̂′W in Eq. (30); using �̂lin instead of �̂′W for the dou-
ble counting warranties that the Hartree term cancels for the
self-energy.

In �-SC DFT+DMFT, the ambiguity of the double-
counting term is hence avoided altogether. The correlated
orbitals that acquire a Coulomb interaction in DMFT obtain
a linearized �̂′ in the Kohn-Sham equation which is known
exactly and can be hence subtracted as �̂dc when going back
to the DMFT side.

This does not imply that we know the exact self-energy
contribution �̂dc from say the GGA xc potential. Instead we
have replaced the GGA xc potential by a self-energy xc po-
tential for which we know this contribution. We replace one
approximation (GGA) by another (�-SC) for the correlated
subspace. One might view this as replacing the problem of
determining �̂dc on the DMFT side by the problem of deter-
mining V̂ c

xc . For the latter we can, however, take a well-defined
density functional, which then altogether yields another xc
approximation than the GGA. The big advantage is that we
do on the Kohn-Sham and DMFT sides the same thing, or at
least, the arguably closest thing possible. That is, we solve
the Kohn-Sham as close as possible to the self-energy of the
many-body problem. Whether this new xc potential works
better or worse than conventional GGA+DMFT will be tested
below.

Actually, after subtracting �̂dc in Eq. (10) not even the lin-
earization approximation of the self-energy enters the DMFT
Green’s function any longer, but is replaced by the full,
frequency-dependent DMFT self-energy. The linearization
and including it as V̂ c

xc in the Kohn-Sham potential only serves
the purpose that the Kohn-Sham wave functions and eigenval-
ues are adjusted to correlation effects included in the DMFT
self-energy. On the DMFT side, the full self-energy is taken.

G. Flow diagram of �-SC DFT+DMFT

The full �-SC DFT+DMFT altogether involves the fol-
lowing steps, as also depicted schematically in Fig. 1:

(i) At first, we perform a DFT cycle (top left part of Fig. 1)
i.e., we obtain a fully converged charge density within DFT
in order to have a reasonable starting electronic structure.
Subsequently, the target bands for the Wannier projection are
identified. From the second iteration onwards in �-SC, we
perform only one single DFT iteration to update the DFT
Kohn-Sham Hamiltonian, i.e., only the green arrow in Fig. 1
(top left part) is followed without achieving the convergence
of the charge density within DFT. The xc potential for the
correlated subspace is supplemented with the one obtained
from the DMFT self-energy as discussed in Sec. II E. For this
step, we employ the modified WIEN2Kprogram package.

(ii) We compute the MLWFs within the identified tar-
get subspace as explained in Eqs. (5)–(7); consequently, the
Kohn-Sham Hamiltonian is transformed from Bloch basis to
the Wannier basis following Eq. (8). To this end, we use the
WIEN2WANNIER [48] and WANNIER90 [49] program packages.

(iii) A single DMFT iteration is performed in order to
obtain the self-energy �̂, local Green’s function Ĝ, and the
DMFT chemical potential μ corresponding to a fixed particle
number. It needs to be noted that at this point �̂lin(k) is used
as double-counting term and μ is calculated accordingly. To

this end, we use the W2DYNAMICS [46] program package. In
practice, it is beneficial to start �-SC with a converged DMFT
self-energy. Hence, we perform a DMFT cycle (i.e., using
both green and orange lines in bottom right part of Fig. 1)
just like in a one-shot DFT+DMFT scheme. Furthermore, we
also impose an under-relaxation, i.e., a mixing between old
and new DMFT self-energies for a well-behaved convergence.

(iv) The correlated charge distribution as well as the xc
potential are updated (bottom left part of Fig. 1). At first,
N̂W (k) is calculated from the DMFT Green’s functions Ĝ
as in Eq. (16). N̂W (k) is then transformed back to the Bloch
basis, as described in Eqs. (22) and (23) in order to calculate
the correlated charge density ρc(r) in real space.

In a similar fashion, the xc potential V̂ c
xc in the correlated

subspace is calculated from the DMFT self-energy through
Eq. (30) and transformed back to DFT eigenbasis as presented
in Eqs. (32), on a radial grid by employing Eq. (34).

(v) At the last step, the new total charge density (including
DMFT density correction) is checked for convergence. If the
convergence criterion is not achieved, we proceed with a new
charge density which is again a mixture of the calculated new
and the old charge density from the previous iteration. The
charge density of the correlated orbitals ρc(r) is used to cal-
culate V̂ c

xc, which then provides V̂ rest
xc as described in Eq. (25).

The exchange correlation potential in the KS Hamiltonian is
updated with V̂ rest

xc and V̂ c
xc according to Eq. (35). At this step,

the DMFT self-energy is also compared for two consecutive
iterations for convergence so that we obtain a simultaneous
convergence of both the quantities: total charge density and
the local DMFT self-energy.

For the SrVO3 calculations shown below, we needed about
60–70 iterations to converge, which might be sped up by a less
cautious mixing (we only mixed in 20% of the new solution
for the charge density and 30% of the new self-energy).

III. RESULTS

The �-SC DFT+DMFT scheme is applied to SrVO3,
a test-bed material for methodological developments for
strongly correlated electron systems. The cubic perovskite
structure of SrVO3 results in degenerate t2g bands near Fermi
energy that are singly occupied and unoccupied eg bands. Bulk
SrVO3 exhibits a strongly correlated metallic behavior and the
electronic features are mostly governed by partially filled t2g

bands. In DFT+DMFT schemes, one typically treats isolated
t2g bands with explicit electron correlation in DMFT, coined as
“d-only” model. As a consequence of the DMFT correlations,
the wide band of DFT is renormalized by a factor of about
0.5, yielding a strongly correlated metal. Additional lower and
upper Hubbard peaks appear at −1.7 and 2.5 eV, respectively
(see, e.g., Refs. [56–60] for previous DFT+DMFT calcula-
tions. In the energy range of the latter, also the eg bands are
located. The agreement of the t2g spectral function with exper-
iment is reasonably good [56]. SrVO3 has also been studied in
GW+DMFT by various groups [38,39,61–64]. GW+DMFT
yields a somewhat better position of the lower Hubbard band
[39,62,63] but does not fully solve the problem with the wrong
position of the oxygen p bands [38,39,63], while improving
the DFT+DMFT results.
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(a) (b)

FIG. 2. (a) One-shot DFT+DMFT for SrVO3 at Udd = 9.5 eV and Jdd = 0.75 eV. The k-dependent spectral function is plotted together
with the DFT band structure (white dotted lines) along high-symmetry lines of the Brillouin zone. (b) Same as (a) but now with �-SC and
the DFT band structure (white dotted lines) is obtained from the linearized DMFT self-energy at self-consistency. Note that the DFT band
structure nicely follows the DMFT spectral function at low frequencies.

One can include noninteracting p bands within DMFT in a
so-called “d+p” calculation. However, the energy difference
between d and p bands derived ab initio in DFT is under-
estimated. Consequently, there is a too strong hybridization
between d and p orbitals, and the effective p orbitals have
a significant d contribution. This in turn means that the d
occupation is much larger than one. A d+p calculation with
interaction in the t2g bands and no interaction in the uncorre-
lated p bands hence yields only a weakly correlated solution
with too wide t2g bands around the Fermi energy and no
Hubbard bands [24,26–31]. It is to be noted that, here and
later in the case of SrRuO3, we refer to these calculations
generically as “d+p” instead of the more specialized term
“t2g+p.”

A d-p interaction [26], a GW correction [65], or an ad
hoc “double-counting” term [31,32], which corrects the onsite
energies of the p orbitals to the experimental position, needs to
be introduced in order to obtain a proper Hubbard peak below
the Fermi energy, as observed in experiment. Let us note that
the origin of this peak has been debated. Namely, within a
GW+extended DMFT calculation [64] it has been identified
as a plasmon peak, which is, however, much less pronounced
than in experiment, while Backes et al. [66] identified it
coming form oxygen vacancy in a GW+DMFT framework.
Altogether, this leaves d+p DFT+DMFT calculations in a
quite unsatisfactory state, relying on parameter tuning or ad
hoc corrections of the p level or exchange-correlation poten-
tial for getting the correct position of the oxygen p levels.

In our implementation, we employ instead the DMFT self-
energy as the (self-consistently updated) exchange-correlation
potential for the t2g orbitals of SrVO3. That is, the GGA
potential is only used for the less correlated oxygen p or-
bitals, whereas for the correlated, localized t2g orbitals the
local DMFT self-energy from a d+p calculation is used. In
principle, this DMFT potential should also be employed for
the eg orbitals, but since these are essentially unoccupied, the
DMFT self-energy would reduce to a Hartree term which is
included in the GGA as well.

In Fig. 2(a), we first present the k-dependent spectral func-
tion of SrVO3 as obtained in a d+p model within a standard
one-shot DFT+DMFT calculation, using Udd = 9.5 eV, Jdd =
0.75 eV, zero Ud p and Upp, and room temperature (β = 40).
Fully localized limit (FLL) double-counting term is consid-
ered here. Let us note that within a d+p model the impurity
orbitals are more localized compared to those in a d-only
model, causing larger values of the interaction parameters
than in d-only calculation. The specific values are chosen
following Aryasetiawan et al. [67] and will be considered for
all the calculations presented in this paper.

The band renormalization is reasonable with Z ∼ 0.48.
However, the p bands appear around −2 to −7 eV, which
does not agree with the experimental photoemission spectra
[56,68–70]. As explained before, the p bands have to be
adjusted to describe photoemission spectra. In SrVO3, the
required shift is as large as ∼5.0 eV [32], which combined
with the large Udd (9.5 eV) of Ref. [67] would even result in
an insulating solution.

Next, we turn to the �-SC DFT+DMFT, which does not
necessitate such an ad hoc shift and treats SrVO3 in a com-
pletely ab initio manner. As mentioned in Sec. II, we started
from a converged one-shot DFT+DMFT self-energy [i.e.,
from the solution of Fig. 2(a)]. Upon �-SC self-consistency
we however obtain the solution Fig. 2(b).

With the linearized DMFT self-energy as an input, the
Kohn-Sham equations in the DFT part of the loop now re-
produce the DMFT spectral function very well, which is not
the case in one-shot calculations [Fig. 2(a)] or conventional
CSC DFT+DMFT calculations. This is not surprising since
the Kohn-Sham equations in the �-SC DFT+DMFT are espe-
cially adjusted to the electronic correlations. Indeed, the only
difference between the DMFT self-energy on the DMFT side
and the DMFT-derived exchange-correlation functional on the
Kohn-Sham side is the linearization procedure.

There are deviations between the DFT band structure and
the DMFT spectrum at larger frequencies, where we are
simply outside the linear regime of the self-energy. Further,
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FIG. 3. Comparison of calculated spectral function and experi-
mental photoemission spectra (PES) by Morikawa et al. [68]. The
black circles and dots present experimental results. The red filled
curve represents V -t2g spectra while the blue and green curves corre-
spond to O 2p. Udd = 9.5 eV and Jdd = 0.75 eV.

the DMFT spectral function shows (hardly visible) Hubbard
bands which lead to a different chemical potential. With more
complicated, e.g., piecewise-linear, forms of the self-energy
exchange-correlation potential, one should be able to remedy
this in the future. But we do not expect that the actual physical
quantity, i.e., the DMFT spectral function, will be affected by
this strongly.

Let us now turn to the position of the p bands relative
to those of the t2g bands. They are shifted to much lower
energies. Now the oxygen p positions, without any adjustable
parameters (as U is obtained from Ref. [67]) much better
agree with the experimental spectra (see, e.g., Fig. 3). Please
note that now, with �-SC the Kohn-Sham and DMFT p bands
agree very well. In addition, interestingly, over the iteration in
�-SC, also the dispersion of the p bands is slightly changed
compared to that in DFT.

The scenario can be further clarified by inspecting the k-
integrated spectral function, Fig. 3, which compares our �-SC
spectra with photoemission spectroscopy (PES) by Morikawa
et al. [68]. In Fig. 3, the lower and upper Hubbard peaks
are not very well pronounced in �-SC DFT+DMFT. They
or reminiscences thereof are however present, and can also
been seen as purple shades at around −2 and +3.5 eV in
Fig. 2(b). These positions of the Hubbard bands agree with
the PES spectrum. But the weight is smaller. In this respect,
please keep in mind that more bulk-sensitive PES [56] has
a larger weight in the quasiparticle peak than in the lower
Hubbard band, similar but not as pronounced as in our �-SC
DFT+DMFT calculation. One possible explanation for the
less pronounced Hubbard peaks is the effective interaction U
which we have taken from the literature [67]. Adjusting U to
slightly larger values would yield more pronounced Hubbard
bands. Indeed, when determining U self-consistently using �-
SC DFT+DMFT we expect a larger U value, simply because
the oxygen p orbitals are (correctly) pushed further away the

FIG. 4. �-SC DFT+DMFT for SrRuO3 at Udd = 5.0 eV, Jdd =
0.55 eV, and β = 40. The k-integrated spectral function is plotted
with the DFT band structure (white dotted lines), obtained from the
linearized DMFT self-energy at self-consistency. Note that the DFT
band structure nicely follows the DMFT spectral function at low
frequencies.

t2g orbitals and hence become less effective in screening. But,
such a self-consistency also with respect to U is beyond the
scope of this paper.

Let us also note that there is additional spectral weight
of the eσ

g orbitals (not included in our calculations as these
are unoccupied) which should be located slightly above our
upper Hubbard band, as was already discussed in the very
first DFT+DMFT calculations [56]. Further, spectral weight
contributions from plasmon peaks [64] and impurities [66] are
also discussed.

The main improvement with respect to previous
DFT+DMFT calculations is that we also obtain an excellent
description of the position of the oxygen p orbitals without
any adjustable parameter or ad hoc p-d shift. This includes
their width and relative weight to the t2g bands and, in
particular, their splitting into two subgroups of oxygen p
orbitals: out of nine orbitals the first branch [O p(π )] consists
of six orbitals with a peak at −5.0 eV while the rest ]O
p(σ )] are peaked at −6.1 eV. A substantial shift of the p
orbitals in the right direction has already been obtained when
taking out the d-electron contribution from the exchange
correlation potential [33,34,54]. But replacing it by the
DMFT self-energy in �-SC DFT+DMFT is not only more
appealing from a fundamental point of view, it also gives
a much larger shift which is needed to obtain the correct
(experimental) oxygen position.

We now apply our method to another perovskite ma-
terial, SrRuO3. The �-SCDFT+DMFT is performed with
interaction parameters Udd = 5.0 eV, Jdd = 0.55 eV at room
temperature (β = 40).1 The Ru t2g bands show a wider disper-
sion. Concomitantly, the renormalization in �-SC is slightly
less pronounced with Z ∼0.64, in comparison with the V -t2g

bands in SrVO3. In Fig. 4, we show the k-dependent spectral

1The interaction parameters are smaller for 4d Ru than for 3d V.
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FIG. 5. Comparison of calculated spectral function and experi-
mental ultraviolet photoemission spectra (UPS) by Kim et al. [71].
The black circles and dots represent experimental results correspond-
ing to the scrapped surface of polycrystal and single-crystal thin film,
respectively. The red filled curve represents Ru t2g spectra while
the blue and green curves correspond to O 2p. Udd = 5 eV and
Jdd = 0.55 eV.

function, obtained in �-SC. The occupied t2g bands span
down to ∼3 eV below the Fermi energy, in good agreement
with the experimental observation of ∼2.5 eV [71], which
is further elucidated later with the k-integrated spectra. At
low energy, the DFT and the DMFT bands match well due
to the linearized (and Hermitianized) self-energy within DFT,
as also observed in the case of SrVO3. The crucial improve-
ments of �-SC are seen in the energy positions of the O p
bands. In �-SC, we find the spectral gap between t2g and
O p amounts to ∼1.5 eV, placing O p bands in the energy
range between ∼4.5 and 11.0 eV below the Fermi energy. In
a one-shot DFT+DMFT calculation (not shown), this gap is
highly underestimated and is almost nonexistent.

To further elucidate the importance of �-SC, in Fig. 5,
we compare the k-integrated spectra with the reported experi-
mental ultraviolet photoemission spectra (UPS) [71], obtained
with single-crystal film (solid black dots) as well as the
scraped surface of polycrystal (empty circles). The Ru t2g

peaks, comprising of the coherent and the incoherent compo-
nents, in both the experimental spectra appear within ∼2.5 eV
energy range below Fermi level. In �-SC the t2g spectra
(red filled curve) span down to −3.0 eV below the Fermi
energy, including a relatively broad incoherent peak around
∼ − 1.35 eV. Both the incoherent peak position and the t2g

bandwidth agree well with the experimental findings of −1.3
and −2.5 eV, respectively [71]. Importantly, the spectral gap
between the O p and Ru t2g is quite accurately reproduced
in �-SC. The first O p (π ) peak (blue filled curve) appears
around −5.0 eV and the second, O p (σ ) peak (green filled
curve) around −8.2 eV. In the spectrum for the SrRuO3 film,
an additional peak is present at −3 eV which along with the
second O p peak at −7.5 eV is absent in the spectrum for the
scrapped surface of polycrystal. The peak at −3 eV is iden-
tified as the O 2p nonbonding state, which can be stemming

from the surface effect [72]. A similar behavior can also be
observed in the PES spectra for SrVO3 [68,69].

IV. SUMMARY AND OUTLOOK

We have introduced the �-SC DFT+DMFT method which
avoids the double-counting problem, and employed it to
SrVO3 and SrRuO3. It yields largely improved results, in
particular with regard to the position of the oxygen p
bands, which has been a major shortcoming of previous
DFT+DMFT calculations. Also, the Kohn-Sham bands now
closely resemble the DMFT quasiparticle bands.

The essential step is to take the DMFT self-energy as the
exchange-correlation potential of the correlated orbitals in the
Kohn-Sham equation of the “DFT step.” As the latter is a
one-particle equation, we must employ a Hermitianized and
linearized self-energy at the proper quasiparticle energy in a
similar manner as in QSGW [40,41].

However, when going back to the DMFT step this self-
energy is readily replaced by the correct, frequency-dependent
DMFT self-energy, using the many-body Dyson equation.
Hence, solving the Kohn-Sham equations with the linearized
self-energy can be seen as an intermediate step, only to adjust
the one-particle orbitals to the actuality of electronic cor-
relations. Thereafter, the self-energy with its full frequency
dependence is taken again.

This is not fully correct since for the less correlated orbitals
we still take the plain vanilla GGA potential of DFT. One
might be tempted to extend the correlated subspace to all or-
bitals, using a DMFT self-energy also for these. Indeed, this is
what is done in QSGW. However, we believe that in contrast to
the QSGW this is not adequate for �-SC DFT+DMFT since
the local DMFT self-energy should only provide a proper
exchange-correlation potential for the more localized orbitals,
typically the d or f orbitals of a transition metal oxide, lan-
thanide, or actinide. For these orbitals the local correlations
as described in DMFT are prevalent. For the more extended,
e.g., p orbitals, on the other hand the exchange part is more
important. This can be described to a large extent by the GGA,
at least for metals, but not in DMFT.

Using a combination of DMFT self-energy for the cor-
related orbitals and GW for the less correlated orbitals, and
feeding both back to the Kohn-Sham equation in a linearized
form is at least appealing, and possibly even better than �-SC
DFT+DMFT method, pending extensive further implemen-
tations and examination which are beyond the scope of this
paper. An even further step is to include also nonlocal cor-
relations beyond GW which is possible using the ab initio
dynamical vertex approximation (D�A) [73–75], and to feed
the obtained nonlocal self-energy back to the Kohn-Sham
equation in the same way as we do in this paper for the local
DMFT self-energy.

The decisive step has been, however, already done in this
paper, using a linearized DMFT-like self-energy in the Kohn-
Sham equation. In other words, we calculate and readjust the
Kohn-Sham states so that these most closely resemble the
correlated DMFT spectrum. In our paper we have shown that
this �-SC DFT+DMFT method does not only work properly,
but also yields largely improved results compared to previous
d+p calculations.
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