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Dynamic transverse magnetic susceptibility in the projector augmented-wave method:
Application to Fe, Ni, and Co
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We present a first principles implementation of the dynamic transverse magnetic susceptibility in the frame-
work of linear response time-dependent density functional theory. The dynamic susceptibility allows one to
obtain the magnon dispersion as well as magnon lifetimes for a particular material, which strongly facilitates
the interpretation of inelastic neutron scattering experiments as well as other spectroscopic techniques. We apply
the method to Fe, Ni, and Co and perform a thorough convergence analysis with respect to the basis set size,
k-point sampling, spectral smearing, and unoccupied bands. In particular, it is shown that while the gap error
(acoustic magnon energy at q = 0) is highly challenging to converge, the spin-wave stiffness and the dispersion
relation itself are much less sensitive to convergence parameters. Our final results agree well with experimentally
extracted magnon dispersion relations except for Ni, where it is well known that the exchange splitting energy is
poorly represented in the local density approximation. We also find good agreement with previous first principles
calculations and explain how differences in the calculated dispersion relations can arise from subtle differences
in computational approaches.
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I. INTRODUCTION

The dynamic transverse magnetic susceptibility is a central
object of interest in the study of magnetic excitations. It is a
fundamental material property giving the induced transverse
magnetization in response to external perturbations such as
transverse magnetic fields. In particular, the susceptibility has
poles at frequencies corresponding to the magnon quasiparti-
cle excitations of the material. Magnons are relevant for both
theoretical development and technological applications. They
have been proposed to play a role in the pairing mechanism
of certain classes of high-temperature superconductors [1,2]
and may possibly be used as a medium for data communi-
cation and processing in future magnonics-based information
technology devices [3]. Moreover, a wide range of thermody-
namical properties, such as the heat capacity and Curie/Néel
temperature, are directly related to the temperature depen-
dence of the susceptibility [4].

Experimentally, the transverse magnetic susceptibility can
be directly probed by, or at least inferred from, a wide range
of different spectroscopic techniques including inelastic neu-
tron scattering (INS) [5,6], spin-polarized electron energy loss
spectroscopy (SPEELS) [7,8], inelastic scanning tunneling
spectroscopy (ISTS) [9–11], and resonant inelastic x-ray spec-
troscopy (RIXS) [12]. From the measured magnon dispersion,
it is possible to extract valuable information about the under-
lying quantum system. The interpretation and analysis needed
to accomplish this often rely on theoretical calculations—
based on either models or a first principles treatment.

From a computational point of view, calculating the
magnon dispersion poses a major challenge due to the many-
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body nature of collective magnetic excitations. For first
principles calculations there essentially exist two different
approaches for obtaining the linear dynamic susceptibility:
(1) many-body perturbation theory where the susceptibility
is obtained by solving a Bethe-Salpeter equation [13–18]
and (2) time-dependent density functional theory (TDDFT)
[19–21], which (although exact in principle) is limited by
approximations for the applied exchange-correlation kernel.
Both of these methods are restricted to T = 0 and thermo-
dynamical properties are currently inaccessible by direct ab
initio methods. Nevertheless, the T = 0 limit of the sus-
ceptibility provides fundamental insight into the magnetic
properties of a given material and one can directly extract the
magnon spectrum from it. In this paper, we present an im-
plementation of the transverse magnetic susceptibility within
linear response time-dependent density functional theory (LR-
TDDFT) [19–22] in the projected augmented wave method
(PAW) [23]. Applying the adiabatic local density approxima-
tion (ALDA) for the exchange-correlation kernel, we study
the magnon spectrum of itinerant ferromagnets iron, nickel,
and cobalt. The extracted magnon dispersions agree well with
experimental results, except for the case of fcc-Ni, where LDA
is known to overestimate the exchange splitting energy by a
factor of two [15].

Through a rigorous convergence analysis, we address some
of the general computational challenges in performing the-
oretical magnon spectroscopy on itinerant ferromagnets. We
neglect spin-obit effects in our calculations, which implies the
existence of a gapless acoustic magnon mode with ωq=0 = 0.
The gapless mode is fundamentally protected by symmetry,
but in a numerical treatment the vanishing gap is not protected
against numerical inconsistencies or general numerical lim-
itations such as truncation of basis sets or electronic bands.
Through a systematic convergence analysis, we pinpoint
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contributions to the gap error from different computational
parameters and show that the problem can be effectively
overcome by applying a gap error correction procedure. This
conclusion validates the common practice in the literature
[24–27]. Furthermore, we discuss the convergence of magnon
modes inside the Stoner continuum, the transverse magnetic
continuum of single-particle excitations. Overlap with the
Stoner continuum gives rise to Landau damping of the col-
lective magnon modes, which manifests itself as a broadening
in the magnon line shape. From a numerical perspective, the
treatment of Landau damped magnons is particularly chal-
lenging as they require a good continuum description of the
low-frequency Stoner excitations. In this regard, we present
an empirical convergence parameter, which directly allows
one to extract the minimal spectral broadening required to
smoothen out the low-frequency Stoner excitations of a given
k-point sampling.

The paper is organized as follows. In Sec. II the dynamic
transverse magnetic susceptibility is formally introduced and
its relation to quasiparticle excitations discussed. The LR-
TDDFT methodology is presented, and it is shown how one
can compute the dynamic transverse magnetic susceptibility
within the ALDA. In Secs. III A–III C the technical details of
the implementation within the PAW method are given, and
in Secs. III D–III G the convergence analysis of the imple-
mentation is provided. The converged transverse magnetic
excitation spectra of bcc-Fe, fcc-Ni, fcc-Co, and hcp-Co
are presented and discussed in Sec. IV. Finally, a summary
and outlook are given in Sec. V. The general theoretical
framework applied throughout the paper is complemented by
Appendix A, which provides a self-contained presentation of
the Kubo theory for spectroscopy in periodic crystals.

II. THEORETICAL MAGNON SPECTROSCOPY

In this section, the fundamentals of theoretical magnon
spectroscopy are presented. The transverse magnetic plane
wave susceptibility is introduced as the central macroscopic
quantity of interest, its connection with magnon quasiparticles
is discussed, and it is shown how to compute it within LR-
TDDFT. Finally, the Goldstone theorem and sum rules are
discussed.

Throughout the main body of the paper, the Born-
Oppenheimer approximation is employed, and only the linear
response in electronic coordinates is considered. Furthermore,
zero temperature is assumed, and contributions from the or-
bital magnetization are neglected.

A. The four-component susceptibility tensor

For an electronic Hamiltonian, Ĥ0, the magnetic response
(neglecting contributions from orbital magnetization) may be
described in terms of the four-component electron density
operator

n̂μ(r) =
∑
s,s′

σ
μ

ss′ ψ̂
†
s (r)ψ̂s′ (r), (1)

with μ ∈ {0, x, y, z}. The index s indicates the spin projection,
↑ or ↓, and σμ = (σ 0, σ x, σ y, σ z ) is composed of the Pauli
matrices augmented by the 2 × 2 identity matrix σ 0. The

electron density degrees of freedom are perturbed by an ex-
ternal (classical) electromagnetic field:

Ĥext (t ) =
∑

μ

∫
dr n̂μ(r)W μ

ext (r, t ), (2a)

(
W μ

ext (r, t )
) = (

V μ
ext (r, t ), Wμ

ext (r, t )
)

= (−eφext (r, t ), μBBext (r, t )), (2b)

where −e is the electron charge, μB is the Bohr magneton,
while φext (r, t ) and Bext (r, t ) are the external scalar poten-
tial and magnetic field, respectively. The response to the
perturbation (2) may be quantified in terms of the change
in four-component density, δnμ(r, t ) = 〈n̂μ(r, t )〉 − 〈n̂μ(r)〉0,
where 〈·〉0 denotes the expectation value with respect to the
unperturbed ground state [see also Eqs. (A1) and (A2)]. To
linear order in the perturbing field, the induced density can be
written formally as

δnμ(r, t ) =
∑

ν

∫ ∞

−∞
dt ′

∫
dr′ χμν (r, r′, t − t ′)W ν

ext (r
′, t ′).

(3)
This equation defines the retarded four-component suscepti-
bility tensor χμν , which fully characterizes the linear response
of the system.

The susceptibility may be calculated from the Kubo for-
mula [Eq. (A3)]:

χμν (r, r′, t − t ′) = − i

h̄
θ (t − t ′)

〈 [
n̂μ

0 (r, t ), n̂ν
0 (r′, t ′)

]〉
0, (4)

in which the four-component density operators carry
the time-dependence of the interaction picture, n̂μ

0 (r, t ) ≡
eiĤ0t/h̄ n̂μ(r) e−iĤ0t/h̄. In the frequency domain, one may ex-
press the susceptibility in terms of the system eigenstates,
Ĥ0|α〉 = Eα|α〉, that is, within the Lehmann representation
[see Eqs. (A4) and (A7)]

χμν (r, r′, ω) = lim
η→0+

∑
α �=α0

[
nμ

0α (r)nν
α0(r′)

h̄ω − (Eα − E0) + ih̄η

− nν
0α (r′)nμ

α0(r)

h̄ω + (Eα − E0) + ih̄η

]
. (5)

Here |α0〉 and E0 denote the ground state and ground state
energy, respectively. Thus, the dynamic four-component sus-
ceptibility tensor is comprised of simple poles at excitation en-
ergies h̄ω = Eα − E0, each weighted by the transition matrix
elements nμ

0α (r) = 〈α0|n̂μ(r)|α〉 and nν
α0(r′) = 〈α|n̂ν (r′)|α0〉.

In order to further illustrate the physics embedded in the
four-component susceptibility tensor, a single frequency com-
ponent is considered, W μ

ext (r, t ) = W μ
ext (r) cos(ω0t ). In this

case, the real and imaginary parts of the dynamic susceptibil-
ity determine the in- and out-of-phase response, respectively
[see Eq. (A15)]:

δnμ(r, t ) =
∑

ν

∫
dr′ {Re[χμν (r, r′, ω0)] cos(ω0t )

+ Im[χμν (r, r′, ω0)] sin(ω0t )}W ν
ext (r

′). (6)

Here it was used that the four-component density opera-
tor is Hermitian, n̂μ(r)† = n̂μ(r), such that χμν (r, r′,−ω) =
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χμν∗(r, r′, ω) [see Eq. (A14)]. The rate of energy absorp-
tion into the system under the perturbation (2) is given by
Q = d〈Ĥ〉/dt , and from (6) it then follows, that only the
out-of-phase response contributes to the energy dissipation on
average [see Eq. (A16)]:

Q̄ = −ω0

2

∑
μ,ν

∫∫
drdr′ W μ

ext (r)

× Im[χμν (r, r′, ω0)]W ν
ext (r

′). (7)

Now, instead of using χμν (r, r′,−ω) = χμν∗(r, r′, ω) to ex-
press the mean rate of energy absorption in terms of the
imaginary part of χμν , one may instead interchange summa-
tion and integration variables, such that it becomes expressed
in terms of the dissipative (anti-symmetric) part instead. This
is advantageous, because the dissipative part of χμν [defined
in Eq. (A5c)] is proportional to the spectral function of in-
duced excitations [see Eqs. (A8) and (A9)]

Sμν (r, r′, ω) ≡ − 1

2π i
[χμν (r, r′, ω) − χνμ(r′, r,−ω)] (8a)

= Aμν (r, r′, ω) − Aνμ(r′, r,−ω), (8b)

where

Aμν (r, r′, ω) ≡
∑
α �=α0

nμ
0α (r)nν

α0(r′) δ(h̄ω − (Eα − E0)). (9)

Using these definitions,

Q̄ = πω0

2

∑
μ,ν

∫∫
dr dr′ W μ

ext (r)Sμν (r, r′, ω0)W ν
ext (r

′). (10)

In this way, Eqs. (8), (9), and (10) comprise the linear response
formulation of the fact, that energy dissipation is directly
governed by the spectrum of induced excitations. This also
illustrates the direct connection to Fermi’s golden rule.

B. The four-component susceptibility tensor
in circular coordinates

In a collinear description, magnons are collective quasi-
particles carrying a unit of spin angular momentum. With the
ground state magnetization aligned along the z-axis (m(r) =
〈n̂z(r)〉0 ez), they are generated by the spin-raising and spin-
lowering operators,

n̂+(r) = 1
2 [n̂x(r) + in̂y(r] = ψ̂

†
↑(r)ψ̂↓(r), (11)

n̂−(r) = 1
2 [n̂x(r) − in̂y(r)] = ψ̂

†
↓(r)ψ̂↑(r), (12)

which flip the spin of a spin-down and a spin-up electron at po-
sition r, respectively. In terms of the external electromagnetic
field, spin-raising and spin-lowering excitations are induced
by the circular components

W ±
ext (r, t ) = W x

ext (r, t ) ± i W y
ext (r, t ), (13)

such that the perturbation from Eq. (2) can be written

Ĥext (t ) =
∫

dr
[
n̂(r)Vext (r, t ) + n̂+(r)W −

ext (r, t )

+ n̂−(r)W +
ext (r, t ) + σ̂ z(r)W z

ext (r, t )
]

=
∫

dr
∑

j

n̂ j (r)W̆ j
ext (r, t ), (14)

where j ∈ {0,+,−, z} and the breve accent is introduced
to reverse the ordering of + and − components (W̆ j ) =
(V,W −,W +,W z ). Using the relations (11) and (12), one may
also write the four-component susceptibility tensor in circu-
lar coordinates, where χ jk is given by the Kubo formula of
Eq. (4). For example, one obtains

χ x0 = χ+0 + χ−0,

χ xx = χ++ + χ+− + χ−+ + χ−−,

χ xy = −iχ++ + iχ+− − iχ−+ + iχ−−,

χ xz = χ+z + χ−z, (15)

where the spatial and temporal arguments have been sup-
pressed. Rewriting Eq. (3) in this manner yields the response
relation in circular coordinates:

δn j (r, t ) =
∑

k

∫ ∞

−∞
dt ′

∫
dr′ χ jk (r, r′, t − t ′)W̆ k

ext (r
′, t ′).

(16)
It should be noted that the circular components satisfy
χ−+(r, r′,−ω) = χ+−∗(r, r′, ω).

If the system is collinear, such that the total electronic
spin projection in the z-direction, Sz, can be taken as a good
quantum number, the products of transition matrix elements

n j
0α (r)nk

α0(r′) = 〈α0|n̂ j (r)|α〉〈α|n̂k (r′)|α0〉 (17)

vanish if n̂ j (r)n̂k (r′) results in a net change of Sz. Conse-
quently, several of the components vanish from the Lehmann
representation (5) for χ jk , and the tensor becomes block diag-
onal:

χ [0,+,−,z] =

⎛
⎜⎜⎜⎝

χ00 0 0 χ0z

0 0 χ+− 0
0 χ−+ 0 0

χ z0 0 0 χ zz

⎞
⎟⎟⎟⎠, (18)

χ [0,x,y,z] =

⎛
⎜⎜⎜⎝

χ00 0 0 χ0z

0 χ+− + χ−+ iχ+− − iχ−+ 0
0 −iχ+− + iχ−+ χ+− + χ−+ 0

χ z0 0 0 χ zz

⎞
⎟⎟⎟⎠.

(19)

Thus, in the collinear case, the transverse magnetic response
is completely decoupled from the longitudinal magnetic re-
sponse, given by χ zz, and the longitudinal dielectric response,
given by χ00:

δn+(r, t ) =
∫ ∞

−∞
dt ′

∫
dr′χ+−(r, r′, t − t ′)W +

ext (r
′, t ′),

(20a)

δn−(r, t ) =
∫ ∞

−∞
dt ′

∫
dr′χ−+(r, r′, t − t ′)W −

ext (r
′, t ′).

(20b)

For a spin-paired (nonmagnetic) collinear ground state,
spin-rotational symmetry implies that χ xx = χ yy = χ zz, but
also that χ xy = χ zx, χ z0 = χ x0 and χ0z = χ0x where all the
latter terms vanish as argued in Eq. (19). Thus, the magnetic
response is fully characterized by χ zz for nonmagnetic sys-
tems [28].
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C. The spectrum of transverse magnetic excitations

In periodic crystals, the linear response of a material may
be characterized by the four-component plane wave suscepti-
bility, which is defined in terms of the lattice Fourier transform
[see Eq. (A28)]:

χ
μν

GG′ (q, ω) ≡
∫∫

dr dr′



e−i(G+q)·rχμν (r, r′, ω)ei(G′+q)·r′

= lim
η→0+

1




∑
α �=α0

[
nμ

0α (G + q)nν
α0(−G′ − q)

h̄ω − (Eα − E0) + ih̄η

− nν
0α (−G′ − q)nμ

α0(G + q)

h̄ω + (Eα − E0) + ih̄η

]
. (21)

Here 
 is the crystal volume, G is a reciprocal lattice vector,
and q is a wave vector within the first Brillouin zone (BZ).
The reciprocal space pair densities nμ

αα′ (G + q) are Fourier
transforms of the spatial pair densities; see Eqs. (A32)–(A35).
The plane wave susceptibility gives the linear order plane
wave response ei([G+q]·r−ωt ) in density component μ to a plane
wave perturbation ei([G′+q]·r−ωt ) in external field component
ν [see Eq. (A31)]. The plane wave response is diagonal in
reduced wave vector q due to the periodicity of the crystal
[see Eq. (A29)].

In analogy with the real space response in Eqs. (8), (9), and
(10), the energy dissipation in periodic crystals is governed
by the dissipative part of χ

μν

GG′ (q, ω), that is, the plane wave
spectrum of induced excitations (A41)

Sμν

GG′ (q, ω) = − 1

2π i

[
χ

μν

GG′ (q, ω) − χ
νμ

−G′−G(−q,−ω)
]

(22a)

= Aμν

GG′ (q, ω) − Aνμ

−G′−G(−q,−ω), (22b)

where

Aμν

GG′ (q, ω) ≡ 1




∑
α �=α0

nμ
0α (G + q)nν

α0(−G′ − q)

× δ(h̄ω − (Eα − E0)). (23)

For the reciprocal space pair densities nμ
0α (G + q) to be

nonzero, it is necessary that qα0 = q [see Eq. (A34)]. Thus,
only excited states with a difference in crystal momentum
h̄q with respect to the ground state have finite weight in the
spectral function (23).

Equations (21), (22), and (23) also apply to the suscepti-
bility tensor in circular coordinates, χ jk . Because the spin-flip
densities n̂+(r) and n̂−(r) are Hermitian conjugates, it follows
that χ+−∗

GG′ (q, ω) = χ−+
−G−G′ (−q,−ω) and consequently, the

dissipative parts of χ±∓ are also the imaginary parts along
the diagonal:

S+−
G (q, ω) ≡ S+−

GG (q, ω) = − 1

π
Im[χ+−

GG (q, ω)]

= A−
G(q, ω) − A+

−G(−q,−ω), (24a)

S−+
G (q, ω) = A+

G(q, ω) − A−
−G(−q,−ω), (24b)

where the short-hand notation A∓
G(q, ω) ≡ A±∓

GG(q, ω) has
been introduced. From Eq. (23) it is clear that A+

G(q, ω)
and A−

G(q, ω) are the spectral functions for spin-raising and
spin-lowering magnetic excitations, respectively. These exci-
tations may be associated with quasiparticles of energy h̄ω,

crystal momentum h̄q, and spin projections ±h̄. Depend-
ing on the character of the excitations, the quasiparticles
are either identified as collective magnon quasiparticles, as
single-particle electron-hole (Stoner) pairs, or something in
between. Thus, for a ferromagnetic material assumed magne-
tized along the z-direction, one may read off the full spectrum
of magnon excitations from the spectral function S+−

G (q, ω),
with majority-to-minority magnons at positive frequencies
and minority-to-majority magnons at negative frequencies.

Finally, the transverse magnetic excitation spectrum does
not depend on the reduced wave vector q only, but also on
the reciprocal lattice vector G. The spin-flip pair densities in
Eq. (23) represent the local field components of the change
in spin orientation from the ground state to the excited state
in question. Therefore, different excited states may be visible
for different choices of G. As an example, the macroscopic
(unit-cell averaged) G = 0 component represents a dynamic
change to the magnetization, where the spin orientation at
different magnetic atomic sites is precessing according to a
long-range phase factor of eiq·r. This corresponds to an acous-
tic magnon mode, which will dominate the spectrum at small
q and ω. Excited states where different magnetic atoms inside
the unit cell precess with opposite phases will not be present
in the macroscopic transverse magnetic excitation spectrum
S+−(q, ω), but in the local field components G �= 0 that match
the spin structure of the given excited state.

D. Linear response time-dependent density functional theory

It is, in general, a prohibitively demanding task to di-
agonalize the many-body Hamiltonian Ĥ0 in order to find
the eigenstates entering the susceptibility. However, within
the framework of time-dependent density functional theory
(TDDFT), it is possible to compute χμν without access-
ing the many-body eigenstates. In particular, it follows from
the Runge-Gross theorem [21] that the time-dependent spin-
density can be represented by an auxiliary noninteracting
Kohn-Sham system defined by the Hamiltonian

ĤKS(t ) = T̂ + V̂nuc + V̂Hxc[nμ](t ) + Ĥext (t ), (25)

where Ĥext (t ) is given by Eq. (2a) and

V̂Hxc[nμ](t ) =
∑

μ

∫
dr n̂μ(r)W μ

Hxc[nμ](r, t ). (26)

Here W μ
Hxc(r, t ) is the four-component time-dependent

Hartree-exchange-correlation potential required to reproduce
the time-dependent density of the interacting system. It is a
functional of the four-component time-dependent density and
is typically treated in the adiabatic approximation, where it is
evaluated from a given approximation to the static exchange-
correlation potential of the electron density at time t .

In the Kohn-Sham system, the induced density resulting
from a small external perturbation δW μ

ext (r, t ) can be written
as

δnμ(r, t ) =
∑

ν

∫ ∞

−∞
dt ′

∫
dr′ χμν

KS (r, r′, t − t ′)δW ν
s (r′, t ′),

(27)
where χ

μν
KS is the noninteracting Kohn-Sham susceptibility

and δW μ
s = δW μ

ext + δW μ
Hxc. Comparing with the response
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relation (3) and using that the induced change in Hartree-
exchange-correlation potential δW μ

Hxc is a functional of the
induced density, one may derive the Dyson equation [22]:

χμν (r, r′, ω) = χ
μν
KS (r, r′, ω) +

∑
τ1,τ2

∫∫
dr1 dr2

×χ
μτ1
KS (r, r1, ω)Kτ1τ2

Hxc (r1, r2, ω)

×χτ2ν (r2, r′, ω), (28)

where

Kτ1τ2
Hxc (r1, r2, t1 − t2) = δW τ1

Hxc(r1, t1)

δnτ2 (r2, t2)
. (29)

By inverting the Dyson equation (28), the full four-component
susceptibility tensor may be computed from the Kohn-Sham
susceptibility, which may be obtained directly from quantities
that can be extracted from a routine ground state DFT calcula-
tion [19,20,29,30]. The main difficulty then resigns in finding
a good approximation for the Hartree-exchange-correlation
kernel (29). Below, the functional form for the transverse
components of Kτ1τ2

Hxc is provided within the adiabatic local
density approximation for collinear systems.

E. The Kohn-Sham four-component susceptibility tensor

In the absence of an external time-dependent electromag-
netic field, the (four-component) ground state density can
be obtained from the auxiliary Kohn-Sham system, where-
upon the Kohn-Sham Hamiltonian (25) may be diagonalized.
With access to the Kohn-Sham eigenstates, the Kohn-Sham
susceptibility may be easily evaluated using the Lehmann
representation (5). For periodic crystals, the Kohn-Sham
eigenstates are Slater determinants composed of Bloch wave
spinors ψnk(r) = (ψnk↑(r), ψnk↓(r))/

√
Nk where n and k de-

notes the band index and k-point, while the Kohn-Sham
orbitals have been normalized to the unit cell by dividing
with the square root of the number of k-points Nk (number
of unit cells in the crystal). By expanding the field operators
in Eq. (1) in terms of the Bloch wave spinors, the four-
component density operator may be written in terms of the
Kohn-Sham orbitals:

n̂μ(r) =
∑
s,s′

σ
μ

ss′
1

Nk

∑
nk

∑
mk′

ψ∗
nks(r)ψmk′s′ (r)ĉ†

nkĉmk′ . (30)

Thus, in the Kohn-Sham system, the four-component density
operator simply moves an electron from one spinorial orbital
to another. As a consequence, the Kohn-Sham susceptibility
is easily evaluated in the Lehmann representation (5), which
involves only states where a single electron from an occupied
orbital has been moved to an unoccupied one. Denoting the
Kohn-Sham single-particle energies εnk and ground state oc-
cupancies fnk, one may write the Kohn-Sham four-component
susceptibility tensor as

χ
μν
KS (r, r′, ω) = lim

η→0+

1

N2
k

∑
nk

∑
mk′

( fnk − fmk′ )

× nμ

nk,mk′ (r) nν
mk′,nk(r′)

h̄ω − (εmk′ − εnk ) + ih̄η
, (31)

where the Kohn-Sham four-component pair densities are
given by

nμ

nk,mk′ (r) =
∑
s,s′

σ
μ

ss′ψ
∗
nks(r)ψmk′s′ (r). (32)

Since χμν (r, r′, ω), χ
μν
KS (r, r′, ω), and Kμν

Hxc(r, r′, ω) are
periodic functions under simultaneous translations of r and
r′ [see Eq. (A25)], the Dyson equation (28) can be Fourier
transformed to reciprocal space, yielding a matrix equation
which is diagonal in crystal momentum h̄q as well as in
energy h̄ω:

χ
μν

GG′ (q, ω) = χ
μν

KS,GG′ (q, ω) +
∑
τ1,τ2

∑
G1,G2

χ
μτ1
KS,GG1

(q, ω)

× Kτ1τ2
Hxc,G1G2

(q, ω)χτ2ν
G2G′ (q, ω). (33)

As a matrix equation, Eq. (33) is straightforward to invert
in order to obtain the many-body susceptibility, χ

μν

GG′ (q, ω),
from its Kohn-Sham analog. From Eq. (31), the Kohn-Sham
susceptibility is lattice Fourier transformed, yielding

χ
μν

KS,GG′ (q, ω) = lim
η→0+

1




∑
k

∑
n,m

( fnk − fmk+q)

× nμ

nk,mk+q(G + q) nν
mk+q,nk(−G′ − q)

h̄ω − (εmk+q − εnk ) + ih̄η
,

(34)

where

nμ

nk,mk+q(G + q) =
∫


cell

dr e−i(G+q)·r nμ

nk,mk+q(r) (35)

gives the plane wave coefficients of the Kohn-Sham four-
component pair density and 
cell is the unit cell volume.
In the above, εmk+q, fmk+q, and ψmk+q(r) are used to de-
note the eigenvalue, occupancy and single-particle spinorial
wave functions corresponding to the Kohn-Sham orbital with
a wave vector k′ within the first BZ, satisfying k′ = k + q
up to a reciprocal lattice vector. The plane wave Hartree-
exchange-correlation kernel is simply computed by lattice
Fourier transforming Eq. (29).

For collinear systems, Eqs. (18) and (19) also apply to the
Kohn-Sham susceptibility tensor. Furthermore, the spinorial
orbitals can all be chosen to have one nonzero component,
such that the spin polarization may be included in the band
index n → (ns). This leads to a simplification of the Kohn-
Sham plane wave susceptibility:

χ
μν

KS,GG′ (q, ω) = lim
η→0+

1




∑
nks

∑
ms′

( fnks − fmk+qs′ )σμ

ss′σ
ν
s′s

× nnks,mk+qs′ (G + q) nmk+qs′,nks(−G′ − q)

h̄ω − (εmk+qs′ − εnks) + ih̄η
,

(36)

where

nnks,mk+qs′ (G + q) =
∫


cell

dr e−i(G+q)·rψ∗
nks(r)ψmk+qs′ (r).

(37)
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Writing the product of spin matrix elements σ
μ

ss′σ
ν
s′s of Eq. (36)

in terms of the basic matrices

σ ↑ =
(

1 0
0 0

)
, σ ↓ =

(
0 0
0 1

)
, (38a)

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (38b)

it is straightforward to see that the only nonvanishing compo-
nents are χ+−

KS , χ−+
KS and

χ00
KS = χ zz

KS = χ
↑↑
KS + χ

↓↓
KS , (39a)

χ0z
KS = χ z0

KS = χ
↑↑
KS − χ

↓↓
KS . (39b)

Thus, in the collinear case, one needs only to compute χ
↑↑
KS ,

χ
↓↓
KS , χ+−

KS , and χ−+
KS in order to construct the full Kohn-Sham

four-component susceptibility tensor.
In the LR-TDDFT formalism described above, one needs

in principle all the excited states of the Kohn-Sham system
in order to evaluate the Kohn-Sham susceptibility in Eq. (36).
It should be noted that the Kohn-Sham construction allows
for the calculation of χ+−(r, r′, t − t ′) without explicit use of
the excited states of the Kohn-Sham system. Such approaches
include propagating the system in real-time for different
“transverse magnetic kicks” [31] or using the Sternheimer
equation from time-dependent density functional perturbation
theory [32,33]. As we will show below, the Kohn-Sham ex-
cited states are generally not a main limiting factor for the
LR-TDDFT methodology, and we will use these complement-
ing methods only for comparison.

F. Transverse magnetic susceptibility within the adiabatic local
spin-density approximation

The Hartree part of the Hartree-exchange-correlation ker-
nel is straightforward to evaluate. In frequency space one
obtains Kμν

Hxc = vcδ
0μδ0ν + Kμν

xc , where vc is the Coulomb in-
teraction and Kμν

xc needs to be approximated. In the adiabatic
local spin-density approximation (ALDA), Kμν

xc is approxi-
mated by

Kτ1τ2
ALDA(r1, r2, t1 − t2) = f τ1τ2

LDA[n, m](r1)δ(r1 − r2)δ(t1 − t2),
(40)

where n(r) and m(r) are the ground state electron density and
magnetization, while

f τ1τ2
LDA[n, m](r) = ∂2[εxc(n, |m|)n]

∂nτ1∂nτ2

∣∣∣∣
n(r),m(r)

, (41)

where εxc(n, m) is the exchange-correlation energy per elec-
tron of a homogeneous electron gas of density n and
magnetization m = |m|. The derivatives are evaluated using

m =
√

(nx )2 + (ny)2 + (nz )2 =
√

4n+n− + (nz )2, (42)

which yields

∂

∂nz
= nz

m

∂

∂m
,

∂

∂n± = 2n∓

m

∂

∂m
. (43)

Similar to Eq. (16), the response relation for the Kohn-
Sham susceptibility tensor can be rewritten in circular

coordinates:

δn j (r, t ) =
∑

k

∫ ∞

−∞
dt ′

∫
dr′ χ jk

KS(r, r′, t − t ′)δW̆ k
s (r′, t ′).

(44)
This results in the Dyson equation

χ jk (r, r′, ω) = χ
jk

KS(r, r′, ω) +
∑
l1,l2

∫∫
dr1 dr2χ

jl1
KS (r, r1, ω)

× K̆ l1l2
Hxc(r1, r2, ω)χ l2k (r2, r′, ω), (45)

where

K̆ l1l2
Hxc(r1, r2, t1 − t2) = δW̆ l1

Hxc(r1, t1)

δnl2 (r2, t2)
. (46)

In the case of a collinear ground state, spin-polarized in the
z-direction, the ALDA Hartree-exchange-correlation kernel
becomes block diagonal:

K̆ [0,+,−,z]
Hxc =

⎛
⎜⎜⎜⎝

vc + K00
ALDA 0 0 K0z

ALDA

0 0 K̆+−
ALDA 0

0 K̆−+
ALDA 0 0

Kz0
ALDA 0 0 Kzz

ALDA

⎞
⎟⎟⎟⎠,

(47)

with K0z
ALDA = Kz0

ALDA and K̆+−
ALDA = K̆−+

ALDA. Since both the
many-body susceptibility tensor and the Kohn-Sham analog
are block diagonal as well [see Eq. (18)], the transverse com-
ponents decouple from the remaining components:

χ+−(r, r′, ω) = χ+−
KS (r, r′, ω) +

∫∫
dr1 dr2χ

+−
KS (r, r1, ω)

× K̆−+
ALDA(r1, r2, ω)χ+−(r2, r′, ω), (48)

where + and − can be interchanged to obtain the Dyson
equation for χ−+(r, r′, ω). The transverse LDA kernel itself
turns out to be particularly simple,

f −+
LDA[n, nz](r) = 2W z

xc,LDA[n, nz](r)

nz(r)
, (49)

and in the plane wave representation, the ALDA kernel is
independent of q as well as ω:

K̆−+
ALDA,G1G2

= 1


cell

∫

cell

dr e−i(G1−G2 )·r f −+
LDA(r)

= 1


cell
f −+
LDA(G1 − G2). (50)

To summarize, the many-body transverse magnetic sus-
ceptibility can be calculated directly from the Kohn-Sham
susceptibility (36) and the kernel (49)–(50). Due to the separa-
tion of components, solving the Dyson equation (33) amounts
to a simple matrix inversion:

χ+−
[G] (q, ω) = [1 − χ+−

KS (q, ω)K̆−+
ALDA]−1

[G]χ
+−
KS,[G](q, ω). (51)

The structure of the susceptibility tensor for a spin-paired
ground state will now be briefly discussed. In this case, it is
not sensible to distinguish between transverse magnetic and
longitudinal magnetic susceptibilities. It is straightforward to
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show that the full ALDA kernel becomes diagonal, such that

K [0,x,y,z]
Hxc =

⎛
⎜⎜⎜⎝

vc + K00
ALDA 0 0 0

0 Kzz
ALDA 0 0

0 0 Kzz
ALDA 0

0 0 0 Kzz
ALDA

⎞
⎟⎟⎟⎠,

(52)
with

f 00
LDA[n](r) = ∂2[εxc(n, m)n]

∂n2

∣∣∣∣
n(r),m(r)=0

, (53a)

f zz
LDA[n](r) = ∂2[εxc(n, m)n]

∂m2

∣∣∣∣
n(r),m(r)=0

. (53b)

Furthermore, one can easily inspect Eq. (36) to con-
clude that χ

↑↑
KS = χ

↓↓
KS = χ+−

KS = χ−+
KS ≡ χKS/2, such that the

Kohn-Sham four-component susceptibility tensor simplifies
significantly: χ

[0,x,y,z]
KS = χKSI4×4. In addition, from the dis-

cussion below Eq. (20b), the many-body susceptibility tensor
becomes diagonal as well,

χ [0,x,y,z] =

⎛
⎜⎜⎝

χ00 0 0 0
0 χ zz 0 0
0 0 χ zz 0
0 0 0 χ zz

⎞
⎟⎟⎠, (54)

and the full magnetic response is contained in a single Dyson
equation:

χ zz(r, r′, ω) = χKS(r, r′, ω) +
∫∫

dr1 dr2

×χKS(r, r1, ω)Kzz
ALDA(r1, r2)χ zz(r2, r′, ω).

(55)

G. Spectral enhancement and the Goldstone theorem

Although χ+− and χ+−
KS are directly related by the Dyson

equation (51), the transverse magnetic excitations as de-
scribed by the corresponding spectral functions S+−

G (q, ω) and
S+−

KS,G(q, ω) can be quite different. S+−
KS,G(q, ω) gives the spec-

trum of Kohn-Sham spin-flip excitations, also referred to as
the Stoner spectrum. In the collinear case, the noninteracting
Stoner pairs are generated by removing an electron from an
occupied band and k-point k, flipping its spin and placing it in
an unoccupied band and k-point k + q. The Stoner pairs form
a continuum, which for ferromagnetic materials is gapped
by the exchange splitting energy �x at q = 0. Whereas the
exchange splitting can have a magnitude of several electron
volts, the fully interacting spectrum of transverse magnetic
excitations, S+−

G (q, ω), exhibits a so-called Goldstone mode
with ωq=0 = 0 for spin-isotropic systems. Physically, this
mode arises when a rigid rotation of the direction of magneti-
zation does not cost any energy and it is a manifestation of the
more general Goldstone theorem. Due to the binding nature of
the interaction in Eq. (49), the many-body transverse magnetic
excitations generally exist at energies below the Stoner contin-
uum. However, in itinerant ferromagnets, the Stoner gap will
close for wave vectors q connecting the majority and minority
spin Fermi surfaces [4,34]. As a magnon branch enters the
Stoner continuum, it will be dressed by the single-particle
excitations leading to a broadening of the spectral width. The

corresponding shortening in quasiparticle lifetime is called
Landau damping [35].

Often χ+− is referred to as the enhanced susceptibility
because the Dyson equation (51) can be understood as the
formation of collective magnon excitations out of the single-
particle Stoner continuum. As it turns out, this procedure
preserves the total spectral weight embedded in the suscep-
tibility. For the transverse magnetic susceptibility, the zeroth
order sum rule [see (A10)] relates the spectrum of trans-
verse magnetic excitations to the magnetization density of the
ground state:

h̄
∫ ∞

−∞
S+−(r, r′, ω) dω = nz(r) δ(r − r′). (56)

Because the spin-polarization density is the same in both the
Kohn-Sham and the fully interacting system by construction,
the total spectral weight is preserved between the two. By
performing a lattice Fourier transform, a similar expression
for the plane wave susceptibility is obtained:

h̄
∫ ∞

−∞
S+−

GG′ (q, ω) dω = nz(G − G′)

cell

, (57)

where nz(G − G′) denotes the plane wave coefficients of
the spin-polarization density, defined similarly to Eq. (A35).
As a consequence, the total spectral weight of transverse
magnetic excitations at any G and q is simply the average
spin-polarization density:

h̄
∫ ∞

−∞
S+−

G (q, ω) dω = σz


cell
, (58)

where σz denotes nz(r) integrated over the unit cell.

III. COMPUTATIONAL IMPLEMENTATION

As described above, the transverse magnetic plane wave
susceptibility can be computed within linear response time-
dependent density functional theory using only quantities that
can be obtained from the auxiliary noninteracting Kohn-Sham
system. We have implemented this methodology into the
GPAW open-source code [36,37], which uses the projected
augmented wave method [23]. The implementation is based
on the existing linear response module for GPAW [38], which
enables computation of the longitudinal dielectric suscepti-
bility χ00 and related material properties. In this section, we
present the implementation and make a rigorous performance
assessment of the numerical scheme employed.

A. Projected augmented wave method for plane
wave susceptibilities

The list of Kohn-Sham quantities needed for calculating
the transverse magnetic plane wave susceptibility is relatively
short. The Kohn-Sham orbital energies and occupancies, εnks

and fnks, are easily extracted from any DFT ground state
calculation, the Kohn-Sham pair densities (37) are calculated
from the Kohn-Sham orbitals, and the transverse magnetic
plane wave kernel (49)–(50) is calculated from the ground
state density and spin-polarization density.

In the projected augmented wave method (PAW), the all-
electron Kohn-Sham orbitals ψnks are written in terms of
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smooth pseudowaves ψ̃nks, which are easy to represent nu-
merically:

|ψnks〉 = T̂ |ψ̃nks〉, (59a)

T̂ = 1 +
∑
a,i

(∣∣φa
i

〉 − ∣∣φ̃a
i

〉)〈
p̃a

i

∣∣. (59b)

Inside the so-called augmentation sphere, a spherical re-
gion of space centered at the position of the ath atomic nuclei
Ra, smooth partial waves φ̃a

i , and projector functions p̃a
i are

constructed to fulfill
∑

i |φ̃a
i 〉〈p̃a

i | = 1, so that the linear op-
erator T̂ effectively maps the smooth pseudowaves onto the
all-electron partial waves φa

i . Outside the augmentation sphere
φ̃a

i (r − Ra) = φa
i (r − Ra), making the smooth pseudowave

equal to the all-electron Kohn-Sham orbital in the interstitial
region between the augmentation spheres. Due to the linear
mapping in Eq. (59), matrix elements between Kohn-Sham
orbitals can be evaluated from the smooth pseudowaves using
a pseudo-operator, operating on the space of pseudowaves:

〈ψnks|Â|ψmk′s′ 〉 = 〈ψ̃nks|Ã|ψ̃mk′s′ 〉, Ã = T̂ †ÂT̂ . (60)

For any quasilocal operator Â, the effective pseudo-operator
can be written [23]

Ã = Â +
∑

a

∑
i,i′

∣∣ p̃a
i

〉[〈
φa

i

∣∣Â∣∣φa
i′
〉 − 〈

φ̃a
i

∣∣Â∣∣φ̃a
i′
〉]〈

p̃a
i′
∣∣. (61)

Thus, the evaluation of the Kohn-Sham pair densities in
Eq. (37) amounts to a direct evaluation using the pseudowaves
and a PAW correction:

nnks,mk+qs′ (G + q) = ñnks,mk+qs′ (G + q)

+ �nnks,mk+qs′ (G + q), (62)

where

�nnks,mk+qs′ (G + q) =
∑

a

∑
i,i′

Qa
ii′ (G + q)

× 〈
ψ̃nks

∣∣ p̃a
i

〉〈
p̃a

i′
∣∣ψ̃mk+qs′

〉
, (63)

with

Qa
ii′ (G + q) =

∫

cell

dr e−i(G+q)·r[φa∗
i (r − Ra)φa

i′ (r − Ra)

− φ̃a∗
i (r − Ra)φ̃a

i′ (r − Ra)
]
. (64)

In a given DFT calculation, the PAW setups for every atomic
species is fixed (fixing φa

i , φ̃a
i , and p̃a

i ), so that the PAW cor-
rection tensor, Qa

ii′ (G + q), can be evaluated once and reused
for all the Kohn-Sham pair densities as a function of G and q.
As a result, the calculation of pair densities is a fairly cheap
procedure in terms of computational power.

Similarly, the ground state spin densities may be written in
terms of a smooth contribution from the pseudowaves ñσ (r)
and atom-centered PAW corrections localized to the augmen-
tation spheres:

nσ (r) = ñσ (r) +
∑

a

[
na

σ (r − Ra) − ña
σ (r − Ra)

]
. (65)

As a result, ALDA plane wave kernels, such as the transverse
magnetic kernel in Eq. (50), can be calculated as a contribu-
tion from the smooth density and a PAW correction localized

to the augmentation spheres:

K̆−+
ALDA,G1G2

= 1


cell
f̃ −+
LDA(G1 − G2) + �K̆−+

ALDA,G1G2
, (66)

where

�K̆−+
ALDA,G1G2

=
∑

a

∫

cell

dr1


cell
e−i(G1−G2 )·r1� f a,−+

LDA (r1− Ra),

(67)

with atom-centered PAW corrections to the LDA kernel

� f a,−+
LDA (r) = f −+

LDA[na
↑, na

↓](r) − f −+
LDA[ña

↑, ña
↓](r). (68)

In principle, the PAW method does not lead to any loss in
generality, and the PAW corrected Kohn-Sham pair densities
and ALDA plane wave kernels can be regarded as all-electron
quantities. In practice, however, generating partial waves with
projector functions to match is not a trivial task, and the partial
wave expansion will not be complete.

B. Implementation of the PAW method

In GPAW, the pseudowaves ψ̃nks(r) = eik·rũnks(r) are rep-
resented on a real-space grid using a plane wave basis set
for the periodic parts ũnks(r). The smooth contributions to
the Kohn-Sham pair densities in Eq. (62) and the transverse
ALDA plane wave kernel in Eq. (66) are then computed by
evaluating the integrand on the real-space grid and performing
a fast Fourier transform to reciprocal space:

ñnks,mk+qs′ (G + q) = FG[e−iq·rψ̃∗
nks(r)ψ̃mk+qs′ (r)], (69)

f̃ −+
LDA(G1 − G2) = FG1−G2{ f −+

LDA[ñ↑, ñ↓](r)}. (70)

Furthermore, the angular part of the atom-centered partial
waves are real spherical harmonics:

φa
i (r) = Y mi

li
(r̂)φa

i (r), φ̃a
i (r) = Y mi

li
(r̂)φ̃a

i (r). (71)

Using the plane wave expansion into real spherical harmonics,

e−iK·r = 4π
∑

l

l∑
m=−l

(−i)l jl (|K|r)Y m
l (K̂)Y m

l (r̂), (72)

where jl (|K|r) are spherical Bessel functions, the angular
part of the PAW correction tensor integral in Eq. (64) can be
carried out analytically:

Qa
ii′ (K) = 4πe−iK·Ra

∑
l

l∑
m=−l

(−i)lY m
l (K̂)glm

limi,li′ mi′

×
∫ Ra

c

0
r2dr jl (|K|r)

[
φa

i (r)φa
i′ (r) − φ̃a

i (r)φ̃a
i′ (r)

]
,

(73)

with K = G + q. Here Ra
c is the radius of the ath augmenta-

tion sphere and glm
limi,li′ mi′

are the Gaunt coefficients. The radial
part of each partial wave is stored on the same nonlinear radial
grid for a given atom. We use this grid to carry out the radial
integral in Eq. (73) by point integration.

For the ALDA plane wave kernel, we approach the
PAW correction in a similar fashion. We expand the atom-
centered PAW corrections to the LDA kernel in real spherical
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harmonics,

� f a,−+
LDA (r) =

∑
l

l∑
m=−l

Y m
l (r̂)� f a,lm,−+

LDA (r), (74)

such that the angular integral in the PAW correction to the
ALDA plane wave kernel (67) can be carried out analytically:

�K̆a,−+
ALDA(K) = 4πe−iK·Ra


cell

∑
l

l∑
m=−l

(−i)lY m
l (K̂)

×
∫ Ra

c

0
r2dr jl (|K|r)� f a,lm,−+

LDA (r), (75)

with K = G1 − G2. To obtain the expansion into real spheri-
cal harmonics in Eq. (74), the atom-centered PAW corrections
to the LDA kernel are simply evaluated on an angular grid,
a Lebedev quadrature of degree 11, for all radii r on the
nonlinear radial grid. Through point integration, the expansion
coefficients are calculated for each radii r:

� f a,lm,−+
LDA (r) =

∫
d r̂ Y m

l (r̂)� f a,−+
LDA (rr̂). (76)

With a Lebedev quadrature of degree 11, polynomials up to
order 11 can be point integrated exactly. This implies that the
plane wave expansion remains numerically exact up to l = 5.
In practice, we truncate the expansion at l = 4, which results
in a well-converged overall expansion for all the materials
covered in this study.

C. Numerical details

In our implementation there are a number of key pa-
rameters, with respect to which the calculation needs to be
converged. The k-point summation in Eq. (36) is evaluated on
the Monkhorst-Pack grid [39] of the ground state calculation:

χ+−
KS,GG′ (q, z) = 1


cell

1

Nk

∑
k

∑
n,m

( fnk↑ − fmk+q↓)

× nnk↑,mk+q↓(G + q) nmk+q↓,nk↑(−G′ − q)

h̄ω − (εmk+q↓ − εnk↑) + ih̄η
,

(77)

where Nk in this case denotes the number of grid points.
Because a finite grid is used, the continuum of Kohn-Sham
states is discretized. To make up for this fact, we do not take
the formal limit η → 0+ in Eq. (77), but leave η as a finite
broadening parameter in order to smear out the transition
energies (εmk+q↓ − εnk↑) and form a continuum. For a detailed
discussion of this procedure, see Sec. III E. Additionally, the
band summation in Eq. (77) is truncated to include a finite
number of excited states, and a finite plane wave basis set is
used to invert the Dyson equation in Eq. (51). The effect of
these parameters is investigated in Secs. III D, III F, and III G.
Unless otherwise stated, 12 empty shell bands per atom and a
plane wave cutoff of 1000 eV are used.

On top of these convergence parameters, the GPAW imple-
mentation has two additional simplifications. As mentioned
above, the projected augmented wave method is formally ex-
act, but in reality a finite set of partial waves is used in the
expansion of the Kohn-Sham orbitals. For a given number of

frozen core electrons, GPAW is distributed with a single PAW
setup for each atomic species, meaning that the truncation of
the expansion is given in advance, it is not a parameter that can
be converged. Furthermore, we do not include the frozen core
states in the band summation of Eq. (77). For iron, cobalt, and
nickel this implies that only transitions from the occupied 4s
and 3d electronic orbitals are included. GPAW also supplies
an alternative setup for nickel, where also the 3p orbitals
are taken as valence states as opposed to being frozen core
electronic orbitals. We tested the extended PAW setup, but
found it much more difficult to converge the plane wave basis
in Eq. (51), only to obtain a small difference in the magnon
dispersion. We extract a difference in magnon peak position
between the PAW setups of �ωq = 5.2 meV calculated at
the wave vector X/3, where ωq = 305 meV corresponding
to a relative difference of 1.7%. At the wave vector 2X/3
and at the the X-point itself, the relative difference is even
smaller. Although including the frozen core states should in-
crease the overall accuracy, the computational cost far exceeds
what we seem to stand to gain. The minimal PAW setups are
used for the results reported throughout the remainder of this
paper.

The crystal structures of the transition metals investi-
gated are described using ASE [40] with experimental lattice
constants a = 2.867 Å for bcc-Fe, a = 3.524 Å for fcc-Ni,
a = 3.539 Å for fcc-Co and a = 2.507 Å for hcp-Co taken
from [24,27] and the references therein. We investigate only
reduced wave vectors q commensurate with the Monkhorst-
Pack grid of the ground state calculation.

D. Sum rule check

As a check of our implementation, we have computed
the average spin polarization from the Kohn-Sham transverse
magnetic susceptibility. Inserting the diagonal components of
Eq. (36) into the sum rule (58) and performing the frequency
integral analytically,

1




∑
k

∑
n,m

( fnk↑ − fmk+q↓)|nmk+q↓,nk↑(−G − q)|2 = σz


cell
.

(78)

We refer to the average spin polarization calculated in this
manner as the pair spin polarization, σχKS

z .
We have computed the pair spin polarization and compared

it to the average spin polarization extracted from the ground
state for iron, nickel, and cobalt at q = 0 and different re-
ciprocal lattice vectors G. The comparison is presented in
Fig. 1 as a function of the number of empty shell bands
per atom included in the band summation of Eq. (78). The
pair spin polarization is consistently smaller that the average
spin polarization of the ground state, �σχKS

z = σχKS
z − σz < 0,

but rapidly converges towards it for G = 0 as the number of
empty shell bands is increased. Thus, the PAW implemen-
tation seems to provide a good description of the macro-
scopic spatial variation embedded in the transverse magnetic
susceptibility.

For G �= 0 the convergence is orders of magnitude slower.
The convergence is governed by the pair densities, which
are calculated as simple overlap integrals between two Kohn-
Sham orbitals and a plane wave [see Eq. (37)]. We believe
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FIG. 1. Relative error in the pair spin polarization of iron, nickel, and cobalt calculated from the sum rule (78) at q = 0 as a function of
empty shell bands per atom. The markers represent different reciprocal lattice vectors G: Blue circles represent (0, 0, 0), red squares (0, 0, 1)
for Fe, Ni and fcc-Co and (0, 0, 2) for hcp-Co, green rhombi (1, 1, −1) for Fe, (1, 0, −1) for Ni, fcc-Co, and (1, 0, −2) for hcp-Co. The teal
pentagons represent the (0, 0, 1) reciprocal lattice vector in hcp-Co.

that this slow convergence arises because many Kohn-Sham
orbitals are needed to represent a single plane wave, or con-
versely, that many plane waves are needed to represent a
single Kohn-Sham orbital. This interpretation is supported
by the fact, that the G = (0, 0, 1) pair spin polarization in
hcp-Co has an improved convergence with respect to more
local reciprocal lattice vectors. The G = (0, 0, 1) plane wave
is better represented in terms of Kohn-Sham orbitals as it gives
the two atoms in the unit cell exactly opposite phases. To fully
converge the pair spin polarization for all reciprocal lattice
vectors, one would also need to include the frozen core states
in the band summation. This slow convergence with respect
to the number of bands is much less pronounced for the
transverse magnetic susceptibility at small frequencies, as we
will show in Secs. III F and III G, because transitions to highly
excited states are suppressed by a factor �ε−1 in Eq. (77).
Thus, the pair spin-polarization convergence is generally not
a necessary requirement for obtaining an accurate description
of the magnons.

E. Convergence of the Kohn-Sham continuum

For the itinerant ferromagnets of this study, the k-point grid
refinement of Eq. (77) is an important numerical parameter to
converge. Even though the bands of different spin character
are split by exchange, there are metallic Kohn-Sham bands of
both majority and minority spin character in all four materials.
This means that the Stoner continuum will extend downwards
from the exchange splitting energy �x to ω = 0 for reduced

wave vectors q that connect the Fermi surfaces of different
spin character. For such q, the collective magnon modes will
unavoidably be dressed by these low-frequency Stoner excita-
tions and be Landau damped as a result. Thus, to accurately
describe the magnon modes, the discretized Stoner continuum
obtained from Eq. (77) must be broadened into a continuum
by leaving η as a finite broadening parameter. In the end,
one should use a sufficiently dense k-point grid such that η

can be chosen small enough not to have an overall influence
on the magnon dispersion, yet large enough to effectively
broaden the low-frequency spectrum of Stoner excitations into
a continuum.

In Fig. 2 we illustrate the effect of the broadening
procedure by plotting the macroscopic transverse magnetic
excitation spectrum at a fixed k-point density, but with regular
and centered Monkhorst-Pack grids and different values for η.
For the spectral peak at q = 0, the two grid alignments yield
consistent results with a Lorentzian line shape of half-width
η, corresponding to a magnon mode free of Landau damping.
However, this is not the case for the spectra at finite crys-
tal momentum transfer. With a broadening of η = 20 meV,
spurious finite-grid effects dominate the line shapes, and the
magnon peak positions, i.e., the frequencies corresponding to
the maximum of the spectral function for a given q, cannot
be consistently extracted. At η = 200 meV the discrepancy
between the two grid alignments is more or less cured, as
the discrete spectrum of low-frequency Stoner excitations has
been broadened into a continuum. Unfortunately, the effect of
Landau damping is now hard to discern, and, as will be shown
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FIG. 2. Macroscopic transverse magnetic excitation spectrum of bcc-Fe in the ALDA [S+−
G=0(q, ω); see Eq. (24)] calculated at a range of

different wave vectors q. The calculations were performed on (42, 42, 42) k-point grids, where the dash-dotted lines indicate results from a
regular Monkhorst-Pack grid, whereas the translucent lines are results from a �-centered grid. The panels show the spectra calculated at two
different broadening parameters η.

below, the magnon peak positions have been shifted towards
higher frequencies.

To study the convergence of the low-frequency Stoner
continuum further, it is worthwhile to remark that the macro-
scopic spectrum of Stoner excitations is much cheaper to
compute than the full transverse magnetic excitation spec-
trum, as no extra plane wave components are needed, when
the Dyson equation (51) does not have to be inverted. Thus,
it would be of great value if the convergence of the low-
frequency Stoner continuum could be assessed from the
Kohn-Sham spectral function itself. To that end, we intro-
duce the average frequency displacement 〈�ω〉. The idea
is to consider the Stoner continuum truly converged when
different k-point grid alignments yield the same Kohn-Sham
spectral function. The average frequency displacement is
defined as the integrated absolute difference between the
Kohn-Sham spectral functions calculated on regular and �-
centered Monkhorst-Pack k-point grids, normalized by the
effective absolute change in spectral function intensity over
the integration range:

〈�ω〉[ω] ≡ 1

|�S+−
KS (q)|[ω]

∫
[ω]

|S+−
KS,r (q, ω) − S+−

KS,c(q, ω)|dω.

(79)

Here S+−
KS,r/c denotes the macroscopic Kohn-Sham spec-

tral function (G = 0) calculated using a regular/centered
Monkhorst-Pack grids and [ω] denotes a given choice of fre-
quency integration range. The effective absolute change in
spectral function intensity, |�S+−

KS (q)|[ω], is calculated from
the gradient of a linear fit to both spectral functions as
illustrated in Fig. 3(a). In a similar setup, but where the
two spectral functions happened to be straight parallel lines
with the same gradient as the linear fit and the same inte-
grated absolute difference between the spectral functions [see
Fig. 3(b)], this definition exactly corresponds to the horizontal
frequency displacement of the two spectral functions, hence
the name. Now, the idea is to choose a frequency integration
range that overlaps with the magnon bandwidth (the actual re-
gion of interest for Landau damping) and in which the spectral
function is approximately a linear function of frequency. Due
to the normalization, the average frequency displacement does

not depend on the actual intensity of the low-frequency Stoner
continuum, which may vary substantially between different
materials. As a consequence of the construction illustrated
in Fig. 3, 〈�ω〉 quantifies the actual frequency displacement
of the spectra calculated on differently aligned grids, which
should correlate strongly with the discrepancy in magnon
peak position between the grids, that is, the quantity we want
to converge. This said, the discrepancies between the spectral
functions are spurious in nature, and the computed average
frequency displacement will vary with the chosen frequency
integration range in actual calculations. However, when cal-
culating 〈�ω〉 also as an average over different wave vectors
q, the spurious effects can be averaged out sufficiently well
to make 〈�ω〉 stable enough for comparisons of different k-
point densities and values of η. The stability towards changes
in the frequency integration range is documented in the
Supplemental Material [41]. In this main text a frequency in-
tegration range of [−0.4 eV, 0.4 eV] is used for all materials.

To assess the convergence of the low-frequency Kohn-
Sham spectrum and the applicability of 〈�ω〉 as a method
of quantifying the related convergence in magnon peak po-
sitions, we have calculated the magnon peak positions at a
range of different wave vectors q in iron, nickel, and cobalt
at different k-point grid densities, using η = 200 meV. The q
wave vectors are all chosen to lie on the same path through the
first BZ, � → N for bcc-Fe, � → X for fcc-Ni and fcc-Co,
and � → A for hcp-Co. To accurately obtain the magnon
peak position, the transverse magnetic excitation spectrum
is calculated on a frequency grid with a spacing δω � η/8
and the peak position is extracted from a parabolic fit to the
spectral function maximum. Along with the magnon peak
positions, 〈�ω〉 has been calculated averaging over (up to 9)
wave vectors on the given path starting 1/3 of the way to the
first BZ edge, such that the Stoner gap is closed for all the
wave vectors in the average. In Fig. 4 the magnon peak posi-
tions calculated on a regular and �-centered Monkhorst-Pack
grid are compared as a function of k-point density, showing
also the calculated values for 〈�ω〉. Interestingly, the k-point
density itself does not seem to influence the overall magnon
dispersion. No net change in magnon peak positions is ob-
served as the density is increased, but with increasing grid
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FIG. 3. The average frequency displacement, 〈�ω〉, calculated from the macroscopic spectral function of Stoner excitations S+−
KS,G=0(q, ω).

(a) The Kohn-Sham spectral functions of iron calculated using a (30, 30, 30) k-point grid and two different values for η. Dash-dotted lines
represents a �-centered grid and the dash-double-dotted lines a regular Monkhorst-Pack grid. A simultaneous fit to the two spectral functions is
also shown, which along with the colored area between the functions determines 〈�ω〉 as defined in Eq. (79). (b) Linear spectral functions with
the gradient from the fit in panel (a) and of the same area between the curves. For these parallel spectral functions, 〈�ω〉 gives the horizontal
frequency displacement of the curves.

density, the spurious effects seem to disappear as η = 200
meV becomes sufficient to broaden the low-frequency Stoner
spectrum into a continuum. Moreover, the disappearance of
spurious effects seems strongly correlated with the average
frequency displacement. For all materials, the general trend is
that the average displacement frequency drops with increasing
k-point grid density, but not in a monotonic way. We believe
that the nonmonotonic behavior reflects the fact that the low-

frequency Stoner spectrum is highly sensitive to the sampling
of Fermi surfaces, which depends on not only the density
of the grid, but also the geometry of the surfaces and how
they are situated on the grid. For the same reasons, the spuri-
ous displacements of magnon peak positions do not decrease
monotonically either and the two trends seem correlated. As
an example, both the average frequency displacement and
magnon peak position displacement in iron were found to be
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FIG. 4. Magnon peak positions relative to the �-peak, in color (left axis), and average displacement frequency, in gray (right axis), as a
function of k-point density with η = 200 meV. For hcp-Co, the k-point density along the c-direction is plotted. Red, green, and teal indicate
the magnon peaks at wave vectors 1/3 of the way, 2/3 of the way, and at the end of the paths � → N, � → X, and � → A (for bcc, fcc, and
hcp). Yellow, purple, and blue indicate similar points on the path A → � in the second BZ of hcp-Co. The opaque and translucent markers
represent results calculated using regular and �-centered Monkhorst-Pack grids, respectively.
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FIG. 5. Magnon peak positions of iron relative to the �-peak, in color (left axis), and average displacement frequency, in gray (right
axis), as a function of broadening parameter η. Panels (a), (b), (c), and (d) were calculated using (18, 18, 18), (42, 42, 42), (54, 54, 54), and
(78, 78, 78) k-point grids, respectively. Red, green, and teal indicate the magnon peaks at wave vectors 1/3 of the way, 2/3 of the way, and
at the end of the path � → N. The opaque and translucent markers represent results calculated using regular and �-centered Monkhorst-Pack
grids, respectively.

larger for k-point densities of 9.7 Å and 11.6 Å compared to
the grid with density 7.7 Å. For all materials, k-point densi-
ties, which result in an average frequency displacement below
8 meV, yield consistent results.

To further investigate the correlation between the average
frequency displacement and the convergence of magnon peak
positions, we computed both as a function of broadening
parameter η for selected k-point densities in iron and nickel.
In Fig. 5 we show a selection of results for iron, whereas
the results for nickel are given in the Supplemental Material
[41]. For coarse k-point grids, such as in Fig. 5(a), we never
obtain consistency of results between the two different grid
alignments, but as the k-point density increases, consistency is
achieved for a broadening above some threshold ηt . A similar
picture is obtained for nickel, but with magnon frequency
discrepancies smaller in magnitude below the threshold ηt .
For both materials, there is consistency of results for all the
k-point grids and broadening parameters η that yield an aver-
age frequency displacement 〈�ω〉 � 5 meV. Inductively, this
may be used as a criterion to guarantee strictly converged
low-frequency Stoner spectra.

To illustrate the use of this criterion, we have computed
the average frequency displacement as a function of η for
a wide selection of k-point grids in iron, nickel, and cobalt
using also different frequency integration ranges. All show
a smooth monotonic decrease in 〈�ω〉 as a function of η,
similar to the behavior shown in Fig. 5. In the Supplemental
Material [41], we supply a table of threshold values ηt cor-
responding to the intersection with 〈�ω〉 = 5 meV found by

linear interpolation. As an example, we find ηt = 126 meV for
iron with the (54, 54, 54) k-point grid shown in Fig. 5(c) and
ηt = 87 meV with the (78, 78, 78) k-point grid shown in
Fig. 5(d), both using a frequency integration range of
[−0.4 eV, 0.4 eV]. Using [ω] = [−0.2 eV, 0.2 eV] and [ω] =
[−0.6 eV, 0.6 eV] instead, threshold values of ηt = 150 meV,
ηt = 127 meV and ηt = 92 meV, ηt = 105 meV are obtained
for the two different k-point densities. The variations with
frequency integration range are small enough to make the
general approach applicable as a computationally cheap rule
of thumb, but in the general case one should mostly use it as
a starting point for a more careful analysis. Depending on the
desired accuracy, a more relaxed criterion of 〈�ω〉 � 8 meV
should yield converged magnon peak positions, except for a
few cases, and if only the general trends are important, not
the actual peak positions themselves, an even larger threshold
could be applied to achieve spectra similar to the one shown
in Fig. 2(a). In the context at present, we want to eliminate
spurious effects in the magnon peak positions all together to
enable the conduction of a convergence study in other nu-
merical parameters and to obtain magnon dispersions that are
suitable for benchmarking against the literature. To achieve
this, we apply the strict 〈�ω〉 � 5 meV criterion.

So far, we discussed only the effect of η on the grid align-
ment consistency, but clearly η also has an effect on the overall
magnon dispersion, as seen in Fig. 5. Even though we use a
finite η > 0 to broaden the Stoner spectrum into a continuum,
we need also to choose it small enough that η itself does not
influence the overall dispersion. To find out how small an η
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FIG. 6. Magnon peak positions relative to the �-peak, in color (left axis), and average displacement frequency, in gray (right axis), as
a function of broadening parameter η. Calculations were performed on a (102, 102, 102) k-point grid for bcc-Fe, fcc-Ni, and fcc-Co, and a
(84, 84, 48) grid for hcp-Co. Red, green and teal indicate the magnon peaks at wave vectors 1/3 of the way, 2/3 of the way and at the end
of the paths � → N, � → X, and � → A (for bcc, fcc, and hcp). Yellow, purple, and blue indicate similar points on the path A → � in the
second BZ of hcp-Co. The opaque and translucent markers represent results calculated using regular and �-centered Monkhorst-Pack grids,
respectively.

that is, we computed the magnon peak positions as a function
of η for all four materials on dense k-point grids, where an
〈�ω〉 � 5 meV criterion leads to ηt = 32 meV, ηt = 26 meV,
ηt = 39, meV, and ηt = 28 meV for bcc-Fe, fcc-Ni, fcc-Co,
and hcp-Co, respectively. These results are presented in Fig. 6.
It seems to be a general trend that the magnon peak positions
shift to higher energies as η is increased. In fact, a broadening
parameter less than 120 meV is needed in order to achieve
a good convergence, except for a few points that require a
value as low as η = 50 meV. Together with the spurious dis-
cretization effects, this requires us to use quite dense k-point
grids. In order to use η = 50 meV within the 〈�ω〉 � 5 meV
criterion, a (90, 90, 90) k-point grid is needed for bcc-Fe, a
(84, 84, 84) grid for fcc-Ni and fcc-Co, and a (60, 60, 30) grid
for hcp-Co. For the materials investigated here, performing
such dense k-point samplings does not itself pose any com-
putational problem, as there are at most two atoms in the
unit cell. For larger systems, however, grids that dense will
quickly be prohibitive. To circumvent this problem, one can
either apply analytic continuation to an alignment consistent
calculation performed with a large broadening parameter η

or refine the k-point summation in Eq. (77) using methods
such as linear tetrahedron interpolation in order to improve
the continuum description of the Stoner spectrum.

F. Gap error convergence

As our treatment of the transverse magnetic susceptibility
is collinear, all the itinerant ferromagnetic materials of this

study should have a so-called Goldstone mode with a macro-
scopic magnon peak at ωq=0 = 0. In reality, though, this is
not necessarily guaranteed numerically for linear response
TDDFT calculations, and transverse magnetic excitation spec-
tra, such as the one shown in Fig. 2, display finite gap
errors ω� �= 0. In the literature [24–26], the gap error is
usually attributed to numerical approximations as well as in-
consistencies between the Kohn-Sham susceptibility and the
exchange-correlation kernel. Regarding the latter, one needs
to use an exchange-correlation kernel that in the static limit
gives the same ground state spin densities as the ground
state DFT calculation, on the basis of which the Kohn-Sham
susceptibility is computed. Otherwise, (δW μ

s (r, t )) cannot be
considered a perturbative quantity, so that the linear response
relation (27) and consequently also the Dyson equation (28)
no longer holds. As an example, using an ALDA kernel on
top of a GGA ground state calculation will result in a gap
error, which is why we are restricted to the use of LDA for
the ground state at present. In many-body perturbation theory
similar considerations have to be made [17].

For our calculations, we have identified two main numeri-
cal parameters that need to be converged in order to minimize
the gap error, namely, the truncation in band summation and
plane wave representation of the Kohn-Sham susceptibility.
Neither the k-point density nor the broadening parameter, η,
investigated above had any significant influence on ω� due to
the Stoner gap. In Fig. 7 we show the gap error as a function
of the number of empty shell bands per atom. For all four
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FIG. 7. Magnon peak position at the �-point in iron, nickel and
cobalt as a function of the number of empty shell bands per atom
included in the band summation of Eq. (77). Calculations were
performed on a (54, 54, 54) regular Monkhorst-Pack grid for bcc
and fcc structures and a (48, 48, 30) grid for hcp-Co. For all ma-
terials, a broadening parameter of η = 200 meV was used. For iron,
ω� − 50 meV is plotted for all the points to be visible on a single
axis.

materials the convergence follows a similar pattern in which
the gap error falls off as the number of bands is increased
and beyond 20 empty shell bands per atom or so, the gap
error can be considered to be converged. However, it does
not vanish, which in part is due to the plane wave cutoff
of 1000 eV used in these calculations. In Fig. 8 we present
the gap error dependence on the plane wave representation.
Unfortunately, the gap error does not converge even at cutoffs
as high as 3600 eV. Extrapolating the trend at high cutoffs,
it seems that one in principle would need an infinite cutoff
to converge the gap error, and even so, the gap error does
not seem to vanish completely, especially in the case of iron.
Using the extended PAW setup for nickel, where also the 3p
electronic orbitals are included as valence states in the band
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FIG. 8. Magnon peak position at the �-point in iron, nickel, and
cobalt as a function of the inverse local field cutoff. Calculations
were performed on a (54, 54, 54) regular Monkhorst-Pack grid for
bcc and fcc structures and a (48, 48, 30) grid for hcp-Co, for all
materials using a broadening parameter of η = 200 meV. For iron,
ω� − 120 meV is plotted for all the points to be visible on a single
axis.

summation of Eq. (77), slows the gap error convergence even
more, but yields a smaller gap error for a plane wave cutoff
extrapolated to infinity. Based on these results, it would seem
that in order to eliminate the gap error altogether, one would
need to drop the frozen core approximation, use an infinite
plane wave cutoff, and possibly also improve the all-electron
partial wave completeness of the PAW data sets. This is bad
news, of course, but there are several practical ways to cir-
cumvent these limitations. As an example, one can invert the
Dyson equation (51) in another basis set than plane waves,
a strategy previously shown to yield smaller gap errors than
the ones reported here [24]. Additionally, different strategies
have been developed to enforce Goldstone’s theorem by in-
troducing information about the exchange-correlation kernel
into the Kohn-Sham susceptibility [26] or vice versa [24,25]
and in that way achieve the consistency needed to guarantee a
Goldstone mode.

G. Magnon dispersion convergence

As shown above, we are able to converge the gap error
ω� within a finite band summation, but not within a finite
plane wave representation. A natural question arises: Can we
converge the magnon dispersion itself? To investigate this, we
have computed the magnon peak positions for a set of wave
vectors in all four materials and as a function of empty shell
bands per atom and plane wave cutoff. Generally, the gap error
itself should not strongly influence the magnon dispersion.
However, it is important for the Landau damping that the
transverse magnetic excitation spectrum and the Stoner con-
tinuum is appropriately aligned as a function of frequency. For
the magnon dispersion convergence, we have used a broad-
ening parameter of η = 200 meV and applied a (54, 54, 54)
regular Monkhorst-Pack grid for the bcc and fcc structures,
while a (48, 48, 30) grid has been used for hcp-Co. With these
grids, we satisfy the 〈�ω〉 � 5 meV criterion. Even though η

itself is not converged, the effect of the broadening parameter
seen in Fig. 6 is sufficiently smooth that we believe the results
to be transferable to lower broadening. After extracting the
magnon peak positions from the transverse magnetic excita-
tion spectrum, we shift the peak positions by ω� to minimize
the effect of the gap error convergence on the convergence of
the full dispersion.

In Fig. 9 the magnon dispersion convergence as a func-
tion of empty shell bands per atom is presented. Clearly,
the magnon dispersion only weakly depends on inclusion of
excited states above the 3d-shell and above approximately 12
empty shell bands per atom, the magnon dispersion can be
considered well converged. Even without empty shell bands, a
good description of the overall magnon dispersion is achieved.
This is reassuring for the scalability to larger systems and
shows that the band summation in excited states is not a
practical limitation in linear response TDDFT for magnon
spectroscopy.

The magnon dispersion convergence in plane wave repre-
sentation is presented in Fig. 10. In comparison to the gap
error, it is much easier to converge the magnon dispersion
in terms of the plane wave cutoff as variations in the relative
magnon peak positions become insignificant above a 1000 eV
cutoff. For nickel with the extended PAW setups, we need a
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FIG. 9. Magnon peak positions relative to the �-peak as a function of the number of empty shell bands per atom included in the band
summation of Eq. (77). Red, green, and teal indicate the magnon peaks at wave vectors 1/3 of the way, 2/3 of the way, and at the end of the
paths � → N, � → X, and � → A (for bcc, fcc, and hcp). Yellow, purple, and blue indicate similar points on the path A → � in the second
BZ of hcp-Co.
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FIG. 10. Magnon peak positions relative to the �-peak as a function of inverse local field cutoff. Red, green, and teal indicate the magnon
peaks at wave vectors 1/3 of the way, 2/3 of the way, and at the end of the paths � → N, � → X, and � → A (for bcc, fcc, and hcp). Yellow,
purple, and blue indicate similar points on the path A → � in the second BZ of hcp-Co.
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cutoff of 1450 eV to converge the magnon peak positions,
yielding only small differences �1.7% from the minimal
setup, as previously discussed. This illustrates the usefulness
of a gap error correction scheme. For a given cutoff, the spec-
tra can be shifted such that the Goldstone condition of ωq = 0
is satisfied, and one is then not limited by the slow gap error
convergence. This implies that the numerical scheme can be
considered exact up to the limitations in PAW projectors and
frozen core states discussed above. However, the convergence
study also illustrates an important disadvantage of the present
implementation. Even though we are able to circumvent the
slow convergence of the gap error, a plane wave cutoff of
1000 eV becomes prohibitive for larger structures. The Dyson
equation (51) is expressed in matrices that scale in size with
the number of plane wave coefficients squared, and as a result,
the memory requirements quickly become a computational
bottleneck. Nevertheless, the results in Fig. 10 illustrate that
less accurate, yet qualitatively correct magnon dispersions
can be extracted at significantly smaller plane wave cutoffs,
especially when using minimal PAW setups. Once again, a
different representation of the spatial coordinates in the Dyson
equation may help to overcome this problem, but even within
the limitations of the plane wave representation and present
computational resources, the ALDA transverse magnetic sus-
ceptibility can be calculated for a wide range of collinear
materials.

IV. RESULTS

On the basis of the convergence study above, we have
computed the transverse magnetic excitation spectrum of bcc-
Fe, fcc-Ni, fcc-Co, and hcp-Co within the ALDA. For these
calculations, 12 empty shell bands per atom were used in
the band summation of Eq. (77) and a 1000 eV plane wave
cutoff was used in the plane wave representation of the Dyson
equation (51). Furthermore, a constant frequency shift was
applied in order to fulfill the Goldstone condition. To converge
the magnon dispersion for reduced wave vectors q inside the
low-frequency Stoner continuum, a broadening parameter of
η = 50 meV was used as well as (90, 90, 90), (84, 84, 84),
and (60, 60, 30) �-centered Monkhorst-Pack k-point grids
for the bcc, fcc, and hcp structures, respectively. Below the
Stoner continuum, where the acoustic magnon mode is free of
Landau damping, the magnon peak positions do not depend
on the broadening, and the the limit η → 0+ should be taken.
To resolve the full magnon spectrum in a single figure, we do
this in an approximate fashion by letting η be q-dependent.
We increase η quadratically as a function of |q| from
η = 5 meV at q = 0 to η = 50 meV at a threshold qt . For
wave vectors |q| > qt , η is held constant. We use a threshold
qt of |qN|/3, |qL|/3 and |qM|/3 for the bcc, fcc, and hcp
structures, respectively.

A. Fe (bcc)

For bcc-Fe, applying the LDA and using the experimental
lattice constant of a = 2.867 Å, we obtain a ferromagnetic
ground state with a spatially averaged spin polarization of
2.20 μB per iron atom. In Fig. 11(a) we present the calcu-
lated macroscopic transverse magnetic excitation spectrum

as a function of wave vector q and compare it to inelastic
neutron scattering (INS) data gathered in the [11̄0] scatter-
ing plane [42]. The transverse magnetic excitation spectrum
has been corrected for a gap error of ω� = 65.6 meV. The
experimental comparison is made to the same dataset in both
the � → N and � → H directions, as the experimentally ob-
served magnon dispersion is isotropic for frequencies up to at
least 120 meV [43]. For wave vectors shorter than 0.5 Å−1,
the magnon dispersion in our transverse magnetic excitation
spectrum is completely isotropic. At 0.5 Å−1 the dispersion
in magnon peak positions flattens out in the � → H direc-
tion, before making a jump to a plateau around 140 meV,
where the magnon dispersion takes a negative slope. The
first jump is shortly followed by a second jump to a new
plateau, again with a decreasing magnon frequency from
215 meV at 0.88 Å−1 to 180 meV at 1.07 Å−1. At this point,
the dispersion makes a third jump to 500 meV and the line
shape gets severely broadened. There continues to be a well-
defined peak position up to q ∼ 1.5 Å−1, where the magnon
frequency is 600 meV, but beyond this point the spectrum
becomes dominated by the low-frequency Stoner excitations,
and it is not possible to discern a collective magnon mode.
This is in contrast to the � → N direction, in which the
magnon mode remains well defined throughout the entire
first BZ with a single plateau around 150 meV and a total
bandwidth of 337 meV. The observed jumps in magnon dis-
persion as well as the disappearance of the magnon mode
in the � → H direction agree well with previous theoreti-
cal results [16,18,24,26,27,33]. The magnon frequency jumps
arise because the magnon mode crosses stripe-like features
in the Kohn-Sham spectrum corresponding to well-defined
Stoner excitations residing below the main Stoner continuum.
The appearance of stripe-like features is an itinerant electrons
effect and is further discussed in the context of fcc-Ni in
the following section as well as in the work of Friedrich
and coworkers [18]. Experimentally, a significant intensity
drop has been reported for wave vectors longer than 0.6 Å−1

[43], but a full experimental picture is not available as the
present data is restricted to frequencies below 160 meV. In the
frequency range available, the ALDA transverse magnetic ex-
citation spectrum seems to match the experimentally extracted
magnon dispersion well.

In Fig. 11(c) the extracted dispersion in magnon peak
positions along the � → N direction is compared with exper-
imental as well as ab initio references. Singh [27], Rousseau
[26], Buczek [24], and coworkers use different implementa-
tions of the LR-TDDFT methodology in the ALDA, removing
the gap error by applying a constant frequency shift, adding a
corrective contribution to χ+−

KS and forcing the smallest q = 0
energy eigenvalue of χ+− to zero, respectively. Müller and
coworkers [17] apply MBPT in the LDA, but with an ad hoc
adjustment of the exchange splitting to remove the gap error.
Cao and coworkers [33] apply the LDA to TD-DFPT, which
does not suffer from any gap error. At short wave vectors,
all theoretical dispersion relations agree nicely, but for wave
vectors longer than |q| = 0.3 |qN|, the Stoner continuum starts
to skew the magnon line shape and discrepancies between re-
sults start to form. Similar to the magnon dispersion presented
here, Singh, Rousseau, and Cao all report a plateau midway
between the � and N points, but at lower energies than the
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FIG. 11. Transverse magnetic excitation spectrum of bcc-Fe computed within the ALDA. (a) The macroscopic (unit-cell averaged) G = 0
component of the spectrum is shown as a heat map and function of wave vector q and frequency ω. The spectrum was computed on a N-�-H
band path and is compared to inelastic neutron scattering data [42]. (b) The spectral intensity is shown as a function of frequency for a range of
fixed values for q along the �-N path. (c) The magnon peak positions extracted along the �-N path are shown and compared to experimental
[42] as well as ab initio references [17,24,26,27,33].

plateau we find. The upper plateau frequency seems to match
better the experimental dispersion; however, it is unclear from
the experimental evidence whether there should be a plateau
or not. Buczek and collaborators report an overall magnon
dispersion that agrees very well with our results, except that
it does not display a frequency plateau. Finally, a wide range
of values are reported for the bandwidth among the different
theoretical methods.

Most likely, the discrepancies between theoretical (A)LDA
results arise from details in the representation of the Stoner
continuum. In Fig. 11(b) we present the transverse magnetic
excitation spectrum for wave vectors below the plateau and
around the onset of the plateau. Just below the plateau, the
magnon peak intensity is attenuated as the line shape at-
tains a long tail towards higher frequencies, resembling the
magnon line shapes of wave vectors on the plateau itself.
On the plateau, the magnon line shape more closely resem-
bles a Lorentzian with a less pronounced Landau damping.
In this way, the plateau shape is intimately related to the
low-frequency Stoner continuum, which is sensitive to both
broadening procedure and k-point sampling, as shown above,
as well as details in the DFT ground state calculation. Hope-
fully, the rigorous convergence analysis presented here can be
a step towards resolving some of the discrepancies between
different implementations in regards of the former. Concern-
ing the DFT ground states, there are discrepancies already

in the ground state magnetization reported. Singh, Rousseau,
Müller, Cao, and collaborators reports values for the LDA
average spin polarization of 2.00 μB, 2.11 μB, 2.20 μB, and
2.16 μB within their respective ground state methodologies.
This implies quantitatively different Fermi surfaces, which
will influence the low-frequency Stoner continuum and the
magnon modes embedded in it. Furthermore, the gap error
correction procedure can affect the frequency alignment of
magnon mode and Stoner continuum, which may also influ-
ence the magnon dispersion.

B. Ni (fcc)

In Fig. 12(a) we present the transverse magnetic excitation
spectrum of ferromagnetic fcc-Ni. The spectrum is based on
a LDA ground state calculation with lattice constant a =
3.524 Å, resulting in an average spin polarization per nickel
atom of 0.627 μB. The spectrum is presented as a function of
wave vector q along the X-�-L path and is compared to the
magnon dispersion as measured by inelastic neutron scatter-
ing [44]. A gap error of ω� = −21.5 meV was accounted for.
The magnon dispersion extracted from the transverse mag-
netic excitation spectrum is isotropic for small wave vectors,
but at q = 0.17 qX (q = 0.3 Å−1) there is a sudden increase
in the magnon frequency, which is not present in the � →
L direction. For wave vectors longer than q = 0.3 Å−1, the
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FIG. 12. Transverse magnetic excitation spectrum of fcc-Ni computed within the ALDA. (a) The macroscopic (unit-cell averaged) G = 0
component of the spectrum is shown as a heat map and function of wave vector q and frequency ω. The spectrum was computed on a X-�-L
band path and is compared to inelastic neutron scattering data [44]. (b) The spectral intensity is shown as a function of frequency for a range
of fixed values for q along the �-X path. The corresponding Kohn-Sham spectrum of Stoner excitations (multiplied in intensity by a factor of
25) is shown as translucent lines. (c) The magnon peak positions extracted along the �-X path are shown and compared to experimental [44]
as well as ab initio references [15,17,24,26,27,33].

magnon dispersion remains slightly anisotropic. The acoustic
magnon mode remains well defined in both directions all the
way to the first BZ edge, although the spectral width of the
mode is more severely broadened due to Landau damping
along the � → L direction for long wave vectors. Along
the � → X path, the magnon dispersion attains a maximum
frequency of 504 meV at q = 1.19 Å−1 before decreasing
to a value of 484 meV at the BZ edge. Along the � → L
direction, the magnon frequency is maximal at the BZ edge
itself resulting in a bandwidth of 441 meV.

Except for short wave vectors along the � → L direction,
the computed magnon excitation spectrum fails to reproduce
the experimentally observed magnon dispersion. The ALDA
treatment results in a significantly more dispersive magnon
mode compared to experiment, and where two coexisting
modes are observed experimentally along the � → X direc-
tion, we observe mostly just one. In accordance with previous
(A)LDA studies [15,18,24,33], a double-peak line shape is
observed around q ∼ 0.15 qX, that is, at the point where
there is a jump in the magnon frequency, but the coexistence
happens only in a very narrow range of wave vectors q. In
Fig. 12(b) we present the spectral line shapes around this
value, for both the spectrum of transverse magnetic excita-
tions as well as the single-particle Stoner excitations encoded
in S+−

KS (q, ω). For the wave vectors shorter than 0.17 |qX|,

the line shape of S+−(q, ω) has a shoulder above the main
magnon peak, clearly originating from a well-defined single-
particle Stoner peak sitting below the main Stoner continuum
in S+−

KS (q, ω). As the magnon mode and Stoner peak become
close in frequency, a new collective peak is developed above
the Stoner peak, coexisting with the Goldstone mode only at
q = 0.14 qX , where the Stoner peak is wedged in between the
two collective peaks. At q = 0.17 qX , the Stoner peak disap-
pears to negative frequencies and the upper collective magnon
mode acquires the entire spectral weight. A comprehensive
discussion of this phenomena stemming from a stripe-like
feature in the single-particle Stoner spectrum can be found
in the previous literature [14,15,18,24].

In Fig. 12(c) we compare the extracted magnon dispersion
along the � → X direction with theoretical literature values
as well as the experimental data. Şaşıoğlu and coworkers
[15] treat the problem within MBPT, employing the LDA and
scaling the screened Coulomb potential in order to remove
the gap error. The other theoretical references are described
in Sec. IV A. Between different methodologies, there seems
to be a good agreement for the (A)LDA magnon dispersion
of wave vectors up to q ∼ 4/9 qX. Beyond this point there
are significant differences in the extracted magnon frequency,
resulting once again in a broad range of different values for
the bandwidth. However, there seems to be a good agreement
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FIG. 13. Transverse magnetic excitation spectrum of fcc-Co computed within the ALDA. (a) The macroscopic (unit-cell averaged) G = 0
component of the spectrum is shown as a heat map and function of wave vector q and frequency ω. The spectrum was computed on a X-�-L
band path and is compared to inelastic scanning tunneling spectroscopy data [11]. (b) The spectral intensity is shown as a function of frequency
for a range of fixed values for q along the �-X path. (c) The magnon peak positions extracted along the �-X path are shown and compared to
experimental [11] as well as ab initio references [17,24,27].

about the position of the magnon dispersion maxima. As
argued in Sec. IV A, at least some of the quantitative discrep-
ancies in the magnon dispersion inside the Stoner continuum
can be attributed to differences in the underlying DFT ground
states and to improve consistency of ALDA results in the
future, one would need to investigate why the different ground
state DFT methodologies result in different Stoner spectra.
To actually match the experimental dispersion, one would
need to go beyond the (A)LDA. The poor performance of
(A)LDA in the case of fcc-Ni is known to originate from the
exchange splitting being overestimated by roughly a factor of
two [15]. As seen in Fig. 12(c), Müller and coworkers obtain
an improved description of the magnon dispersion, which is
due to their adjustment of the exchange splitting in connection
with the removal of the gap error. To get an improved ab initio
description of fcc-Ni within LR-TDDFT, one would need an
exchange-correlation functional that improves the exchange
splitting in its own right. Furthermore, one can also expect
inclusion of nonlocal effects in the exchange part of the kernel
to decrease the magnon (spin-wave) stiffness [45].

C. Co (fcc)

Similar to the treatment of bcc-Fe and fcc-Ni presented
above, we have computed the transverse magnetic excitation

spectrum for fcc-Co and compared the extracted magnon
peak positions with experimental as well as theoretical refer-
ences. These results are presented in Fig. 13. The spectrum
was computed on the basis of a LDA ground state with
average spin polarization per Co atom of 1.62 μB, using
a = 3.539 Å for the lattice constant. The original gap error
was ω� = −10.8 meV. The computed magnon spectrum in
Fig. 13(a) is fairly isotropic even at long wave vectors. For
wave vectors longer than q = 0.44 Å−1, local differences in
the dispersion between directions start occurring, but only
beyond q = 1.35 Å−1 do the branches start to split. At this
point, (q = 0.88 |qL|), the magnon mode approaches the BZ
edge in the � → L direction and starts to flatten out, whereas
the mode continues to disperse towards higher frequencies in
the � → X direction. As such, we end up with bandwidths of
555 meV and 757 meV in the two directions, respectively.

As evident from Figs. 13(a) and 13(c), the computed
magnon dispersion compares very well to the reference ex-
perimental dispersion, which itself was inferred from inelastic
scanning tunneling spectroscopy data measured on a nine-
monolayer Co/Cu(100) film [11]. We compare with the same
data set in both directions, as most of the data points lie
within the isotropic dispersion range. In addition to the exper-
imental comparison, there is also a good agreement between
the entire dispersion computed within ALDA using different

245110-20



DYNAMIC TRANSVERSE MAGNETIC SUSCEPTIBILITY IN … PHYSICAL REVIEW B 103, 245110 (2021)

Γ M K Γ A Γ K M Γ
q

0

200

400

600

800
ω

[m
eV

]

This work
Buczek (theo.)
Perring (exp.)

(0,0,0) (0,0,0) (0,0,1) (0,0,1)
G

100

101

S
+
−

G
(q

,ω
)

[a
.u

.]

FIG. 14. Transverse magnetic excitation spectrum of hcp-Co computed within the ALDA. The spectrum is shown as a heat map and
function of wave vector G + q and frequency ω. The spectrum was computed on a �-M-K-�-A band path for the reduced wave vector q
(lower axis) and is shown in the first and second Brillouin Zones (upper axis). The magnon peak positions are plotted on top of the heat map
and compared to inelastic neutron scattering data [46] as well as ALDA results from the literature [24].

implementations of LR-TDDFT. This may be a result of
the excitation spectrum having a more trivial dependence of
the line shape as a function of q compared to the cases of
bcc-Fe and fcc-Ni. In Fig. 13(b) the spectral line shapes are
shown for wave vectors evenly distributed along the � →
X path. Most of the line shapes are well approximated by
Lorentzians of increasing width, meaning that the Stoner con-
tinuum mainly broadens the collective magnon mode without
altering its shape. If the low-frequency Stoner continuum does
not strongly influence the magnon peak positions, this implies
that the theoretical magnon dispersion is less susceptible to
subtle differences in the DFT ground state calculation on
which it is based.

D. Co (hcp)

As the last material investigated in this study, we present
the transverse magnetic excitation spectrum of hcp-Co in
Fig. 14. Using a = 2.507 Å for the lattice constant, we obtain
a LDA ground state with an average spin polarization of
1.59 μB, very close to the value in fcc-Co. The spectrum has
been corrected for a gap error of ω� = −8.1 meV. Because
hcp-Co has two magnetic atoms in the unit cell, the magnon
spectrum include an optical mode as well as the acoustic
(Goldstone) mode. The spectral function of transverse mag-
netic excitations, S+−

G (q, ω), record excited states where the
spin orientation is precessing with a wave vector G + q with
respect to the ground state. Accordingly, the optical mode
manifests itself for wave vectors with which the spin orien-
tation of the two magnetic atoms in the same unit cell are
precessing out of phase. This is the case for the second BZ
in hcp-Co, and in Fig. 14 we show the spectral function in the
second BZ as well as the first. We present also the extracted
magnon peak positions and compare them to experimental

INS data [46] as well as reference ALDA values from a
literature LR-TDDFT calculation [24].

We obtain well-defined magnon modes for all investigated
wave vectors G + q, although the optical mode is substan-
tially attenuated by Landau damping. The magnon dispersion
is isotropic along all three directions up to q = 0.48 Å−1. Be-
yond this point, the magnon dispersion is generally steepest in
the � → A direction, and at the second BZ center, 1.545 Å−1

from the reciprocal space origin, the magnon dispersion at-
tains a maximum with a frequency of 553 meV. The magnon
frequencies at the first BZ edge is very similar at the M and K
points, with 471 meV and 475 meV, respectively. Because the
M-point (q = 1.447 Å−1) lies closer to the �-point compared
to the K-point (q = 1.671 Å−1), the upper part of the magnon
dispersion is generally slightly steeper along the � → M path
compared to the � → K path.

Overall, hcp-Co has a relatively isotropic magnon disper-
sion, as is the case of fcc-Co. The extracted magnon peak
positions match quite well with experiment along the � → M
direction, whereas the upper part of the dispersion towards
the second BZ center is somewhat overestimated. These con-
clusions are consistent with previous ALDA results (also
plotted). However, we see some discrepancies for the magnon
dispersion of the optical branch between the LR-TDDFT im-
plementations. The entire �-K-M-� optical magnon branch
lies in close proximity to a dense region of the Stoner contin-
uum. As such, the magnon dispersion is strongly influenced
by local variations in S+−

KS,G(q, ω) and at least some of the
discrepancies can be attributed to subtle differences in the
respective DFT ground states. Meanwhile, the small bumps in
the �-K-M-� optical magnon dispersion might also indicate
that the Stoner continuum was not appropriately converged
with respect to the k-point density and broadening parameter
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η. In the convergence analysis underlying the present choice
of parameters, the average frequency displacement, 〈�ω〉,
was analyzed for S+−

KS,G(q, ω) within the first BZ only.

V. SUMMARY AND OUTLOOK

We have applied the Kubo formalism to time-dependent
spin-density functional theory and shown how to compute the
four-component plane wave susceptibility from first princi-
ples. Although the theory is already well known, we have
provided a self-contained compilation suitable for plane wave
treatments within LR-TDDFT. The methodology has been
implemented in the GPAW electronic structure package,
enabling accurate computations of the transverse magnetic
susceptibility. Within the limitations of the frozen core ap-
proximation and a finite set of PAW projector functions, the
implemented methodology is formally exact, given that proper
convergence in computational parameters is achieved. Thus,
all approximations are due to the collinear spin-density func-
tional theory framework and the chosen exchange-correlation
functional/kernel.

A detailed convergence analysis was performed regarding
spectral broadening, k-point sampling, plane wave represen-
tation and truncation of the unoccupied bands. In particular, it
was shown that in order to obtain an appropriate description
of the low-frequency Stoner continuum, the k-point density
and broadening parameter η need to be converged in parallel.
To this end, we have introduced the average displacement
frequency 〈�ω〉, which provides reliable guidance for choos-
ing values of η that result in converged magnon dispersion
relations. 〈�ω〉 is calculated from the single-particle Stoner
spectrum only, which itself is fast to compute. We have as-
sessed the gap error convergence and found that it is not
possible to converge ω� within a finite plane wave basis.
However, the gap error can be effectively accounted for by ap-
plying a constant shift to the spectrum of transverse magnetic
excitations, such that the Goldstone condition is fulfilled. As
a result, it is possible to attain convergence of the magnon
dispersion relation itself within a finite basis set and a modest
number of unoccupied bands.

Using the implemented methodology and converged nu-
merical parameters, the transverse magnetic excitation spec-
trum was computed for 3d transition metals iron, nickel,
and cobalt. For bcc-Fe, fcc-Co, and hcp-Co, the ALDA was
shown to reproduce experimental magnon dispersions in a
satisfactory manner, whereas the magnon dispersion in fcc-Ni
is overestimated due to the well-known overestimation of the
ground state exchange splitting energy �x with LDA. All
results match previous (A)LDA literature well for short wave
vectors q, but inside the low-frequency Stoner continuum,
literature values for the magnon peak positions vary substan-
tially. These discrepancies were discussed in detail and mostly
attributed subtle differences in the underlying DFT ground
states.

First principles calculations of magnons are rather scarce
in the literature and most studies have focused on iron, nickel,
or cobalt. This is likely due to the conspicuous role of these
materials when discussing magnetic solids and partly due to
the fact that these materials can be described within small unit

cells, rendering otherwise prohibitively demanding TDDFT
computations feasible. There is, however, a vast experimental
literature on transverse magnetic excitations in a wide range of
solids, and it is our hope that first principles calculation of the
transverse magnetic susceptibility can be carried out routinely
in the future. The convergence study of this work implies
that the treatment of complex magnetic materials requires
additional method development in order to lower the demands
on the computational power, but several well-known magnetic
materials with small unit cells should be within reach using
the present framework [47,48]. To this end, itinerant magnets
seem to be the most challenging, as the Stoner spectrum is
gapped for insulators and the magnons less sensitive towards
k-point sampling and broadening. In addition, the Heisenberg
model often provides a rather accurate description for insu-
lators, with parameters that can be obtained directly from
ground state DFT calculations [49–51]. Still, it would be
of fundamental interest to compare the dispersion relations
obtained from a first principles Heisenberg model with a
direct computation from TDDFT. Such a comparison could
yield valuable insight into the limitations and virtues of both
methods.

In this work, we have applied a collinear description of the
3d transition metals, as spin-orbit interactions are nearly neg-
ligible for iron, cobalt, and nickel. However, materials with
strong spin-orbit coupling may exhibit a wealth of interest-
ing effects. Specifically, spin-orbit effects provide a coupling
between the transverse and longitudinal magnetic excitations
as well as to the density response. This implies, for example,
that magnons can be accessed by perturbing electric fields
and that magnons may couple to plasmons and excitons in
metals and insulators, respectively. Moreover, spin-orbit cou-
pling may induce topological gaps between magnon branches
[52,53], which implies the existence of topological robust
surface magnons, or induce nonreciprocity in the magnon
dispersion relation [54]. We believe that first principles cal-
culations could help unravel such exotic phenomena in the
future.

APPENDIX A: LINEAR RESPONSE THEORY

1. Dynamic susceptibilities and spectral functions

For experimental as well as theoretical spectroscopy, the
central object of interest is the susceptibility of the system.
In the framework of linear response theory, the retarded sus-
ceptibility χBA(t − t ′) gives the change in a system coordinate
B̂ = B̂† at time t to a weak external perturbation in the system
coordinate Â = Â† at time t ′, to linear order:

Ĥ (t ) = Ĥ0 + Ĥext (t ), Ĥext (t ) = Â f (t ), (A1)

〈δB̂(t )〉 = 〈B̂(t )〉 − 〈B̂〉0 =
∫ ∞

−∞
dt ′ χBA(t − t ′) f (t ′). (A2)

Here Ĥ0 is the time-independent system Hamiltonian, f (t ) is
a coordinate external to the system, and 〈B̂〉0 is the expecta-
tion value of the coordinate B̂ in the absence of the external
perturbation Ĥext (t ).
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The retarded susceptibility can be computed from the Kubo
formula [55]

χBA(t − t ′) = − i

h̄
θ (t − t ′)〈 [B̂0(t ), Â0(t ′)] 〉0, (A3)

where θ (t − t ′) is the step function, making the susceptibility
retarded, while Â0(t ′) = eiĤ0t ′/h̄Â e−iĤ0t ′/h̄ and B̂0(t ) carry the
time dependence in the interaction picture. Due to the step
function in Eq. (A3), the retarded susceptibility is analytic
in the upper half of the complex frequency plane. Inserting
a complete set of energy eigenstates to the system Hamil-
tonian Ĥ0 and carrying out the Fourier-Laplace transform
(see Appendix B 1 for definitions), one obtains the dynamic
susceptibility in the Lehmann representation:

χBA(z = ω + iη) =
∑
α,α′

〈α|B̂|α′〉〈α′|Â|α〉
h̄ω − (Eα′ − Eα ) + ih̄η

(nα − nα′ ),

(A4)
where z is the complex frequency and ω and η are real with
η > 0. |α〉 denotes an energy eigenstate of Ĥ0 with energy
Eα and population factor nα (when the system in the absence
of the perturbation is in thermal equilibrium with a bath of
temperature T ).

If Ĥ0 is known and can be diagonalized, the Lehmann
representation (A4) can be used to evaluate the dynamic
susceptibility. Conversely, (A4) can be used to interpret a mea-
sured or computed susceptibility in terms of the fundamental
excitations of the system. In particular, it is useful to split the
dynamic susceptibility into its reactive and dissipative parts,
χ ′

BA(z) and χ ′′
BA(z) [6]:

χBA(z) = χ ′
BA(z) + iχ ′′

BA(z), (A5a)

χ ′
BA(z) = χ ′

AB(−z∗) = 1

2
[χBA(z) + χAB(−z∗)], (A5b)

χ ′′
BA(z) = −χ ′′

AB(−z∗) = 1

2i
[χBA(z) − χAB(−z∗)]. (A5c)

This operation has the effect of splitting the simple poles in
the Lehmann representation (A4) into its real and imaginary
parts:

χ ′
BA(ω + iη) =

∑
α,α′

〈α|B̂|α′〉〈α′|Â|α〉(nα − nα′ )

× Re

[
1

h̄ω − (Eα′ − Eα ) + ih̄η

]
, (A6a)

χ ′′
BA(ω + iη) =

∑
α,α′

〈α|B̂|α′〉〈α′|Â|α〉(nα − nα′ )

× Im

[
1

h̄ω − (Eα′ − Eα ) + ih̄η

]
, (A6b)

of which the imaginary part of the simple poles are
Lorentzians of width 2h̄η and amplitude −π . In the limit
η → 0+, for which the notation χBA(ω) = χBA(ω + i0+) is
used, the Lorentzians become δ functions.

For a system Ĥ0 with a nondegenerate ground state |α0〉
and ground state energy E0, the Lehmann representation (A4)
reduces to a single sum over excited states in the zero temper-

ature limit:

χBA(ω + iη) =
∑
α �=α0

[
〈α0|B̂|α〉〈α|Â|α0〉

h̄ω − (Eα − E0) + ih̄η

− 〈α0|Â|α〉〈α|B̂|α0〉
h̄ω + (Eα − E0) + ih̄η

]
. (A7)

Moreover, the dissipative part of the dynamic susceptibility
may be expressed as a spectral function for the induced exci-
tations:

SBA(ω) ≡ −χ ′′
BA(ω)

π
= ABA(ω) − AAB(−ω), (A8)

ABA(ω) =
∑
α �=α0

〈α0|B̂|α〉〈α|Â|α0〉 δ(h̄ω − (Eα − E0)). (A9)

Thus, the dissipative part of the dynamic susceptibility con-
tains both the spectrum of excited states generated by Â,
reversed by B̂, at positive frequencies, and the spectrum gen-
erated by B̂, reversed by Â, at negative frequencies. In this
way, the susceptibility not only is a quantity characterizing the
system response to external perturbations, but it also contains
valuable information about the eigenstates of the underlying
quantum system.

The intimate relation between the underlying quantum sys-
tem and the dynamic susceptibility is further illustrated by
the spectral moments of its dissipative part. The moments
generate a range of expectation values of the quantum system,
valid also at finite temperatures [6,56]:∫ ∞

−∞
(h̄ω)nSBA(ω) dh̄ω = (−h̄)n

〈[
L̂n

0B̂, Â
]〉

0, (A10)

where L̂0 is the Liouville operator of the system,

L̂0B̂ = 1

h̄
[Ĥ0, B̂]. (A11)

Equation (A10) is commonly refered to as the nth-order sum
rule.

2. Linear response theory and spectroscopy

In the context of a spectroscopic experiment, the dissi-
pative part of the dynamic susceptibility, χ ′′

BA(ω), gives the
spectrum of transitions between energy eigenstates induced
by the perturbation in question (A6b). By the virtue of the
fluctuation-dissipation theorem [55–58], this spectrum is di-
rectly related to the fundamental fluctuations of the system as
well as the energy dissipation.

More specifically, one may consider the response to a har-
monic perturbation [6]

f (t ) = f0 cos(ω0t ) = f0

2
(e−iω0t + c.c.). (A12)

Insertion into the response relation (A2) and application of the
convolution theorem yields

〈δB̂(t )〉 = f0

2
[χBA(ω0)e−iω0t + χBA(−ω0)eiω0t ]. (A13)

Now, using the Lehmann representation (A4), it is straightfor-
ward to show that any retarded susceptibility as defined by the
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Kubo formula (A3) satisfy

χB†A† (−z∗) = χ∗
BA(z). (A14)

Insertion into Eq. (A13) reveals that the real and imaginary
parts of the dynamic susceptibility gives the response in- and
out-of-phase of the harmonic perturbation, respectively:

〈δB̂(t )〉 = f0
{
Re[χBA(ω0)] cos(ω0t )

+ Im[χBA(ω0)] sin(ω0t )}. (A15)

Finally, only the out-of-phase response contribute to energy
dissipation on average. Consequently, the mean rate of energy
absorption in the system (Q = d〈Ĥ〉/dt = 〈Â(t )〉df /dt) is
proportional to Im[χAA(ω0)]:

Q̄ = − 1
2 f 2

0 ω0Im[χAA(ω0)] = − 1
2 f 2

0 ω0χ
′′
AA(ω0). (A16)

In the last equality, it was used that Eq. (A14) implies
χAA† (−z∗) = χ∗

A†A(z), meaning that

χ ′
A†A(z) = Re[χA†A(z)], (A17a)

χ ′′
A†A(z) = Im[χA†A(z)]. (A17b)

With this in hand, various spectroscopic techniques can di-
rectly probe χ ′′

AA(ω) by tracking the energy dissipated from the
source of the perturbation. Finally, the energy dissipation is
related directly to the transitions between system eigenstates
through Eq. (A6b) or specific ground state excitations through
Eqs. (A8) and (A9).

3. Dynamic susceptibilities of periodic crystals

As discussed, the dynamic susceptibility is a fundamental
property of any quantum system Ĥ0. In particular, it gives the
system response to a weak external perturbation and charac-
terizes the spectrum of system excitations that the perturbation
generates to linear order. In the case of real life materials, one
has to consider a perturbation which varies in both time and
space. If the Born-Oppenheimer approximation is employed,
such that Ĥ0 only needs to describe the electronic degrees of
freedom in the material, such a perturbation may be written

Ĥext (t ) =
∫

dr Â(r) f (r, t ), (A18)

where Â(r) = Â†(r) is taken to be an electronic one-body
operator. The Kubo formalism itself is not restricted to the
consideration of one-body operators and what follows can be
easily generalized if needed. Now the retarded susceptibility
gives the electronic system response in some coordinate B̂
(also taken to be a one-body operator) at position r and time t
to a weak perturbation of the system coordinate Â at position
r′ and time t ′:

〈δB̂(r, t )〉 =
∫ ∞

−∞
dt ′

∫
dr′ χBA(r, r′, t − t ′) f (r′, t ′). (A19)

The Kubo theory described above can be easily applied to
χBA(r, r′, t − t ′), simply by letting Â = Â(r) and B̂ = B̂(r) =
B̂†(r). In particular, the transition matrix elements entering the
Lehmann representation (A4) will now depend on position:

Aα′α (r) ≡ 〈α′|Â(r)|α〉. (A20)

In the study of periodic crystals, the material in question
is represented as a quantum system which is invariant under
lattice translations, [T̂R, Ĥ0] = 0. Here T̂R denotes the unitary
generator of translations r → r − R, where R is any lattice
vector connecting two points on the Bravais lattice of the
crystal. The commutation relation implies that the eigenstates
of T̂R diagonalize Ĥ0, and, according to Bloch’s theorem, the
eigenvalues may be written in terms of real wave vectors kα:

T̂R|α〉 = eikα ·R|α〉. (A21)

This has important consequences for the dynamic susceptibil-
ity of the system. It implies that all transition matrix elements
transform as Bloch waves under lattice translations:

Aα′α (r + R) = 〈α′|Â(r + R)|α〉 = 〈α′|T̂ †
R Â(r)T̂R|α〉

= e−iqα′α ·RAα′α (r). (A22)

The reduced wave vector qα′α ≡ (kα′ − kα ) − Gα′α , repre-
sents the difference in crystal momentum between the two
states |α′〉 and |α〉, where Gα′α is a reciprocal lattice vec-
tor chosen such that qα′α lies within the first BZ. Following
Eq. (A22), the transition matrix elements can be written on a
Bloch wave form, with periodic parts aα′α (r + R) = aα′α (r):

Aα′α (r) = 
cell



e−iqα′α ·raα′α (r). (A23)

Here the periodic parts have been normalized by the crystal
volume 
 and the unit cell volume 
cell, so as to make aα′α (r)
size intensive, that is, independent of the crystal volume. As a
consequence of Eq. (A23),

Bαα′ (r + R)Aα′α (r′ + R) = Bαα′ (r)Aα′α (r′), (A24)

and from Eq. (A4), it is concluded that also the dynamic
susceptibility is a periodic function:

χBA(r + R, r′ + R, z) = χBA(r, r′, z). (A25)

The retarded susceptibility as defined by Eq. (A19) de-
scribes the system response on all time and length scales
simultaneously. χBA(r, r0, t − t0) gives the response at a
specific position r and time t to a perturbation which is com-
pletely local in space and time: f (r, t ) ∝ δ(r − r0)δ(t − t0).
Thus, it describes the microscopic details and mechanisms
that can be activated by an external source, but it does not
directly describe the macroscopic properties of the material.
To investigate the macroscopic properties embedded in the
susceptibility, the response to a plane wave perturbation is
considered:

Ĥext (t ) =
∫

dr Â(r)
f0

2
[ei(k0·r−ω0t ) + c.c.]. (A26)

Then one can ask: To linear order in f0 ∈ R, what is the
strength of induced plane wave fluctuations in the system
coordinate B̂,

〈δB̂(k, ω)〉 =
∫ ∞

−∞
dt

∫
dr e−i(k·r−ωt )〈δB̂(r, t )〉? (A27)

To answer this question, the plane wave susceptibility is
introduced as the lattice Fourier transform of the dynamic

245110-24



DYNAMIC TRANSVERSE MAGNETIC SUSCEPTIBILITY IN … PHYSICAL REVIEW B 103, 245110 (2021)

susceptibility:

χGG′
BA (q, z) ≡

∫∫
dr dr′



e−i(G+q)·rχBA(r, r′, z)ei(G′+q)·r′

,

(A28)
where G and G′ are reciprocal lattice vectors, while q is a
wave vector within the first BZ. Now, due to the periodicity of
the dynamic susceptibility (A25), its spatial Fourier transform
is diagonal in wave vectors q and q′ (see Appendix B 2):

χBA(G + q, G′ + q′, z) = (2π )D



χGG′

BA (q, z)δ(q − q′),
(A29)

where D is the dimensionality of the problem. With this,
Eqs. (A19) and (A26) are inserted into Eq. (A27), and the
convolution theorem is used to obtain

〈δB̂(k, ω)〉
(2π )D+1

= f0

2

[
χ

GG0
BA (q, ω)δ(q − q0)δ(ω − ω0)

+χ
G−G0
BA (q, ω)δ(q + q0)δ(ω + ω0)

]
, (A30)

where k = G + q and k0 = G0 + q0. Inverting the Fourier
transforms of Eq. (A27),

〈δB̂(r, t )〉 = f0

2

∑
G

[
χ

GG0
BA (q0, ω0)ei([G+q0]·r−ω0t )

+χ
−G−G0
BA (−q0,−ω0)e−i([G+q0]·r−ω0t )

]
. (A31)

From this, the physical interpretation of the plane wave sus-
ceptibility, χGG′

BA (q, ω), is clear: It is a fundamental material
property, giving the plane wave coefficients of the material
response in coordinate B̂ to a plane wave perturbation in
coordinate Â with wave vector G′ + q and frequency ω per
source strength f0, a response which is diagonal in both ω

and q.

4. Lehmann representation of the plane wave susceptibility

So far, the retarded susceptibility was introduced and de-
fined in terms of the linear response in system coordinates
assumed to be Hermitian Â† = Â and B̂† = B̂; see Eqs. (A1)
and (A2). More generally, operators that are not necessarily
hermitian may be considered taking the Kubo formula (A3) it-
self as the definition of a retarded susceptibility. Starting from
the Kubo formula, the Lehmann representation (A4) and the
separation into reactive and dissipative parts (A6) still hold,
meaning that also dynamic susceptibilities of non-Hermitian
operators are made up out of spectra of excited states in the
system.

For the plane wave susceptibility, one may use the field
operators in the Fourier basis,

Â(Q) ≡
∫

dr e−iQ·rÂ(r), (A32)

with which the susceptibility can be written on a form consis-
tent with Kubo theory:

χGG′
BA (q, z) = 1



χβα (z), (A33a)

β̂ = B̂(G + q), α̂ = Â(−G′ − q). (A33b)

As a result, the plane wave susceptibility also can be split up in
reactive and dissipative parts by applying Eq. (A5) to χβα (z).

In order to do this, it is used that the transition matrix elements
are Bloch waves (A23):

〈α′|Â(−G − q)|α〉 = aα′α (−G) δq,qα′α , (A34)

where δq,qα′α is a Kroenecker-δ counting pairs of energy eigen-
states α′, α with qα′α = q and aα′α (G) is the plane wave
coefficient of the periodic part of the transition matrix ele-
ments

aα′α (G) =
∫


cell

dr e−iG·raα′α (r). (A35)

With this, the Lehmann representation of the plane wave sus-
ceptibility may be written directly from Eq. (A4),

χGG′
BA (q, z) = 1




∑
α,α′

bαα′ (G)aα′α (−G′)
h̄ω − (Eα′ − Eα ) + ih̄η

(nα − nα′ )δq,qα′α ,

(A36)

which may be seen as a generalization of the results for the
dielectric function from Alder [59] and Wiser [60]. Likewise,
the reactive and dissipative parts of the plane wave suscepti-
bility can be written directly from Eq. (A6):

χ ′
βα (ω + iη) =

∑
α,α′

bαα′ (G)aα′α (−G′)(nα − nα′ )δq,qα′α

× Re

[
1

h̄ω − (Eα′ − Eα ) + ih̄η

]
, (A37a)

χ ′′
βα (ω + iη) =

∑
α,α′

bαα′ (G)aα′α (−G′)(nα − nα′ )δq,qα′α

× Im

[
1

h̄ω − (Eα′ − Eα ) + ih̄η

]
. (A37b)

Thus, in the case of the plane wave susceptibility, χGG′
BA (q, z),

the dissipative part is a spectral function for transitions
between energy eigenstates with a difference in crystal mo-
mentum h̄q and energy h̄ω, transitions which can be induced
by Â(−G′ − q), reversed by B̂(G + q) and vice versa.

5. Energy dissipation in periodic crystals

In Sec. A 3 it was shown that the plane wave susceptibility,
χGG′

BA (q, z), gives the plane wave coefficients of the linear
response in system coordinate B̂ to a plane wave perturbation
in coordinate Â. As in Sec. A 1 the out-of-phase response to
the full sinusoidal perturbation (A26) is needed to compute
the energy dissipation. Once again, with Â†(r) = Â(r) and
B̂†(r) = B̂(r), Eq. (A14) may be used to rewrite

χ−G−G′
BA (−q,−z∗) = 1



χB(−G−q) A(G′+q)(−z∗)

= 1



χB(G+q)† A(−G′−q)† (−z∗)

= 1



χ∗

B(G+q) A(−G′−q)(z)

= χGG′ ∗
BA (q, z). (A38)
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With this result, insertion into Eq. (A31) yields

〈δB̂(r, t )〉 = f0

∑
G

{
Re

[
χ

GG0
BA (q0, ω0)

]
× cos([G + q0] · r − ω0t )

− Im
[
χ

GG0
BA (q0, ω0)

]
sin([G + q0] · r − ω0t )

}
.

(A39)

In full analogy with Eq. (A15), the real and imaginary parts
of the plane wave susceptibility gives the response in- and
out-of-phase of the harmonic perturbation, respectively. Using
Eqs. (A26) and (A39), the mean rate of energy absorption may
be computed:

Q̄ = − 1
2 f 2

0 ω0 
 Im
[
χ

G0G0
AA (q0, ω0)

]
. (A40)

Compared to Eq. (A16), the plane wave susceptibility has
simply been normalized by the crystal volume, such as to
make it a size intensive material property, whereas the dy-
namic susceptibility in Eq. (A16) is a property of the quantum
system Ĥ0.

For a more general perturbation than that of a single plane
wave component in Eq. (A26), the energy dissipation will be
governed by the full plane wave spectrum of induced transi-
tions

SGG′
BA (q, ω) ≡ − 1




χ ′′
βα (ω)

π

= − 1

2π i

[
χGG′

BA (q, ω) − χ−G′−G
AB (−q,−ω)

]
.

(A41)

From Eq. (A17b) it follows that the imaginary part and the
dissipative part of the plane wave susceptibility are the same
along the diagonal. Then, using Eq. (A37b), a clear connection
from the Kubo theory to the quasiparticle picture can be made:

SGG
AA (q, ω) = − Im

[
χGG

AA (q, ω)
]

π

= 1




∑
α,α′

|aα′α (−G)|2(nα − nα′ )

× δq,qα′α δ(h̄ω − (Eα′ − Eα )). (A42)

When various spectroscopic experiments are carried out,
energy dissipation is a direct manifestation of transitions

between the energy eigenstates of the system. Through
Eqs. (A40) and (A42), the rate of energy absorption in a
material at momentum transfer h̄q and transition energy h̄ω

is proportional to the spectral density of eigenstate transitions
associated with quasiparticles of crystal momentum h̄qα′α =
h̄q and energy Eα′ − Eα = h̄ω. The spectrum is weighted by
the periodic part of the transition matrix elements associated
to the spectroscopic technique in question.

APPENDIX B: FOURIER TRANSFORMS

1. Temporal Fourier transform

We use the following definition for the temporal Fourier-
Laplace transform to complex frequencies:

χBA(z) =
∫ ∞

−∞
dt χBA(t )eizt . (B1)

For retarded susceptibilities, χBA(z) is analytic in the upper
half complex plane and has the inverse transform

χBA(t ) = lim
η→0+

∫ ∞

−∞

dω

2π
χBA(ω + iη)e−iωt . (B2)

2. Spatial Fourier transform

For the spatial Fourier transform, the following definition
is used:

f (Q) =
∫

dr f (r)e−iQ·r. (B3)

For two-point functions, f (r, r′), the spatial Fourier transform
is generalized as

f (Q, Q′) = 1




∫∫
dr dr′ e−iQ·r f (r, r′)eiQ′ ·r′

, (B4)

where 
 is the crystal volume.
Considering a crystal with Bravais lattice points R and unit

cell volume 
cell, we may change the integration variables:∫∫
dr dr′ g(r, r′) =

∑
R

∫

cell

dr
∫

dr′ g(r + R, r′ + R).

(B5)
Now take G, G′ to be reciprocal lattice vectors and q, q′ to be
a wave vectors within the first BZ, then the Fourier transform
of a periodic two-point function f (r + R, r′ + R) = f (r, r′)
reduces:

f (G + q, G′ + q) = 1




∑
R

∫

cell

dr
∫

dr′ e−i(G+q)·re−iq·R f (r + R, r′ + R)ei(G′+q)·r′
eiq·R

= 1


cell

∫

cell

dr
∫

dr′ e−i(G+q)·r f (r, r′)ei(G′+q)·r′
, (B6)

f (G + q, G′ + q′) = 1




∑
R

∫

cell

dr
∫

dr′ e−i(G+q)·r f (r + R, r′ + R)ei(G′+q′ )·r′
e−i(q−q′ )·R

= 1


cell

∫

cell

dr
∫

dr′ e−i(G+q)·r f (r, r′)ei(G′+q′ )·r′ 
cell




∑
R

e−i(q−q′ )·R

= f (G + q, G′ + q)
(2π )D



δ(q − q′). (B7)
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For the periodic two-point functions, the notation fGG′ (q) ≡ f (G + q, G′ + q) is introduced and referred to as the lattice Fourier
transform.
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