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Thermodynamic electric quadrupole moments of nematic phases from first-principles calculations
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The electronic nematic phase emerging with spontaneous rotation symmetry breaking is a central issue of
modern condensed-matter physics. In particular, various nematic phases in iron-based superconductors and
high-7.. cuprate superconductors are extensively studied recently. Electric quadrupole moments (EQMs) are
one of the order parameters characterizing these nematic phases in a unified way, and elucidating EQMs is
a key to understanding these nematic phases. However, the quantum-mechanical formulation of the EQMs in
crystals is a nontrivial issue because the position operators are nonperiodic and unbound. Recently, the EQMs
have been formulated by local thermodynamics, and such thermodynamic EQMs may be used to characterize
the fourfold rotation symmetry breaking in materials. In this paper, we calculate the thermodynamic EQMs
in iron-based superconductors LaFeAsO and FeSe as well as a cuprate superconductor La,CuQO,4 by a first-
principles calculation. We show that owing to the orbital degeneracy, the EQMs in iron-based superconductors
are mainly determined by the geometric properties of wave functions. This result is in sharp contrast to the
cuprate superconductor, in which the EQMs are dominated by distortion of the Fermi surface.
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I. INTRODUCTION

In recent years, the nematic phases, which spontaneously
break fourfold rotation (C4) symmetry are attracting a lot
of interest in condensed-matter physics. For example, iron-
based superconductors such as LaFeAsO [1,2], FeSe [3-5],
and BaFe,As; [6,7] undergo nematic order with an elec-
tronic origin, although it is accompanied by the tetragonal-
orthorhombic structural phase transition. The relations of
nematic order, superconductivity, and magnetism have been
of central interest in the research of iron-based superconduc-
tors in the past decade [8-25]. The nematic order in cuprate
superconductors is also a topic of interest, motivated by re-
cent experimental indications [26,27]. Although vast studies
have been devoted, comprehensive clarification of the nematic
order and its relation to the pseudogap phase and super-
conductivity remains an ongoing issue. For an origin of the
nematic order in cuprates, the charge-density wave (CDW)
order and bond order [28-39] as well as other exotic order
such as loop current and pair-density wave [40—45] have been
proposed. Because of a possible interplay with the high-T;. su-
perconductivity in the two categories, namely, iron-based and
cuprate superconductors, the nematic phase in strongly corre-
lated electron systems is a central issue of modern condensed
matter physics. In particular, the similarities and differences
between iron-based superconductors and cuprate supercon-
ductors are issues to be solved.

Although various order parameters, such as orbital po-
larization, bond order, and spin nematic variable, have been
studied [11,16-25,28-39] to clarify the microscopic origin of
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the nematic order, we shed light on another aspect of nematic
phases. A ubiquitous feature common to various nematic
phases is the C4-symmetry breaking. Because the nematic
order parameters defined from a microscopic point of view are
unique to each nematic phase, they are not suitable for unified
quantification of the Cs-symmetry breaking in various com-
pounds. On the other hand, the electric quadrupole moments
(EQMs) are fundamental quantities from the view point of
the symmetry, which naturally characterize the C4-symmetry
breaking [46] in electron systems. The EQMs can be used to
quantify the C4-symmetry breaking in a unified manner since
no specific assumption is needed for its definition. Therefore,
the EQMs are complementary to the microscopic order pa-
rameters for describing the nematic phases. While we can
clarify the mechanism of nematic transition by identifying
the relevant microscopic order parameter, studying the EQMs
enables us to evaluate the C4-symmetry breaking in a unified
way. Although these two approaches are potentially comple-
mentary, there is no calculation of the EQMs in materials.
Therefore, in this paper we perform first-principles calcula-
tions of EQMs.

EQMs are originally introduced in classical electromag-
netism [46]. However, contrary to their apparently simple
form, a naive extension to periodic crystals is problematic due
to the difficulties in the treatment of the position operator. This
is also the case for magnetic multipole moments. In contrast to
the modern theory of electric polarization where the approach
based on Wannier functions is successful [47-49], EQMs of
the Wannier functions are gauge dependent unless appropriate
symmetries are preserved [50,51]. On the other hand, EQMs
have been well formulated as topological invariants of higher
order topological crystalline insulators [52-65]. However,
obtained results are valid only in the presence of crys-
talline symmetries such as the C; symmetry. Therefore, these
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approaches are not useful for evaluating EQMs that emerge
with spontaneous Cy-symmetry breaking.

Although the above quantum-mechanical approach is still
an ongoing issue, recent thermodynamic approaches to the
electric/magnetic multipole moments [66—70] successfully
obtained gauge-invariant and unit-cell-independent formulas.
In particular, the EQMs obtained by the thermodynamic ap-
proach, which we call thermodynamic EQMs, are well defined
even without crystalline symmetries such as the C4 symmetry,
in contrast to the EQMs formulated as topological invari-
ants. Therefore, using the thermodynamic EQMs, now we can
study the nematic phases of iron-based superconductors and
cuprate superconductors in a unified manner.

In this paper, after showing the failures of the formula-
tions by electromagnetism and Wannier function methods, we
calculate the thermodynamic EQMs of two iron-based super-
conductors, LaFeAsO, FeSe, and a cuprate superconductor
La,;CuOy using first-principles calculations. For the nematic
order parameters, the orbital order and momentum-dependent
orbital polarization are assumed for LaFeAsO and FeSe, re-
spectively, in accordance with one of theoretical proposals
[16,18,19,71]. For La,CuQy4, we examine the d,_.-wave
bond order as well as the orbital order of O2p, and O2p,
orbitals for a comparison. The results reveal a difference in the
EQMs between the iron-based superconductors and cuprate
superconductors. The geometric term in the thermodynamic
EQM is dominant in iron-based superconductors, owing to the
unique band structures and associated geometric properties. In
contrast, the thermodynamic EQM in the cuprate supercon-
ductor is dominated by the Fermi-surface term arising from
the distortion of the band structure.

Here, we note that there are several scenarios for the
nematic phases. For example, the magnetic scenario has
been intensively studied for iron-based superconductors
[20-22,25]. We avoid an explicit calculation for the magnetic
scenario because we need to formulate the thermodynamic
EQMs of many-body states. However, it is indicated from
our results that the main conclusion, namely, the dominant
geometric contribution in iron-based superconductors and the
dominant Fermi-surface term in cuprate superconductors, is
independent of the microscopic order parameter.

This paper demonstrates the calculation of the EQMs in
materials by a first-principles method. Comparable studies of
different compounds with various nematic order parameters
are carried out based on a general formulation. While a mi-
croscopic order parameter can specify the origin of nematic
order, an analysis of the EQMs provides a comprehensive un-
derstanding of properties of C4-symmetry breaking in various
nematic phases. Thus, we emphasize here again that our calcu-
lations are complementary to the exploration of microscopic
order parameters.

II. ELECTROMAGNETIC EQMS IN CRYSTALS

We begin with the definition of EQMs in classical electro-
magnetism. With the multipole expansion, the scalar potential
is described as [46]

o) = —/dr Zp(r) mPI(f-V). ()

Here, ¢ is the dielectric constant, P;(x) are the Legendre poly-
nomials, 7 is the unit vector of r, i.e., # = r/|r|, and p(r) is the
charge density. For simplicity, we adopt the units with electric
charge ¢ = 1 and lattice volume V; = 1. We focus on the
component of [ = 2, which is represented as

1 1
P ) = mZﬁ(‘“’i”j - r’8i))Qi;, (2)
ij
with the electromagnetic EQMs

Q= / drrir;p(r). 3)

The electromagnetic EQMs are determined by the quadrupole
distribution of the charge density. The other multipole mo-
ments are defined as well in a similar manner.

Here, we try to evaluate the electromagnetic EQMs of
electrons on the periodic crystal lattice. Difficulties due to
the nonperiodic and unbound position operators will become
manifest. We consider the spinless case for simplicity. An idea
to avoid the unboundedness of the position operator, which
can be infinite in the thermodynamic limit, is to consider the
EQMs in a unit cell. The EQMs are redefined as

gl = / drtrir; (9 (Y )
cell

= _Z f drrir; (¢ (k)e, (k)
11

nm  kk' ce
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with 7(r) being the creation operator of electrons at
r. In the second line, we expanded v (r) by the peri-
odic part of the Bloch wave function u,(k,r): ¥ (r) =

1 )
— >, cn(k)e™® u, (k, r). Here, m, n are band indices, k
\/V Z Zk

is the wave vector, V is the volume of the system, and d is
the dimension of the system. The momentum sum is carried
out in the first Brillouin zone. In this notation, u,(k,r) are
normalized as f drdufn (k,r)u,(k,r) = 6,,,. For free electron
systems with band dispersion €, (k), the relation

(Cl(k)cm(k/)) = f(en(k))anmSk,k’a )

leads to

drdr,-rj flent)u (e, ryu, (k, r).

cell
< Z/ Bz (2m)
(6)

Here, f(e) = (/T 4+ 1)7! represents the Fermi distribution
function for the temperature 7T .

The EQMs of the unit cell, Eq. (6), depend on the origin
of real space coordinates. For concreteness, we consider the
two-sublattice systems as for LaFeAsO we study in Sec. IV.
In a tight-binding model, the orbitals of electrons are localized
on atoms and we have a simple relation

U*(ka I‘)I/ln(k, I') = <Mn(k)|r> <r|un(k)>

—Z D Hrapluak) P8 — R

sub=A,B

- rsub)a (7)
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FIG. 1. Unit cell of LaFeAsO and choices of real space coordi-
nates. For the case (a), the electromagnetic EQM, Q.._» = Q2 —
Qy2, vanishes, while Q,» _,2 is finite for the case (b). Thus, the EQMs
of the unit cell are not well defined.

where rs, rg are the sublattice positions within a unit cell
and R are the lattice points. Only the home unit cell R =0
contributes to the integral (6).

Examples of the coordinates are shown in Fig. 1. A EQM
characterizing the nematic order is the imbalance between the
x and y directions: Q;‘z’llyz = Qi‘;n — Q;g“. This vanishes for
the coordinates in Fig. 1(a), since Fe, and Fep atoms are on
the lines of x2 — y2 = 0, while Qi‘;‘llvz is finite for the case
of Fig. 1(b). Indeed, we obtain Q)C;llvz ~—0.75at T =0.1
for LaFeAsO in the absence of the nematic order, when we
choose coordinates in Fig. 1(b). Because of these undesirable
properties, (1) Ql?j‘?” depend on the coordinates, and (2) Ql?j‘?”
can be finite even in the absence of the nematic order, the
electromagnetic EQMs of the unit cell are not suitable for
quantifying the nematic order.

We also discuss the EQMs of Wannier functions defined by
the moment of position operators:

D = (Woul Fif; [Won)

dk?
= — Z /BZ ) (1 (K )| O i () (i (K) | O 14, (K))
m(n)

dk?
- /Bz oy (14 (k) |0 1ty () (1t (k) [ O, 1t (), (8)

with the Wannier function of the nth band,

dk’  _ri
Wi) = [ sz ™ O ) ©)
Clearly, the second term of Eq. (8) is gauge dependent.
Therefore, the EQMs of Wannier functions are unsuitable for
evaluating the EQMs of nematic phases.

Instead of the above quantum-mechanical approaches, we
adopt the thermodynamic approach as we explain in the next
section. Note that the first term of Eq. (8) appears in the
thermodynamic EQMs [70]. It is a part of the geometric term
and given by the quantum metric [72,73], namely, the real part
of the quantum geometric tensor.

III. THERMODYNAMIC EQMS

In this section, we introduce the thermodynamic EQMs.
The EQMs are recently formulated by the variation of the

free-energy density [70]:
dF (r) = p(r)d¢(r) + pid[3:¢(r)] + Q;;d[9;9;¢(r)]
+ 0@V ¢()], [dp)]*). (10)

While the charge density p(r) defined by the differential with
respect to the scalar potential ¢(r) is regarded as thermody-
namic electric monopole moment, the electric dipole p; and
quadrupole moments Q;; are given by the differential with
respect to the spatially nonuniform scalar potential. The ther-
modynamic EQMs are defined as the change of free energy
density by the nonuniform electric field, and therefore, it is
naturally related to the quadrupole charge distribution.

The expressions for the thermodynamic EQMs Q;; are
obtained as [70]

ddk 1 .. ..
0 = Z/ [Eg’;,’(k)f(en(k)) - X,/ (k)

sz 2m)?
X /"o def(e) — im;l(k)ijf/(Gn(k))] (11)
en(k) 12

Here, ginj (k) is the quantum metric [72,73]:

m##n

which is a counter-part of the Berry curvature. The quantum
metric is the real part of the quantum geometric tensor [72,73],
while the imaginary part is the Berry curvature. Equation (11)
reveals that the momentum integral of the quantum metric
gives a part of the thermodynamic EQMs, while the integral of
the Berry curvature is an intrinsic part of the anomalous Hall
conductivity [74]. In the second term, X,’ (k) is given by

o Al ()AL, (k) + c.c.
Wo=-) e aw W

while m, ! (k)" = 8, d,€,(k) in the third term is the inverse
effective mass tensor. We adopted the following notations

(Ho — 1) |[¥a(k)) = €, (k) |9 (k) , (14)
lun (K)) = e |, (k) (15)
AL (k) = —i ()| 3yt () . (16)

Hj and 1 are the noninteracting Hamiltonian and the chemical
potential, respectively. Note that Eq. (11) is valid only when
all bands are isolated. General expressions valid in the pres-
ence of band touchings are provided in Ref. [70]. Although
we adopt single-particle Hamiltonian, the expressions can
also be used for the many-body states after the mean-field
approximation.

The EQMs formulated based on the thermodynamics are
gauge-invariant and independent of unit-cell choices. Thus,
difficulties of the electromagnetic EQMs in periodic crystals
have been solved. Therefore, we evaluate the thermodynamic
EQMs in the representative nematic phases of cuprates and
iron-based superconductors and discuss their origin.

In Eq. (11), the first and second terms are known as the
EQMs of the wave packets [75,76] and the positional shift
by the external electric field [77], respectively. These terms
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reflect the geometric properties of the Bloch electrons (12)
and (13), and thus, they are called the geometric terms in the
following. The geometric terms arise from multiband nature
of electrons, and they can not be determined only by the band
dispersion. On the other hand, the third term of EQMs (11)
is a property of Fermi surfaces and vanishes in insulators
at zero temperature. This term is given by the anisotropy
of the inverse effective mass tensor on Fermi surfaces and
called the Fermi-surface term. In contrast to the geometric
terms, the Fermi-surface term is determined only by the band
dispersion. Each term of the EQMs has a physical meaning,
and the decomposition into the geometric and Fermi-surface
terms (11) is not ambiguous.

In the following sections, we discuss the difference
between iron-based superconductors and cuprate supercon-
ductors from the perspective of the thermodynamic EQMs,
based on the decomposition into the geometric and Fermi-
surface contributions. For more details of Eq. (11), please see
Ref. [70].

IV. THERMODYANMIC EQMS FROM FIRST-PRINCIPLES
CALCULATION

In this section, we calculate and discuss the thermo-
dynamic EQMs using the first-principles calculation. Here,
we focus on three representative high-T; superconductors,
LaFeAsO, FeSe, and La;CuQy,. The first-principles electronic
structure calculations are performed with using the WIEN2k
code [78], and the tight-binding models based on the maxi-
mally localized Wannier functions [50,79] are constructed by
the WANNIER9O0 code [80].

The tight-binding Hamiltonian is represented as

Hipa =Y Y timijk)c), (K)emjo k), (17)

k lm,i,jo

where CzTia (k) (ciis (k)) is the creation (annihilation) operator
of the electrons with wave vector k, orbital /, sublattice i, and
spin o. The matrix elements #;,,;;(k) are given by the Fourier
transform of the hopping integrals, which are obtained from
the WIEN2k code. Here, we neglect the spin-orbit coupling
for simplicity, and evaluate the EQMs per spin. To calcu-
late the EQMs in the nematic phases we take into account
phenomenological molecular fields for the nematic order pa-
rameter. The total Hamiltonian is

H = Hipa + A(T)T, (18)

where A(T) is the order parameter at the temperature 7', and
I" is the molecular field of the bond order, orbital order, and
so on. We specify I" for each compound later. To calculate the
temperature dependence of the EQMs, we assume

~ 0 (T > Ty
A(T) = {Aom (T < Ty,

where T is the phase transition temperature of the nematic
order accompanied by Cs-symmetry breaking. We set Ay =
T; = 0.1, roughly in accordance with the nematic transition
temperatures. Because all materials studied in this paper have
quasi-two-dimensional electronic structures, we ignore the
hopping integral along the z direction. Thus, two-dimensional
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FIG. 2. Fermi surfaces of tetragonal LaFeAsO [(a),(b)] and or-
thorhombic LaFeAsO [(c),(d)]. (a) and (c) the normal state at T =
0.1, where A(T) = 0. (b) and (d) the orbital ordered state at T =
0.01.

multiorbital and multisublattice tight-binding models are an-
alyzed. Two EQMs, namely, Q,>_,» and Q,, can be finite in
two-dimensional systems. In the following, we consider the
nematic phases accompanied by a finite Q,>_,». Note that
0.y = 0 because of the mirror symmetry.

A. LaFeAsO

Here we evaluate the EQMs in LaFeAsO. We construct 10-
orbital tight-binding models for Fe3d electrons. The presence
of two iron atoms in a unit cell doubles the number of orbitals,
as 5 x 2 =10. It has been suggested that the origin of the
nematic order in LaFeAsO is the orbital order of 3d,, and
3d,, electrons of irons [16,18,19]. Thus, the molecular field
is assumed as

P=2" > e io®caiol) = ¢}, ()caio (K)], (20)

k o,i=12

where d.; and d,; denote atomic orbitals.

We examine two crystal structures. One is the tetragonal
crystal with the space group P4/nmm and the other is the
orthorhombic crystal with the space group Cmma. The former
is realized in the high-temperature phase of LaFeAsO, while
the latter emerges below the structural transition temperature
T, ~ 160 K. Lattice parameters are derived from Ref. [2].
Although the structural transition is associated with the ne-
matic order, we independently study the two phenomena to
clarify the origin of the EQMs. The Fermi surfaces in the
orbital-ordered state (normal state) on the tetragonal crystal
lattice are shown in Fig. 2(b) [Fig. 2(a)], indicating sizable
distortion of the Fermi surfaces due to the orbital order. The
same plots for the orthorhombic crystal lattice are shown in
Figs. 2(c) and 2(d). We see that the effects of the orthorhombic
crystal distortion on the Fermi surfaces are not prominent.

We take the unit of energy so that the largest hop-
ping integral of LaFeAsO is #, » = 1, which is the

,xz(yz)dxz(}'z) 1
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dy orbital

L x e T d.,orbital

FIG. 3. Unit cell of LaFeAsO and FeSe. The d,, and d,. orbitals
are illustrated. The x axis is different from the principal X axis of the
crystal by 45°.

nearest-neighbor hopping integral between parallel d,(,.) or-
bitals. The other hopping integrals and temperature are scaled
ast /4. d.-12- The unit cell and the shape of the two orbitals
are illustrated in Fig. 3. Although we may expect a larger
hopping integral of red orbitals, for the 10-orbital models
of 3d electrons on Fe ions, the hopping between the blue
orbitals is larger than that between the red orbitals, since the
hopping through 2p orbitals of As ions is dominant. Thus,
we choose this hopping integral as the unit of energy. We
take the same unit also for FeSe, because the hopping pa-
rameter is not significantly different between the iron-based
superconductors. Note that the axes for orbitals in Fig. 3 are
rotated by 45° from the principal X and Y axes in accordance
with the conventional notation. We adopt the (x, y) axes and
corresponding wave vector (ky, k) for calculating the ther-
modynamic EQMs, although the Fermi surfaces are drawn by
using the (ky, ky ) axes. In this notation a finite EQM Q,2_,» is
induced by the orbital order of d; and d,, orbitals.

The temperature dependencies of the thermodynamic
EQMs in the tetragonal and orthorhombic LaFeAsO are
shown in Fig. 4 and Fig. 5, respectively. We show the contri-
butions from the geometric term and the Fermi-surface term
by blue lines and red lines, respectively. Total thermodynamic
EQMs are shown by yellow lines. The quantities are indicated
by the same color and symbols in all later results.

In both tetragonal and orthorhombic structures, the geo-
metric term is dominant for the EQMs. Thus, the EQM in the
nematic phase of LaFeAsO mainly has a geometric origin.
Comparing the results for the tetragonal and orthorhombic
crystals, we notice the additional contribution to the thermo-
dynamic EQMs from the orthorhombic crystal deformation.
We see sizable EQMs at T = 0.1 in Fig. 5, where A(T) = 0.

Here we show that the dominant geometric origin of the
EQMs is a unique property of LaFeAsO by comparing the 10-
orbital model from first-principles with a toy model. Two of
us previously calculated the thermodynamic EQMs [70] using
a toy model constructed for only the d,. and d,, orbitals [81].
The geometric term with a geometric origin is much larger
in the 10-orbital model than the toy model. This is because
the geometric term is enhanced by the band degeneracy. To

0.006 T T T
geometric term
0.005 - Fermi-surface term B
Q2

0.004 - s 1

0.003 - N
R
S 0.002 - N
<

0.001 - n

0k
-0.001 - u
-0.002 ‘ : . ‘
0 0.02 0.04 0.06 0.08 0.1

T

FIG. 4. Temperature dependence of the thermodynamic EQM
Q.2_,» in the tetragonal LaFeAsO. We show the contributions from
the geometric term and the Fermi-surface term by circles with blue
line and squares with red line, respectively. The total EQM is shown
by triangles with yellow line.

see this we show the momentum-resolved geometric term in
Fig. 6. Dominant contributions come from the k points near
the Fermi surfaces. Thus, in LaFeAsO, the geometrically non-
trivial property of wave functions due to the band degeneracy
around the Fermi surfaces gives rise to the sizable geometric
term (see also Appendix A). The EQMs from the momentum
near the I' and M points are plotted in Fig. 7. Figures 7(a) and
7(b) show the EQM arising from the momentum [k|, |k;| <
7 /3 and that from |k, — 7|, |k, — 7| < 7 /3, respectively. As
shown in Figs. 6 and 7, the main contribution comes from
the Fermi surfaces around the M point. On the other hand,
the degenerate band structure is too simplified in the toy
model, and in particular, the contribution from the momentum
near the M point is almost overlooked. While the electron
and hole Fermi surfaces are additive for the geometric term,
the Fermi-surface term is partially canceled. Given that the
multiple band degeneracy near the Fermi surfaces is a unique
property of LaFeAsO, the geometric origin of the EQM is
also regarded as a characteristic property of LaFeAsO. To
support this argument, we calculate the chemical potential
dependence of the EQMs in the 10-orbital model and find
that the Fermi-surface term is comparable or larger than the

0.012 T T T
geometric term
0.01 - Fermi-surface term 7
Q-
0.008 - > N
0.006 - N
o
oL 0.004 -
o4
0.002 - 1
0 a
-0.002 T
-0.004 ‘ . . ‘
0 0.02 0.04 0.06 0.08 0.1
T

FIG. 5. Thermodynamic EQM Q,»_,» in the orthorhombic
LaFeAsO.
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0.00035

i

—T

ky

FIG. 6. geometric term of the tetragonal LaFeAsO from each k
points. We set T = 0.01. Large contributions from the momentum
near the Fermi surfaces around the I' = (0, 0) and M = (7, 7 ) points
are observed.

geometric term in most cases except for the realistic parameter
of LaFeAsO (see Appendix B).

Note that the geometrical origin of the EQMs is not
a unique consequence of the orbital order. Indeed, the or-
thorhombic lattice distortion causes not only the orbital
polarization but also the bond anisotropy, and the magnitude
of the bond order is larger than that of the orbital order. We see
a sizable geometric term due to the lattice distortion (Fig. 5 at
T = 0.1), which is much larger than the Fermi-surface term.

B. FeSe

Conducting a first-principles calculation for FeSe, we con-
struct the 10-orbital tight-binding model similar to LaFeAsO.
Lattice parameters given in Ref. [5] are adopted, and the space
group is P4/nmm. It is known that in FeSe tiny Fermi sur-
faces obtained by angle-resolved photoemission spectroscopy
(ARPES) measurements [82,83] are not reproduced by the
first-principle calculation: larger Fermi surfaces and an extra
Fermi surface of the d,, orbital appear. To reproduce the
experimentally observed Fermi surfaces of FeSe, we take
into account additional hopping parameters in addition to
those given by the WIEN2k code, in a similar manner to
Refs. [71,84,85] (see Appendix. C for details). The additional
hopping parameters may stem from the self-energy correction
[86]. Different from LaFeAsO, sign reversal of the orbital
polarization in the momentum space between the I' and M
points has been observed by ARPES [82,83,87-91] for FeSe
and studied theoretically [71]. To reproduce this property of
the nematic order, we take into account the molecular fields of
the bond order in addition to the orbital order (see Appendix
D for details). The total molecular field is given by

I' =Tow + Tbonds (21)

Ton=)_ Y [ch ia®Cauio ) = ] i, K)cais ()], (22)

k o,i=1,2

k, — k, k, + k,
Thond = ZZ(cos Y 5 —cos ’—; )
X

x> [eh 1o ®)cans () + ¢y (k)ca 10 ()], (23)

o,l=xz,yz

The Fermi surfaces of the 10-orbital model with addi-
tional hopping parameters and nematic order parameter A(7")
are shown in Fig. 8. The Fermi surfaces are distorted with
growing the nematic order. In the low temperature region
[Fig. 8(d)], one Fermi surface near the I' point disappears
owing to the orbital polarization, consistent with experiments
[11]. The disappearance of the Fermi surface is related to
the change in the geometric term of the EQM that will be
shown below. Note that the shape of the remaining Fermi
surfaces in Fig. 8(d) is slightly different from what observed
in the experiment since we do not take into account a weak
spin-orbit coupling [71]. For a remark, we need to calculate
the chemical potential at each temperature T to keep the
particle number and reproduce the disappearance of the Fermi
surface.

The EQM Q,._,» in FeSe is shown in Fig. 9. At low
temperatures, the geometric term with a geometric origin is
also dominant in FeSe. In contrast to LaFe AsO, the geometric
term is negative. This contribution mainly comes from the
electronic states near the I' point as we show Fig. 10. We
see the negative and dominant contribution to the geometric
term from near the I" point and the positive contribution from
near the M point. As for the Fermi-surface term, Fig. 10 also
shows that the dominant contribution comes from near the I'
point.

For more details, the geometric term contributions from
each k points at T =0.02 and 7 = 0.01 are shown in
Figs. 11(a), 11(b), and 11(c) respectively. The opposite con-
tribution from the I' and M points is revealed, consistent
with Fig. 10. Furthermore, we see a change in the geometric
term arising from near the I point between 7 = 0.02 and
T = 0.01, while that from the M point is almost temperature
independent in this region. This change is caused by the dis-
appearance of a Fermi surface discussed above. In Fig. 11(c),
we see a large contribution, which is illustrated by white color,
from the momentum around which the Lifshitz transition oc-
curs.

Finally, we discuss the similarities and differences be-
tween LaFeAsO and FeSe. From the results, we find that
the geometric term with geometric origin is dominant in the
thermodynamic EQM of FeSe as well as of LaFeAsO. This
finding implies that the geometrically nontrivial properties of
wave functions are ubiquitous in iron-based superconductors.
Because the geometric properties are owing to the multiorbital
and multiband structure, the band degeneracy naturally plays
important roles for the EQM as well as for the nematic order
and superconductivity. On the other hand, when we look at
the details, the sign of the EQM is opposite between FeSe and
LaFeAsO, and the momentum-resolved EQM shows different
structures. Thus we need a precise model taking account of
the realistic electronic structure for quantifying the EQMs of
nematic phases.

We would like to stress the usefulness of the thermo-
dynamic formulation for the EQMs. By the thermodynamic
EQMs, the nematic order can be quantified in a unified way,
even when not only the electronic structures but also the
nematic order parameters are different between the materials
as in the cases of LaFeAsO and FeSe. In this way, thermo-
dynamic EQMs is complementary to the microscopic nematic
order parameters.
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ky, k, < 4m /3. Not only the Fermi-surface term but also the geometric term mainly come from the momentum near the Fermi surfaces (see

also Fig. 6).

C. Cuprate superconductors

To illuminate the unique properties of iron-based supercon-
ductors, that is, multiband structure and resulting geometric
origin of the EQM, we here calculate the thermodynamic
EQM of cuprate superconductors for a comparison. For the
nematic order in cuprate superconductors, we consider the
d,>_,»-wave bond order studied extensively [28-39]. For a
comparison, the orbital order of O2p, and O2p, orbitals
is also studied later. Evaluation of translation-symmetry-
breaking order, such as the CDW and PDW order, is left for
future studies.

For the study of cuprate superconductors, we construct
the 17-orbital tight-binding model, which consists of the
3d orbitals of coppers and the 2p orbitals of oxygens in a
unit cell, using the WIEN2k and Wannier90 code. The space
group is /4/mmm and lattice parameters are adopted from
Ref. [92] at T =295K. The tight-binding parameters are
derived for the representative mother compound La,CuQy.
Although La;CuQy is a Mott insulator and the nematic order

@" P ' 4 ® " ' o

o | @ J o L @ ]
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ky

© " [ ' 0 @ " ' )
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14 0 n - 0 hid

kyx

FIG. 8. Fermi surfaces of FeSe at (a) T = 0.1, (b) T = 0.05,
(¢) T =0.02, and (d) T = 0.01. (a) is the normal state, while (b)—
(d) are the nematic states with finite A(T).

occurs by hole doping [26,27], we adopt the half-filling model
with n = 5.0, since the dependence on the carrier density is
negligible. The model takes into account four oxygen ions
and one copper ion in the unit cell. Thus, creation operators
of the 2p electrons have index for the sublattice. The two
oxygens are located on the CuO, plane, while the other two
are apical oxygens. We set the unit of energy so that the largest
nearest-neighbor d-p hopping #4, ,p, is unity.

As for the nematic order parameter, the molecular field of
the d,>_,>-wave bond order is given by

I'=>"%"(cosk —cos ky)cj,xzw(k)cdxzw(k). (24)
k o

For later comparison, we also examine the p-orbital order
whose molecular field is written as

=" [chi®cpiol) —c} i H)epio K)].

k i=1.2

(25)

The index i = 1, 2 indicates the oxygens on the CuO; plane.
Figure 12 shows distortion of the Fermi surface due to the ne-
matic order. It is significant in the bond-ordered state, because
the electronic states near the Fermi level mainly consist of the
d,>_» orbital, although it is hybridized with the p orbitals.
The thermodynamic EQM induced by the bond order is
shown in Fig. 13. We see that the Fermi-surface term is
dominant in contrast to the results for the iron-based super-
conductors. Unlike the iron-based superconductors, the band

0.02 T T T
geometric term
0.01 - Fermi-surface term T
Q.
ol y’
-0.01 |- =
R
N, -0.02 - B
=
<
-0.03 - 1
0.04 -
-0.05 - B
-0.06 1 | 1 Il
0 0.02 0.04 0.06 0.08 0.1
T
FIG. 9. Thermodynamic EQM Q,._,» in FeSe.
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2_,2 in FeSe from (a) —7 /3 < ky, k, < /3 and (b) 27 /3 < ky, k, < 47 /3. Both

geometric and Fermi-surface terms mainly originate from the momentum near the Fermi surfaces (see also Fig. 11).

near the Fermi level is isolated from others, although the
hybridized d-p orbital forms the Fermi surface. Comparison
between the iron-based and cuprate superconductors implies
a unique property of the former from the viewpoint of the
EQM; the band degeneracy near the Fermi level gives rise to
geometrically nontrivial properties that lead to the dominant
geometric term of the EQM. We would like to stress that
the difference mainly comes from the underlying electronic
structure and not from the character of nematic order pa-
rameters. Indeed, the orbital order also induces the dominant
Fermi-surface term in cuprate superconductors, as we see in
Fig. 14.

In Appendix E, we show the qualitatively same results
for the three-orbital d-p model, which has been extensively
analyzed in the previous studies of cuprate superconductors.
Thus, just increasing the number of orbitals does not enhance
the geometric term. The band degeneracy near the Fermi
surface is an essential condition for a large geometric term.
Comparison between the d,»_,.-wave bond order and the p-
orbital order shows a larger EQM in the former, although we
assume the same energy scale of the order parameters. This

@ 0.002
& 0.0015
0.001
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0
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-0.001
-0.0015

kx

-
4 s

©
/4
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0.0015
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FIG. 11. geometric term of the EQM in FeSe from each k points
for (a) T = 0.02 and (b) T = 0.01. (c) shows an enlarged illustration
of (b) near the I" point. The contribution from near the Fermi surfaces
dominates the geometric term.

is simply because the Fermi-surface term is dominant in both
cases, and because the distortion of the Fermi surfaces is small
in the p-orbital-ordered state.

V. SUMMARY AND DISCUSSION

In this paper, after showing the failure of the EQMs given
by the electromagnetism and Wannier function methods, we
evaluated the thermodynamic EQMs in LaFeAsO, FeSe, and
La,;CuOy using the first-principles calculation and assuming
the candidate nematic order parameters. The thermodynamic
EQMs have been proposed as one of the fundamental quanti-
ties characterizing the properties of C4-symmetry breaking in
the various nematic phases. From the results, we found that
the EQMs in iron-based superconductors have a geometric
origin. This is due to the highly degenerate band structure
near the Fermi level, unique to iron-based superconductors.
In contrast, the EQMs of cuprate superconductors mainly
originate from the distortion of Fermi surfaces. In this case,
the magnitude and sign of the EQMs can be derived from
the band structure, which can be observed by ARPES for

JEANI AN

A DA

(c) ™

-

-T 0 i

FIG. 12. Fermi surface of the 17-orbital model for La,CuQO,.
(a) The normal state at T = 0.1 [A(T) = 0]. (b) The d,2_,.-wave
bond-ordered state at 7 = 0.01. (c) The p-orbital-ordered state at
T =0.01.
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FIG. 13. Thermodynamic EQM in the 17-orbital d-p model for

La,;CuO, with the d,>_,>-wave bond order.

instance: The third term of Eq. (11) gives the EQMs. Thus,
differences between iron-based superconductors and cuprate
superconductors in the nematic phases were elucidated from
the perspective of the EQMs.

In addition to the conceptual meaning characterizing the
C4-symmetry breaking, the EQMs are related to some electric
responses caused by the Cj-symmetry breaking. A ther-
modynamic relation between the EQMs and the electric
susceptibility [70]

00ij(w)
Fm = —Xij»
has been proved for insulators at 7 = 0. This relation implies
that the geometric contribution plays an essential role for the
electric susceptibility in the insulating ground state of iron-
based superconductors’ mother compounds.
There are also indirect relations of the EQMs with some
optical and transport responses. For example, the optical at-
tenuation coefficient is given by [93-95],

(26)

i , dk
Ea{t(a)) =17 #Zm-/ (27T)d gn]m(k)[f(én(k)) - f(em(k))]

x8(en(k) — €,(k) — hw). 27)
Here, g’},/;,l(k) = %(Ai (k)A{;m(k) + c.c.) is the band-resolved

nm

quantum metric, which also appeared in the thermodynamic
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FIG. 14. Thermodynamic EQM in the 17-orbital d-p model for
La,CuO, with the orbital order.
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FIG. 15. Chemical potential dependence of the thermodynamic
EQM in the model for the tetragonal LaFeAsO. We set T = 0.06.

EQMs. The anisotropic optical attenuation caused by the ne-
matic C4-symmetry breaking may be related to the geometric
term of the thermodynamic EQMs. As for the nonlinear op-
tics, the photocurrent responses in time-reversal-symmetric
and PT-symmetric systems have been recently classified, and
the results reveal that the quantum metric is an essential quan-
tity for some photocurrent responses, such as shift current,
magnetic injection current, and gyration current [96,97]. In
addition to these relationship between the geometric term and
optical responses, we already know the close relationship be-
tween the Fermi-surface term and the dc electric conductivity.
For example, the Drude term is determined by the inverse
mass tensor. Thus, the EQMs decomposed into the geometric
term and the Fermi-surface term provide indications for exper-
iments of optical and transport responses. From this point of
view, elucidation of linear and nonlinear optical responses in
iron-based superconductors may be an intriguing future issue.
For the photocurrent generation, the space inversion symme-
try must be broken. Indeed, the inversion symmetry is broken
in some iron-based superconductors, such as FeSe/SrTiO3
[98-104] and heavily-doped LaFeAsO [105]. Furthermore,
the 112-type compounds such as Ca,La;_,FeAs, have a non-
centrosymmetric crystal structure, and the second-harmonic
generation was experimentally observed [106]. We leave an
analysis of this compound as an attractive future issue be-
cause the crystal symmetry is significantly different from the
systems in this work. The crystal point group is C,, and the
structural transition reduces it to C;. Such low symmetry
allows many components of the EQMs.
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APPENDIX A: GEOMETRIC CONTRIBUTION TO THERMODYNAMIC EQMS ENHANCED BY BAND DEGENERACY

In the main text, we have shown that the band degeneracy enhances the geometric contribution to the thermodynamic EQM:s.
To show this explicitly, we discuss an alternative expression of Eq. (11):

i j 1- 8nm (Snm 1
/ @nw V“““*“)+°°ﬂkam—fwmvfmm’+Tif“““ﬁ’ (AD
_ f(en(k)) + fen(k)) 1 &k)
fnm(") - 2 - 6,1(k) _ Em(k) @ dEf(E), (AZ)

where Vi (k) =

nm

(un (k)| O, H () | (k). Since Fyy (k) =

O(1), the contribution from the non-degenerate bands is suppressed

by the factor {e, (k) — €,,(k)} 2. For nearly degenerate bands, |e,(k) — €,,(k)| < T, Eq. (A2) is approximated as

f(en (k) + f(€m(k))

1 In(1 + eP«®y) —In(1 +

eﬂem(k))

]:nm(k) = ) - E

—ﬂ(mmmm—wwﬂ (A3)

En(k) - em(k)

Because the expression contains the factor f” (¢, (k)), we notice that a large contribution is given by the momentum near the
Fermi surface. From these discussions, we understand that the geometric contributions to the EQMs are enhanced by the band
degeneracy near the Fermi level. When all the bands are nearly degenerate, we have

1 i :
0 = fz Y Z [V, (V] (k) + c.c.] [(1 =S5

f”(ém(k))

WWUMﬂ (A4)

In this case, the geometric term naturally has a similar form to the Fermi-surface term. In the realistic situation, the magnitude
of the geometric term depends on the details of the electronic structure.

APPENDIX B: CHEMICAL POTENTIAL DEPENDENCE OF
THE EQM IN THE 10-ORBITAL MODEL FOR LaFeAsO

Here we show the thermodynamic EQMs for various
chemical potentials in the model of tetragonal LaFeAsO. Al-
though in the main text the chemical potential is determined
so that the particle number is 6.0, we change the chemical
potential with keeping the other parameters. Figure 15 is the
result at 7 = 0.06. It is shown that the geometric contribution
is dominant only in a small part of the parameter range.
Thus, we consider that the dominant geometric contribution
is a unique property of the iron-based superconductors for
particle numbers around 6.0. Actually, the nematic order of
LaFeAsO;_,F, has been observed in the region, 6.0 < n <
6.05. We confirmed that the geometric term is dominant in
this region.

kx kx

FIG. 16. Momentum dependence of the energy shift due to the
molecular field for FeSe, Eqgs. (21)—(23), in the unfolded BZ. (a) and
(b) show §E i (k) and SE d‘;:f“‘ (k), respectively. Red, blue, and white
represent positive, negative, and zero value, respectively. The black
lines show the BZ of the two-sublattice model. I" and M are the points
of the two-sublattice model.

(

APPENDIX C: TIGHT-BINDING MODEL REPRODUCING
FERMI SURFACES OF FeSe

To reproduce the Fermi surfaces of FeSe observed in ex-
periments, we slightly modify the hopping parameters given
by the first-principles calculation [71,84,85]. For this pur-
pose, the energies of the dy-orbital band and the d,.,.-orbital
band are shifted by (—0.28, 0, 0.20) and (—0.27, 0, 0.13) at
(", X, M) points in the folded Brillouin zone, respectively. For
this energy shift, the hopping parameters are changed so as to
satisfy

SENT) = 819" 448t + 481)™, (C1)
SE/(X) = str e, (C2)

8E1(M) _ Ston site 4(Stll}rm, (C3)

where we represent the energy shifts of the /-orbital band
at I', X, and M points as §E;(I"), SE;(X), and S6E;(M),
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FIG. 17. Thermodynamic EQMs in the 3-orbital d-p model for
cuprate superconductors with bond order.
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respectively. The modification in the intra-orbital hopping
integral is represented by §t;;, and “on-sine”, “nn”, and “nnn”
denote the on-sine, first nearest-neighbor, and second nearest-
neighbor hoppings, respectively. In the 10-orbital model with
two sublattices in the unit cell, 6" (82;"") is the intersublattice
(intrasublattice) hopping. We also tune the chemical potential
to keep the filling n = 6. Using these parameters, we obtain
the Fermi surfaces in Fig. 8(a).

APPENDIX D: SIGN-REVERSING ORBITAL
POLARIZATION IN FeSe

ARPES measurements clarified sign-reversing orbital po-
larization in FeSe [82,83,87-91], different from LaFeAsO.
Thus, we introduce the molecular field, Egs. (21)—(23), yield-
ing the orbital polarization with opposite sign between the
I' and M points. To understand the sign reversal, we here
consider the unfolded BZ, for simplicity. By Eqs. (21)—(23),
the molecular field gives the momentum-dependent energy
shift of the d,; and d,, orbitals as

1
SE ™ (k) = 2A(T)( cos ky — cos k + 5), (DD

SE;" (k) = 2A(T)(cos ky — cos ky — %) (D2)

The momentum dependence in the energy shift is shown
in Fig. 16, which resembles a theoretical result for the
sign-reversing orbital polarization [71]. In the folded Bril-
louin zone, k = (7,0) and (0, ) are equivalent (M point).
Therefore, the energy splitting between the orbitals is
SE“em(O n)—éE“em(n 0) at the M point, while it is
SE“""“(O O)—SE““"“(O 0) at the I' point. As shown in
Fig. 16, the sign is opposite between the I' and M points,
consistent with the sing-reversing orbital polarization in FeSe
[82,83,87-91].
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FIG. 18. Thermodynamic EQMs in the 3-orbital d-p model for
cuprate superconductors with orbital order.

APPENDIX E: EQM IN THREE-ORBITAL d-p MODEL FOR
CUPRATE SUPERCONDUCTORS

Here, we show the EQM in the 3-orbital d-p model, which
has been studied for cuprate superconductors [107-109]. The
model takes into account the d,>_,»-orbital of coppers and the
px and p, orbitals of oxygens. For comparison with the 17-
orbital model studied in the main text, we assume the half
filing. The hopping parameters and the molecular field are the
same as those in the 17-orbital model. In the cuprates, there
is no band degeneracy near the Fermi surface, and the low-
energy electron states are appropriately described by the 3-
orbital d-p model. Thus, when the EQMs are mainly given
by the Fermi-surface term, we expect qualitatively the same
results as the 17-orbital model.

Indeed, the thermodynamic EQMs show the similar behav-
iors to those in the 17-orbital model, as shown in Figs. 17
and 18. In both cases of the d,>_,»-wave bond order and the
p-orbital order, the Fermi-surface term is dominant. The mag-
nitude of the EQMs is larger in the bond-ordered state than the
orbital-ordered state, like in the 17-orbital model. On the other
hand, we see differences in the geometric term between the
3-orbital and 17-orbital d-p models: even the sign is opposite
in the orbital-ordered state. This implies the importance of
the realistic multiorbital model for the evaluation of geometric
terms.

[1] C. dela Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff, II, J. L.
Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and
P. Dai, Nature (London) 453, 899 (2008).

[2] T. Nomura, S. W. Kim, Y. Kamihara, M. Hirano, P. V. Sushko,
K. Kato, M. Takata, A. L. Shluger, and H. Hosono, Supercond.
Sci. Technol. 21, 125028 (2008).

[3] F-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang,
P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and
M.-K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008).

[4] S. Margadonna, Y. Takabayashi, M. T. McDonald, K.
Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E.
Suard, and K. Prassides, Chem. Commun. 2008, 5607 (2008).

[5]1 A. E. Bohmer, F. Hardy, F. Eilers, D. Ernst, P. Adelmann,
P. Schweiss, T. Wolf, and C. Meingast, Phys. Rev. B 87,
180505(R) (2013).

[6] M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes,
and R. Pottgen, Phys. Rev. B 78, 020503(R) (2008).

[7]1 Q. Huang, Y. Qiu, W. Bao, M. A. Green, J. W. Lynn, Y. C.
Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett.
101, 257003 (2008).

[8] K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78,
062001 (2009).

[9] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

[10] P. Dai, Rev. Mod. Phys. 87, 855 (2015).

[11] T. Shibauchi, T. Hanaguri, and Y. Matsuda, J. Phys. Soc. Jpn.
89, 102002 (2020).

[12] L. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys.
Rev. Lett. 101, 057003 (2008).

[13] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani,
and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).

245114-11


https://doi.org/10.1038/nature07057
https://doi.org/10.1088/0953-2048/21/12/125028
https://doi.org/10.1073/pnas.0807325105
https://doi.org/10.1039/B813076K
https://doi.org/10.1103/PhysRevB.87.180505
https://doi.org/10.1103/PhysRevB.78.020503
https://doi.org/10.1103/PhysRevLett.101.257003
https://doi.org/10.1143/JPSJ.78.062001
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1103/RevModPhys.87.855
https://doi.org/10.7566/JPSJ.89.102002
https://doi.org/10.1103/PhysRevLett.101.057003
https://doi.org/10.1103/PhysRevLett.101.087004

KITAMURA, ISHIZUKA, DAIDO, AND YANASE

PHYSICAL REVIEW B 103, 245114 (2021)

[14] H. Ikeda, J. Phys. Soc. Jpn. 77, 123707 (2008).

[15] X. Wang, Q. Liu, Y. Lv, W. Gao, L. Yang, R. Yu, F. Li, and C.
Jin, Solid State Commun. 148, 538 (2008).

[16] Y. Yanagi, Y. Yamakawa, N. Adachi, and Y. Ono, J. Phys. Soc.
Jpn. 79, 123707 (2010).

[17] R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig,
Phys. Rev. Lett. 107, 117001 (2011).

[18] H. Kontani, T. Saito, and S. Onari, Phys. Rev. B 84, 024528
(2011).

[19] S. Onari and H. Kontani, Phys. Rev. Lett. 109, 137001 (2012).

[20] R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P.
Chandra, V. Keppens, D. Mandrus, M. A. McGuire, B. C.
Sales, A. S. Sefat, and J. Schmalian, Phys. Rev. Lett. 105,
157003 (2010).

[21] R. M. Fernandes and J. Schmalian, Supercond. Sci. Technol.
25, 084005 (2012).

[22] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat.
Phys. 10, 97 (2014).

[23] T. Yamada, J. Ishizuka, and Y. Ono, J. Phys. Soc. Jpn. 83,
043704 (2014).

[24] S. Mukherjee, A. Kreisel, P. J. Hirschfeld, and B. M.
Andersen, Phys. Rev. Lett. 115, 026402 (2015).

[25] Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017
(2016).

[26] R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choini¢re, F.
Laliberté, N. Doiron-Leyraud, B. J. Ramshaw, R. Liang, D. A.
Bonn, W. N. Hardy, and L. Taillefer, Nature (London) 463,
519 (2010).

[27] Y. Sato, S. Kasahara, H. Murayama, Y. Kasahara, E.-G. Moon,
T. Nishizaki, T. Loew, J. Porras, B. Keimer, T. Shibauchi, and
Y. Matsuda, Nat. Phys. 13, 1074 (2017).

[28] H. Yamase and H. Kohno, J. Phys. Soc. Jpn. 69, 2151 (2000).

[29] C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162
(2000).

[30] C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M. Rice,
Phys. Rev. B 63, 035109 (2001).

[31] I. Khavkine, C.-H. Chung, V. Oganesyan, and H.-Y. Kee, Phys.
Rev. B 70, 155110 (2004).

[32] E. Berg, E. Fradkin, S. A. Kivelson, and J. M. Tranquada, New
J. Phys. 11, 115004 (2009).

[33] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.
Schonhammer, Rev. Mod. Phys. 84, 299 (2012).

[34] S. Bulut, W. A. Atkinson, and A. P. Kampf, Phys. Rev. B 88,
155132 (2013).

[35] S. Sachdev and R. La Placa, Phys. Rev. Lett. 111, 027202
(2013).

[36] Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149 (2014).

[37] Y. Yamakawa and H. Kontani, Phys. Rev. Lett. 114, 257001
(2015).

[38] K. Kawaguchi, Y. Yamakawa, M. Tsuchiizu, and H. Kontani,
J. Phys. Soc. Jpn. 86, 063707 (2017).

[39] M. Tsuchiizu, K. Kawaguchi, Y. Yamakawa, and H. Kontani,
Phys. Rev. B 97, 165131 (2018).

[40] 1. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).

[41] H. J. Schulz, Phys. Rev. B 39, 2940 (1989).

[42] F. C. Zhang, Phys. Rev. Lett. 64, 974 (1990).

[43] C. M. Varma, Phys. Rev. B 55, 14554 (1997).

[44] P. A. Lee, Phys. Rev. X 4, 031017 (2014).

[45] D.F. Agterberg, J. S. Davis, S. D. Edkins, E. Fradkin, D. J. Van
Harlingen, S. A. Kivelson, P. A. Lee, L. Radzihovsky, J. M.

Tranquada, and Y. Wang, Annu. Rev. Condens. Matter Phys.
11, 231 (2020).

[46] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1998), 3rd ed.

[47] D. Vanderbilt, Berry Phases in Electronic Structure Theory:
Electric Polarization, Orbital Magnetization and Topological
Insulators (Cambridge University Press, Cambridge, 2018).

[48] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(1993).

[49] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442
(1993).

[50] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847
(1997).

[51] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[52] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science
357, 61 (2017).

[53] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys.
Rev. B 96, 245115 (2017).

[54] L. He, Z. Addison, E. J. Mele, and B. Zhen, Nat. Commun. 11,
3119 (2020).

[55] M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).

[56] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T.
Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and
R. Thomale, Nat. Phys. 14, 925 (2018).

[57] M. Serra-Garcia, V. Peri, R. Siisstrunk, O. R. Bilal, T. Larsen,
L. G. Villanueva, and S. D. Huber, Nature (London) 555, 342
(2018).

[58] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402
(2017).

[59] S. Franca, J. van den Brink, and I. C. Fulga, Phys. Rev. B 98,
201114(R) (2018).

[60] M. Hirayama, R. Takahashi, S. Matsuishi, H. Hosono, and S.
Murakami, Phys. Rev. Research 2, 043131 (2020).

[61] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
Nature (London) 555, 346 (2018).

[62] H. Watanabe and S. Ono, Phys. Rev. B 102, 165120 (2020).

[63] F. Schindler, M. Brzezinska, W. A. Benalcazar, M. Iraola, A.
Bouhon, S. S. Tsirkin, M. G. Vergniory, and T. Neupert, Phys.
Rev. Research 1, 033074 (2019).

[64] W. A. Benalcazar, T. Li, and T. L. Hughes, Phys. Rev. B 99,
245151 (2019).

[65] R. Takahashi, T. Zhang, and S. Murakami, Phys. Rev. B 103,
205123 (2021).

[66] A. Shitade, H. Watanabe, and Y. Yanase, Phys. Rev. B 98,
020407(R) (2018).

[67] A. Shitade, A. Daido, and Y. Yanase, Phys. Rev. B 99, 024404
(2019).

[68] Y. Gao, D. Vanderbilt, and D. Xiao, Phys. Rev. B 97, 134423
(2018).

[69] Y. Gao and D. Xiao, Phys. Rev. B 98, 060402(R) (2018).

[70] A.Daido, A. Shitade, and Y. Yanase, Phys. Rev. B 102, 235149
(2020).

[71] S. Onari, Y. Yamakawa, and H. Kontani, Phys. Rev. Lett. 116,
227001 (2016).

[72] R. Resta, Eur. Phys. J. B 79, 121 (2011).

[73] J. P. Provost and G. Vallee, Commun. Math. Phys. 76, 289
(1980).

[74] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

245114-12


https://doi.org/10.1143/JPSJ.77.123707
https://doi.org/10.1016/j.ssc.2008.09.057
https://doi.org/10.1143/JPSJ.79.123707
https://doi.org/10.1103/PhysRevLett.107.117001
https://doi.org/10.1103/PhysRevB.84.024528
https://doi.org/10.1103/PhysRevLett.109.137001
https://doi.org/10.1103/PhysRevLett.105.157003
https://doi.org/10.1088/0953-2048/25/8/084005
https://doi.org/10.1038/nphys2877
https://doi.org/10.7566/JPSJ.83.043704
https://doi.org/10.1103/PhysRevLett.115.026402
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nphys4205
https://doi.org/10.1143/JPSJ.69.2151
https://doi.org/10.1103/PhysRevLett.85.5162
https://doi.org/10.1103/PhysRevB.63.035109
https://doi.org/10.1103/PhysRevB.70.155110
https://doi.org/10.1088/1367-2630/11/11/115004
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/PhysRevB.88.155132
https://doi.org/10.1103/PhysRevLett.111.027202
https://doi.org/10.1103/PhysRevB.90.035149
https://doi.org/10.1103/PhysRevLett.114.257001
https://doi.org/10.7566/JPSJ.86.063707
https://doi.org/10.1103/PhysRevB.97.165131
https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevB.39.2940
https://doi.org/10.1103/PhysRevLett.64.974
https://doi.org/10.1103/PhysRevB.55.14554
https://doi.org/10.1103/PhysRevX.4.031017
https://doi.org/10.1146/annurev-conmatphys-031119-050711
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1038/s41467-020-16916-z
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/nature25156
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevResearch.2.043131
https://doi.org/10.1038/nature25777
https://doi.org/10.1103/PhysRevB.102.165120
https://doi.org/10.1103/PhysRevResearch.1.033074
https://doi.org/10.1103/PhysRevB.99.245151
https://doi.org/10.1103/PhysRevB.103.205123
https://doi.org/10.1103/PhysRevB.98.020407
https://doi.org/10.1103/PhysRevB.99.024404
https://doi.org/10.1103/PhysRevB.97.134423
https://doi.org/10.1103/PhysRevB.98.060402
https://doi.org/10.1103/PhysRevB.102.235149
https://doi.org/10.1103/PhysRevLett.116.227001
https://doi.org/10.1140/epjb/e2010-10874-4
https://doi.org/10.1007/BF02193559
https://doi.org/10.1103/RevModPhys.82.1959

THERMODYNAMIC ELECTRIC QUADRUPOLE MOMENTS OF ...

PHYSICAL REVIEW B 103, 245114 (2021)

[75] M. F. Lapa and T. L. Hughes, Phys. Rev. B 99, 121111(R)
(2019).

[76] Y. Gao and D. Xiao, Phys. Rev. Lett. 122, 227402 (2019).

[77] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 112, 166601
(2014).

[78] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz,
R. Laskowsk, F. Tran, L. Marks, and L. Marks, WIEN2k: An
Augmented Plane Wave Plus Local Orbitals Program for Cal-
culating Crystal Properties (Vienna University of Technology,
Austria, 2019).

[79] 1. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,
035109 (2001).

[80] A. A. Mostofi, J. R. Yates, Y.-S. Lee, 1. Souza, D. Vanderbilt,
and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

[81] S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C.
Zhang, Phys. Rev. B 77, 220503(R) (2008).

[82] J. Maletz, V. B. Zabolotnyy, D. V. Evtushinsky, S.
Thirupathaiah, A. U. B. Wolter, L. Harnagea, A. N. Yaresko,
A. N. Vasiliev, D. A. Chareev, A. E. Bohmer, F. Hardy, T.
Wolf, C. Meingast, E. D. L. Rienks, B. Biichner, and S. V.
Borisenko, Phys. Rev. B 89, 220506(R) (2014).

[83] Y. Zhang, M. Yi, Z.-K. Liu, W. Li, J. J. Lee, R. G. Moore, M.
Hashimoto, M. Nakajima, H. Eisaki, S.-K. Mo, Z. Hussain,
T. P. Devereaux, Z.-X. Shen, and D. H. Lu, Phys. Rev. B 94,
115153 (2016).

[84] Y. Yamakawa, S. Onari, and H. Kontani, Phys. Rev. X 6,
021032 (2016).

[85] J. Ishizuka, T. Yamada, Y. Yanagi, and Y. Ono, J. Phys. Soc.
Jpn. 87, 014705 (2018).

[86] T. Gorni, P. Villar Arribi, M. Casula, and L. de’ Medici,
arXiv:2101.01692.

[87] K. Nakayama, Y. Miyata, G. N. Phan, T. Sato, Y. Tanabe, T.
Urata, K. Tanigaki, and T. Takahashi, Phys. Rev. Lett. 113,
237001 (2014).

[88] T. Shimojima, Y. Suzuki, T. Sonobe, A. Nakamura, M. Sakano,
J. Omachi, K. Yoshioka, M. Kuwata-Gonokami, K. Ono, H.
Kumigashira, A. E. Bohmer, F. Hardy, T. Wolf, C. Meingast,
H. v. Lohneysen, H. Ikeda, and K. Ishizaka, Phys. Rev. B 90,
121111(R) (2014).

[89] Y. Suzuki, T. Shimojima, T. Sonobe, A. Nakamura, M. Sakano,
H. Tsuji, J. Omachi, K. Yoshioka, M. Kuwata-Gonokami,
T. Watashige, R. Kobayashi, S. Kasahara, T. Shibauchi, Y.
Matsuda, Y. Yamakawa, H. Kontani, and K. Ishizaka, Phys.
Rev. B 92, 205117 (2015).

[90] M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies,
A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S.
Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T.
Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).

[91] P. Zhang, T. Qian, P. Richard, X. P. Wang, H. Miao, B. Q. Lv,
B. B. Fu, T. Wolf, C. Meingast, X. X. Wu, Z. Q. Wang, J. P.
Hu, and H. Ding, Phys. Rev. B 91, 214503 (2015).

[92] J. D. Jorgensen, H. B. Schiittler, D. G. Hinks, D. W. Capone
II, K. Zhang, M. B. Brodsky, and D. J. Scalapino, Phys. Rev.
Lett. 58, 1024 (1987).

[93] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337
(2000).

[94] J. Ibafez-Azpiroz, S. S. Tsirkin, and I. Souza, Phys. Rev. B 97,
245143 (2018).

[95] F. Nastos, J. Rioux, M. Strimas-Mackey, B. S. Mendoza, and
J. E. Sipe, Phys. Rev. B 76, 205113 (2007).

[96] H. Watanabe and Y. Yanase, Phys. Rev. X 11, 011001 (2021).

[97] J. Ahn, G.-Y. Guo, and N. Nagaosa, Phys. Rev. X 10, 041041
(2020).

[98] Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. Zhang,
W. Li, H. Ding, Y.-B. Ou, P. Deng, K. Chang, J. Wen, C.-L.
Song, K. He, J.-F. Jia, S.-H. Ji, Y.-Y. Wang, L.-L. Wang, X.
Chen, X.-C. Ma, and Q.-K. Xue, Chin. Phys. Lett. 29, 037402
(2012).

[99] D. Liu, W. Zhang, D. Mou, J. He, Y.-B. Ou, Q.-Y. Wang, Z.
Li, L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu,
G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu et al., Nat.
Commun. 3,931 (2012).

[100] S. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D.
Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu,
B. Xie, and D. Feng, Nat. Mater. 12, 634 (2013).

[101] S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B.
Ou, Q.-Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L.
Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu et al., Nat.
Mater. 12, 605 (2013).

[102] J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y.
Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2015).

[103] Y. Miyata, K. Nakayama, K. Sugawara, T. Sato, and T.
Takahashi, Nat. Mater. 14, 775 (2015).

[104] J. Shiogai, Y. Ito, T. Mitsuhashi, T. Nojima, and A. Tsukazaki,
Nat. Phys. 12, 42 (2016).

[105] M. Hiraishi, S. limura, K. M. Kojima, J. Yamaura, H. Hiraka,
K. Ikeda, P. Miao, Y. Ishikawa, S. Torii, M. Miyazaki, I.
Yamauchi, A. Koda, K. Ishii, M. Yoshida, J. Mizuki, R.
Kadono, R. Kumai, T. Kamiyama, T. Otomo, Y. Murakami
et al., Nat. Phys. 10, 300 (2014).

[106] J. W. Harter, H. Chu, S. Jiang, N. Ni, and D. Hsieh, Phys. Rev.
B 93, 104506 (2016).

[107] J. Luo and N. E. Bickers, Phys. Rev. B 47, 12153 (1993).

[108] S. Koikegami, S. Fujimoto, and K. Yamada, J. Phys. Soc. Jpn.
66, 1438 (1997).

[109] T. Takimoto and T. Moriya, J. Phys. Soc. Jpn. 66, 2459 (1997).

245114-13


https://doi.org/10.1103/PhysRevB.99.121111
https://doi.org/10.1103/PhysRevLett.122.227402
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1103/PhysRevB.77.220503
https://doi.org/10.1103/PhysRevB.89.220506
https://doi.org/10.1103/PhysRevB.94.115153
https://doi.org/10.1103/PhysRevX.6.021032
https://doi.org/10.7566/JPSJ.87.014705
http://arxiv.org/abs/arXiv:2101.01692
https://doi.org/10.1103/PhysRevLett.113.237001
https://doi.org/10.1103/PhysRevB.90.121111
https://doi.org/10.1103/PhysRevB.92.205117
https://doi.org/10.1103/PhysRevB.91.155106
https://doi.org/10.1103/PhysRevB.91.214503
https://doi.org/10.1103/PhysRevLett.58.1024
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevB.97.245143
https://doi.org/10.1103/PhysRevB.76.205113
https://doi.org/10.1103/PhysRevX.11.011001
https://doi.org/10.1103/PhysRevX.10.041041
https://doi.org/10.1088/0256-307X/29/3/037402
https://doi.org/10.1038/ncomms1946
https://doi.org/10.1038/nmat3654
https://doi.org/10.1038/nmat3648
https://doi.org/10.1038/nmat4153
https://doi.org/10.1038/nmat4302
https://doi.org/10.1038/nphys3530
https://doi.org/10.1038/nphys2906
https://doi.org/10.1103/PhysRevB.93.104506
https://doi.org/10.1103/PhysRevB.47.12153
https://doi.org/10.1143/JPSJ.66.1438
https://doi.org/10.1143/JPSJ.66.2459

