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From carriers and virtual excitons to exciton populations: Insights into time-resolved ARPES
spectra from an exactly solvable model
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We calculate the exact time-resolved ARPES spectrum of a two-band model semiconductor driven out of
equilibrium by resonant and nonresonant laser pulses, highlighting the effects of phonon-induced decoherence
and relaxation. Resonant excitations initially yield a replica of the valence band shifted upward by the energy
of the exciton peak in photoabsorption. This phase is eventually destroyed by phonon-induced decoherence:
The valence-band replica lowers in energy by the Stokes shift, locating at the energy of the exciton peak in
photoluminescence, and its width grows due to phonon dressing. Nonresonant excitations initially yield a map
of the conduction band. Then electrons transfer their excess energy to the lattice and bind with the holes left
behind to form excitons. In this relaxed regime a replica of the conduction band appears inside the gap. At fixed
momentum the lineshape of the conduction-band replica versus the photoelectron energy is proportional to the
exciton wave function in “energy space” and it is highly asymmetric. Although the two-band model represents an
oversimplified description of real materials, the highlighted features are qualitative in nature; hence they provide
useful insights into time-resolved ARPES spectra and their physical interpretation.

DOI: 10.1103/PhysRevB.103.245103

I. INTRODUCTION

Time-resolved and angle-resolved photoemission spec-
troscopy (trARPES) is currently one of the most flourishing
playground for condensed-matter theoreticians. Accurate ap-
proximations to the fundamental equations of many-body
theory are being incessantly developed to relate the intensity
and direction of the photocurrent to the behavior of quantum
matter in equilibrium as well as nonequilibrium conditions.
The relationship between pseudogap, charge ordering and
Fermi arcs in high temperature superconductors [1,2], Auger
scattering, electron-phonon coupling, plasmonic excitations,
and local screening in core excited metals [3–5], carrier
populations and conduction states in excited semiconduc-
tors [6–10], topological order [11], excitonic insulator phases
[12,13], excitonic Mott transitions [14], and exciton dynamics
[15–24] in pumped semiconductors is a nonexhaustive list
of the plethora of different phenomena leaving distinctive
footprints in trARPES spectra.

The interest in the exciton dynamics of (low-dimensional)
semiconductors is steadily gaining momentum, especially
due to potentially revolutionary applications in optoelectron-
ics [25]. However, the physical interpretation of trARPES
spectra is still subject of debates. The main difficulty in
developing accurate many-body schemes suitable for numeri-
cal implementations lies in the treatment of electron-electron
and electron-phonon scatterings under nonequilibrium con-
ditions. We find useful to distinguish between two different
nonequilibrium regimes: the linear-response regime, where
the photocurrent is proportional to the intensity of the pump
field, and the nonlinear regime. Making predictions in the

nonlinear regime is certainly more difficult. Calculations
are often limited to the quasiequilibrium state of matter, a
condition which allows for introducing more or less con-
trolled approximations like, e.g., the invariance under time
translations and the fulfillment of the fluctuation-dissipation
theorem in different bands. The linear regime offers a
wider set of theoretical tools; exciton formation, coher-
ence, and relaxation can be addressed in a more rigorous
framework.

The trARPES signatures of excitons in linearly excited
semiconductors is the topic of this paper. In fact, there still
are a few open questions pertaining with two distinct types
of excitations. Resonant excitations are those of pump pulses
with the same frequency as the energy E (x) of a bright ex-
citon. To avoid possible misinterpretations, by E (x) we here
denote the energy position of the excitonic peak in the pho-
toabsorption spectrum of the ground-state system. Just after
pumping a low-density gas of coherent excitons, also called
nonequilibrium excitonic insulator or BEC exciton superfluid,
forms [26–31]. Theoretical works [20,22,23,32,33] predict an
excitonic sideband in the ARPES spectrum—more precisely
a replica of the valence band shifted upward by E (x). The
subsequent dynamics of the coherent exciton gas involves
electron-phonon scatterings [29,34], generation of phonons
and phonon-induced decoherence [35], until the formation of
a gas of incoherent excitons dressed by phonons, i.e., exciton-
polarons. This incoherent phase is expected to set in on a time
scale of a few hundreds of femtoseconds [36–39] and it lasts
until excitons radiatively recombine [40,41]. To the best of our
knowledge no theoretical ARPES studies exist in this phase.
Is the excitonic sideband still visible? If so, is it any different
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from that of the coherent phase? Does the conduction band
appear? Does the phonon bath relax? Besides strengthening
our understanding an answer to these questions is becoming
urgent. Recent experiments have indeed reported excitonic
sidebands in a resonantly pumped WSe2 monolayer after 0.5
ps [42] and in a WSe2 bulk until 0.1 ps [43].

The second type of excitation is generated by nonresonant
pumping. Here the pump frequency is larger than the gap and
electrons are promoted to empty conduction states. Just after
pumping the ARPES spectrum provides a map of the con-
duction bands, the signal intensity being proportional to the
band-resolved and momentum-resolved carrier populations.
The excited electrons soon transfer their energy to the lattice,
migrate toward the bottom of the conduction band [7,10], and
eventually bind with the left behind hole to form excitons
[15,19]. The spectral function in this relaxed (and incoher-
ent) phase has been studied theoretically using the T-matrix
approximation in the particle-hole channel assuming a qua-
sithermal equilibrium [20,21,32,44–48]. The theory predicts
an excitonic sideband inside the gap, about E (x) above the
valence band maximum. However, this spectral structure turns
out to be a replica of the conduction band [20,21,48]. Could
this be the ultimate fate of the excitonic sideband for reso-
nant excitations? May different excitations (resonant versus
nonresonant) yield different sidebands (valence replica ver-
sus conduction replica) in the relaxed and incoherent phase?
Could not the replica of the conduction band be an artifact of
the T-matrix approximation in combination with the assump-
tion of quasithermal equilibrium?

We address the above issues through the exact ana-
lytic solution of a two-band model semiconductor where
both electron-electron and electron-phonon interactions are
taken into account. As the answer to the asked questions
is qualitative in nature, our results provide a useful refer-
ence for benchmarking approximate many-body treatments.
The main findings of our paper are: (i) Incoherent exci-
tons forming after resonant pumping do only change slightly
the replica of the valence band (observed in the coherent
phase); in particular the replica lowers in energy by the
Stokes shift [49] and its width grows due to phonon dress-
ing (exciton-polarons); (ii) Phonon dressing is much faster
than decoherence, the former being dictated by the largest
phonon frequency whereas the latter by the smallest polaronic
shift; and (iii) Excitons forming after nonresonant pumping
give rise to a replica of the conduction band, thus confirm-
ing the results of previous studies [20,21,48]; for any fixed
momentum the lineshape of the replica is determined by the
exciton wave function in “energy space” and it is highly
asymmetric.

The organization of the paper is as follows. In Sec. II we
introduce the model and set up the problem; we also discuss
the behavior of relevant observable quantities in different
scenarios. The solution of the model for both acoustic and
optical phonons is derived in Sec. III. We defer the reader
to the Appendices for the calculation of the spectral func-
tion, momentum-resolved electron occupations, polarization,
and phonon occupations using the exact many-body wave
function. Results for resonant and nonresonant excitations are
presented in Secs. IV and V, respectively. A summary of the
main findings is drawn in Sec. VI.

II. EXCITON-POLARON MODEL

In standard notation the two-band model Hamiltonian
reads

Ĥ =
∑

k

(
εc

k ĉ†
k ĉk + εv

k v̂
†
k v̂k

) +
∑

q

ωqb̂†
qb̂q

− 1

N
∑
pk1k2

Upĉ†
k1+pv̂k2+pv̂

†
k2

ĉk1

+ 1√
N

∑
kq

λk
q(ĉ†

k+qĉk b̂q + ĉ†
k ĉk+qb̂†

q). (1)

The first two terms describe free electrons in the valence (v)
or conduction (c) band and free phonons. The remaining terms
account for the electron-hole (eh) Coulomb interaction and the
electron-phonon interaction; N is the number of discretized
momenta in the first Brillouin zone. In our model only con-
duction electrons interact with phonons. However, the idea
presented below can easily be adapted to include an interac-
tion with valence electrons. The Hamiltonian in Eq. (1) has
been studied numerically with quantum Monte Carlo meth-
ods to address the dependence of the exciton-polaron wave
function on the electron-phonon coupling [50,51]. We are not
aware of other exact numerical or analytical treatments.

The state |�0〉 with a filled valence band, an empty conduc-
tion band and no phonons is an eigenstate of Ĥ . We assume
that the interaction Up is much larger than the energy gap Eg

between the conduction and valence bands. Then |�0〉 is the
ground state and, without any loss of generality, we set to zero
its energy. We now consider an ultrafast and low-intensity
laser pulse pumping electrons from the valence band to the
conduction band. To lowest order in the light intensity the
state of the system at the end of the pulse can be written as

|�〉 = α|�0〉 + β|�x〉, (2)

with β = √
1 − α2 � 1 and

|�x〉 =
∑

k

Y 0
k ĉ†

k v̂k|�0〉, (3)

the component of the full many-body state with one electron
in the conduction band, one hole in the valence band, and
no phonons. The coefficients Y 0

k depend on the laser pulse
parameters, e.g., duration and frequency. The state in Eq. (2)
is not, in general, an eigenstate of Ĥ . The pumped electron
feels the attractive interaction with the hole left behind and
it is scattered by phonons. We shall investigate two different
physical scenario.

In the so called resonant case electrons are pumped at
the exciton frequency and the state |�x〉 is a bright excitonic
eigenstate of the electronic part of Ĥ . Discarding the electron-
phonon interaction and denoting by E (x) < Eg the exciton
energy the evolution of the state |�〉 would simply be

|�(t )〉 = α|�0〉 + βe−iE (x)t |�x〉. (4)

As |�(t )〉 has no phonons the electronic-density matrix is a
pure state

ρ̂el(t ) ≡ Trph{ |�(t )〉〈�(t )| } = |�(t )〉〈�(t )|, (5)
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where Trph signifies a trace over the phononic degrees of
freedom. A system described by Eq. (5) is said to contain
virtual or coherent excitons [52,53]. In fact, it is characterized
by coherent oscillations of the polarization since the quantity

Trel[ρ̂el(t )v̂†
k ĉk] = α∗β Y 0

k e−iE (x)t (6)

oscillates at the exciton frequency for all k’s, see also Eq. (16)
below. In Ref. [33] we argued that these coherent oscillations
could be observed in trARPES using ultrafast probes of dura-
tion shorter than 2π/E (x).

The state in Eq. (4) approximates the true time-dependent
state only in the early stage of the evolution. Just after pump-
ing electrons and phonons begin to scatter, mutually dressing
each others, and the initial coherence is eventually destroyed.
The electronic system is expected to evolve toward an admix-
ture of |�0〉 and some exciton-like states |�(i)

x 〉:
ρ̂el(t → ∞) = lim

t→∞ Trph{|�(t )〉〈�(t )|}

= |α|2 |�0〉〈�0| + |β|2
∑

i

wi

∣∣�(i)
x

〉〈
�(i)

x

∣∣. (7)

In this steady-state regime excitons are said real or incoherent
and one can introduce the concept of exciton populations
since the polarization does no longer oscillate. However, the
existence and the characterization of the steady-state regime
has so far been based on reasonable assumptions and it is
still subject of debate. The purpose of this paper is to provide
useful insights into this issue through the solution of the time-
dependent Schrödinger equation.

In the second scenario the laser pulse generates free carri-
ers in the conduction band (nonresonant pumping). It is then
expected that carriers give their excess energy to the lattice,
thereby migrating toward the bottom of the conduction band
and eventually binding with the holes left behind to form
excitons. The phonon-driven formation of excitons is another
debated topic in the literature as no real-time calculations are
available to confirm this picture. Due to the simplicity of the
model we could only address the dynamics of free carriers
initially at the bottom of the conduction band.

Independently of the scenario we need to calculate the
time-evolved state

|�(t )〉 ≡ e−iĤt |�〉 = α|�0〉 + β|�x(t )〉, (8)

with

|�x(t )〉 = e−iĤt
∑

k

Y 0
k ĉ†

k v̂k|�0〉. (9)

Henceforth we refer to |�x(t )〉 as the exciton-polaron state
although it may also describe unbound eh pairs dressed
by phonons. From |�x(t )〉 we can monitor the momentum-
resolved phonon occupations

nq(t ) = 〈�x(t )|b̂†
qb̂q|�x(t )〉, (10)

as well as the standard deviation of the phonon momentum

σ 2
Q(t ) = 〈�x(t )|Q̂2|�x(t )〉 − Q2(t ), (11)

where Q̂ = ∑
q q n̂q and Q(t ) = ∑

q q nq(t ). We can also cal-
culate the Green’s functions

Gcc
k (t, t ′) = i〈�(t ′)|ĉ†

ke−iĤ (t ′−t )ĉk|�(t )〉
= i|β|2〈�x(t ′)|ĉ†

ke−iĤ (t ′−t )ĉk|�x(t )〉 (12)

and

Gcv
k (t, t ′) = i〈�(t ′)|v̂†

k e−iĤ (t ′−t )ĉk|�(t )〉,
= iα∗β 〈�0|v̂†

k e−iĤ (t ′−t )ĉk|�x(t )〉. (13)

The Green’s functions in Eqs. (12) and (13) contain infor-
mation on the electronic transient spectrum, occupations, and
polarization. In fact, the ARPES signal of the system at time
T is proportional to the transient spectral function Ak (T, ω)
which is in turn related to the Green’s function in Eq. (12)
through (for ω above the valence band maximum)

Ak (T, ω) = −i
∫

dτeiωτ Gcc
k

(
T + τ

2
, T − τ

2

)
. (14)

The electron occupations in the conduction band can be ob-
tained from the same Green’s function since

nc
k (t ) = 〈�(t )|ĉ†

k ĉk|�(t )〉 = −iGcc
k (t, t ). (15)

Denoting by dk the dipole matrix element between a conduc-
tion state and a valence state of momentum k the polarization
at time t reads

P(t ) = 1

N
∑

k

dk〈�(t )|v̂†
k ĉk|�(t )〉 + H.c.

= − i

N
∑

k

dkGcv
k (t, t ) + H.c. (16)

In the next section we expand the exciton-polaron state on a
convenient basis and calculate the time-dependent expansion
coefficients.

III. TIME-DEPENDENT EXCITON-POLARON WAVE
FUNCTION

We introduce the states

|kq1 . . . qM〉 = ĉ†
k−q1...−qM

v̂kb̂†
q1

. . . b̂†
qM

|�0〉, (17)

describing one eh pair and M phonons. In terms of these states
Eq. (3) can be written as |�x〉 = ∑

k Y 0
k |k〉. Hence the calcu-

lation of |�x(t )〉 passes through the calculation of e−iĤt |k〉.
The Hamiltonian Ĥ maps the space spanned by the states of
Eq. (17) onto the same space since

Ĥ |kq1 . . . qM〉 =
(

εc
k−q1...−qM

− εv
k +

M∑
j=1

ωq j

)
|kq1 . . . qM〉

− 1

N
∑

p

Up|k + pq1 . . . qM〉

+ 1√
N

M∑
j=1

λk
q j

|kq1 . . .
�
q j . . . qM〉

+ 1√
N

∑
q

λk
q|kqq1 . . . qM〉, (18)
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where the square-cap symbol “�” signifies that the index be-
low it is missing. We can therefore expand the exciton-polaron
state as

|�x(t )〉 =
∞∑

M=0

1

M!

∑
k,q1...qM

Ykq1...qM (t )|kq1 . . . qM〉. (19)

Without any loss of generality we take the amplitudes Ykq1...qM

totally symmetric under a permutation of the phonon indices
{q1, . . . , qM}; only this irreducible representation contributes
in the sum of Eq. (19). Using the inner product,

〈k′q′
1 . . . q′

M |kq1 . . . qM〉 = δk′k

∑
P

M∏
j=1

δq′
j qP( j) , (20)

where the sum runs over all permutations of {1, . . . , M}, we
find

〈kq1 . . . qM |e−iĤt |�x〉 = Ykq1...qM (t ). (21)

Equations (18) and (21) allows for generating a hierarchy
of differential equations for the amplitudes

iẎkq1...qM (t ) = 〈kq1 . . . qM |Ĥe−iĤt |�x〉

=
(

εc
k−q1...−qM

− εv
k +

M∑
j=1

ωq j

)
Ykq1...qM (t )

− 1

N
∑

p

UpYk+pq1...qM (t )

+ 1√
N

M∑
j=1

λk
q j

Y
kq1...

�
q j ...qM

(t )

+ 1√
N

∑
q

λk
qYkqq1...qM (t ). (22)

Already at this stage we can discuss the conditions for the
development of an incoherent regime. Taking into account
Eqs. (8) and (19) we find for the electronic-density matrix

ρ̂el(t ) = |α|2|�0〉〈�0|

+ |β|2
∞∑

M=0

1

M!

∑
q1...qM

|�x,q1...qM (t )〉〈�x,q1...qM (t )|

+
(

βα∗ ∑
k

Yk (t )|k〉〈�0| + H.c.

)
, (23)

where we have defined

|�x,q1...qM (t )〉 ≡
∑

k

Ykq1...qM (t )|k〉. (24)

A direct comparison with Eq. (7) shows that for the system
to relax toward an incoherent steady-state the zero-phonon
amplitude Yk (t ) must vanish as t → ∞ and

lim
t→∞

∞∑
M=0

1

M!

∑
q1...qM

Ykq1...qM (t )Y ∗
k′q1...qM

(t ) =
∑

i

wiY i
kY i∗

k′ ,

(25)
where Y i

k are some k-dependent and time-independent com-
plex quantities. We shall comment on the fulfillment of these
properties using the exact solution.

The hierarchy in Eq. (22) can be solved analytically
in some special, yet relevant, cases. The first condition to
meet is

εc
k−q1...−qM

= εc
k , (26)

for all {q1, . . . , qM} and for all M. Rigorously this condition
is satisfied only for a perfectly flat conduction band. However,
Eq. (26) is a good approximation for couplings λ’s and fre-
quencies ω’s such that the distribution of phonon-momenta
has a peak around q = 0 with standard deviation σQ much
smaller than the momentum-scale over which the dispersion
εc

k varies. No restrictions on the dispersion of the valence band
εv

k are imposed.
Let us introduce the vectors

(Yq1...qM )k = Ykq1...qM (27)

and the matrices

Hkk′ = δkk′
(
εc

k − εv
k

) − Up−k

N ; Lq,kk′ = δkk′λk
q. (28)

Then the hierarchy in Eq. (22) can be rewritten in matrix form
as (omitting the dependence on time)

iẎq1...qM = (H + ωq1 . . . + ωqM )Yq1...qM

+
M∑

j=1

Lq j√
N

Y
q1...

�
q j ...qM

+
∑

q

Lq√
N

Yqq1...qM . (29)

Notice that the matrix H is the Bethe-Salpeter Hamiltonian
for an eh pair. Hence the spectrum of H consists of a discrete
excitonic part with subgap eigenvalues and a continuum eh
part with eigenvalues larger than the gap.

A. q-independent coupling

We consider optical phonons ωq = ω0 and coupling ma-
trices Lq = L depending only on the electron momentum,
hence λk

q = λk . In this case all coefficients of the hierarchy are
independent of the phonon momenta. We look for solutions of
the form

Yq1...qM (t ) =
√

M!

NM YM (t ). (30)

Inserting Eq. (30) into Eq. (29) we find a closed system of
equations for the YM’s

iẎM = (H + Mω0)YM +
√

MLYM−1 + √
M + 1LYM+1.

(31)
This simplified hierarchy can easily be solved with continued
matrix fraction techniques [54,55]. The time evolved state in
Eq. (19) then reads

|�x(t )〉 =
∞∑

M=0

∑
k

YkM (t )√
M!

|kM〉, (32)

where

|kM〉 ≡ 1√
NM

∑
q1...qM

|kq1 . . . qM〉. (33)

For arbitrary initial conditions YM (0) = δM0Y0 no steady
state is ever attained in the long time limit. This means that the
electronic-density matrix does not evolve toward an admixture
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like in Eq. (7). Nonetheless, the spectral function Ak (T, ω)
becomes independent of T as T → ∞ if the probing time,
i.e., the τ window of integration in Eq. (14), is much longer
than 2π/ω0.

It is instructive to expand the vectors YM in eigenvectors
Y(μ) with energies E (μ) of the Bethe-Salpeter Hamiltonian H

YM (t ) =
∑

μ

αμM (t )Y(μ). (34)

The hierarchy in Eq. (31) can be used to obtain a hierarchy for
the coefficients of the expansion

iα̇μM = (E (μ) + Mω0)αμM

+
∑

ν

Lμν[
√

MανM−1 + √
M + 1ανM+1], (35)

where we have defined

Lμν ≡ Y(μ)†LY(ν). (36)

If the coupling λk depends on k then the matrix element Lμν

is, in general, nonvanishing for μ �= ν. This implies that even
if the initial condition Y0(0) = Y(μ0 ) is an eigenstate of H,
hence αμM (0) = δ0Mδμ0μ, electronic states with ν �= μ0 are
visited during the evolution.

B. k-independent coupling

The hierarchy in Eq. (29) can be solved also in the special
case Lq = λq1, i.e., for an electron-phonon coupling λk

q = λq

independent of the electronic momentum. No restrictions on
the phonon frequencies is necessary in this case. We define

Yq1...qM (t ) = e−iHt Xq1...qM (t ), (37)

and rewrite the hierarchy for the vectors X’s

iẊq1...qM = (ωq1 . . . + ωqM )Xq1...qM

+
M∑

j=1

λq j√
N

X
q1...

�
q j ...qM

+
∑

q

λq√
N

Xqq1...qM . (38)

We look for solutions of the form

Xq1...qM (t ) = fq1 (t ) . . . fqM (t )X(t ). (39)

Inserting Eq. (39) into Eq. (38) we find that the hierarchy is
solved provided that

i ḟq = λq√
N

+ ωq fq, (40)

and

iẊ =
∑

q

λq√
N

fq(t )X. (41)

The solution of Eq. (40) with boundary condition fq(0) = 0
(no phonons at the initial time) is the Langreth function [56]

fq(t ) = 1√
N

λq

ωq
(e−iωqt − 1). (42)

Substituting the explicit form of fq(t ) into Eq. (41) we find

X(t ) = �(t )X(0), (43)

with

�(t ) = exp

[
1

N
∑

q

(
λq

ωq

)2

(−1 + e−iωqt + iωqt )

]
. (44)

Taking into account Eqs. (37) and (39) we eventually get

Yq1...qM (t ) = fq1 (t ) . . . fqM (t )�(t )Y0(t ), (45)

where Y0(t ) = e−iHt Y0 and (Y0)k = Y 0
k are the amplitudes of

the state |�x〉. In Eq. (45) the phonon dynamics is decoupled
from the electron dynamics. If the initial state is an eigenstate
of H, i.e., Y0 = Y(μ0 ) then no other electronic state is visited
at later times.

For acoustic phonons the function �(t ) vanishes as t → ∞
and therefore Yk (t ) = �(t )Y 0

k (t ) vanishes too in the same limit.
This implies that the electronic-density matrix becomes an
admixture in the long-time limit, see Eq. (23). To determine
the nature of this admixture we have to evaluate Eq. (25).
Taking into account that |�(t )|2 = exp[−∑

q | fq(t )|2], it is
straightforward to find

lim
t→∞ ρ̂el(t ) = |α|2|�0〉〈�0| + |β|2|�(0)

x (t )〉〈�(0)
x (t )| (46)

with |�(0)
x (t )〉 = ∑

k Y 0
k (t )|k〉. Therefore the admixture con-

tains only two states and for it to attain a steady state the
initially pumped state must be an eigenstate of the electron
Hamiltonian H. In particular if the initial state is the excitonic
eigenstate then Y 0

k (t ) = e−iE (x)tY (x)
k and

lim
t→∞ ρ̂el(t ) = |α|2|�0〉〈�0| + |β|2|�x〉〈�x|. (47)

Comparing this result with the electronic-density matrix at the
initial time, see Eqs. (4) and (5), we conclude that the two-
band model is able to describe the complete loss of coherence
due to scattering of electrons with acoustic phonons.

IV. RESONANT PUMPING

We investigate the effects of phonon dressing and de-
coherence in a semiconductor driven by coherent light of
frequency in resonance with the energy of a bright exciton
(resonant pumping). For illustration we consider a 1D model
with a flat conduction band εc

k = εc = Eg/2 [conduction band
minimum (CBM) at Eg/2] and a dispersive valence band
εv

k = Eg[cos k − 1] − Eg/2 [valence band maximum (VBM)
at −Eg/2] separated by an energy gap Eg. Henceforth all
energies are measured in units of Eg and times in units of
1/Eg. For a short-range (momentum-independent) Coulomb
interaction Up = U = 0.65 the electronic system admits an
exciton state Y(x) of energy E (x)  0.81. Under the condition
of resonant pumping the initial state is therefore Y0 = Y(x).

Without electron-phonon scattering, i.e., λk
q = 0, the spec-

tral function Ak (T, ω) in Eq. (14) is independent of T and
for each k it exhibits a single peak at energy εv

k + E (x)

[20,22,23,32], see also Appendix A:

Ak (T, ω) = 2π |β|2∣∣Y (x)
k

∣∣2
δ
(
ω − εv

k − E (x)). (48)

This spectral function can be interpreted as the fully interact-
ing spectral function just after the excitation, i.e., at T = 0;
phonon scatterings kick in only at later times. Equation (48)
yields an excitonic sideband; it is a replica of the valence band
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FIG. 1. Spectral function of the interacting electron-phonon system for T = 0 (left) and T = 100 (middle). Tick-dashed lines have been
drawn in correspondence of the CBM and VBM. Thin-dashed lines have been drawn in correspondence of the exciton energy. The right panel
shows the time-dependent polarization calculated with dk = d for all k points.

located at energy E (x) above the VBM with spectral weight
proportional to the square of the excitonic wave function. In
Fig. 1 (left) we show the color plot of Eq. (14). Calculations
have been performed with N = 81 k-points using a τ window
of integration that extends from τmin = −60 to τmax = −τmin.

The electron-phonon coupling causes the spectral func-
tion to acquire a dependence on T , even for initial states
that are eigenstates of H. We study the evolution of the
system when conduction electrons interact through a cou-
pling λq = λ0

2 (cos q + 1) with acoustic phonons of dispersion
ωq = ωs sin |q|. In the numerical simulations we have chosen
λ0 = 0.18 and ωs = 2(Eg − E (x) ) = 0.38, which is twice the
exciton binding energy. In Appendix B we demonstrate that
the polarization P(t ) in Eq. (16) can be written as

P(t ) = α∗β
1

N
∑

k

dkYk (t ) + H.c., (49)

where Yk (t ) = �(t )e−iE (x)tY 0
k , see Eq. (45). Let us briefly dis-

cuss the behavior of P(t ) for a vanishing electron-phonon
coupling. In this case �(t ) = 1 and the polarization oscillates
monochromatically at frequency E (x). In the diagrammatic
nonequilibrium Green’s function theory a simple Hartree-
Fock (HF) treatment of the Coulomb interaction is enough
to reproduce the oscillatory behavior [23,26,57–59]. Inter-
estingly, the HF theory also predicts the appearance of the
excitonic sideband in the spectral function, see Eq. (48). The
coherent oscillations of P(t ) are crucial to observe this effect,
which does indeed originate from the eigenvalues of the HF
Floquet Hamiltonian [60]. Switching on the electron-phonon
coupling the function �(t ), and hence the amplitude Yk (t ),
vanishes for t → ∞. In Fig. 1 (right) we show P(t ) for a
system with dipole matrix elements dk = d for all k. For
t  100 the polarization is suppressed by about two order of
magnitudes. We shall show that in this incoherent phase (times
t > 100) the spectral function still exhibits an excitonic side-
band. Therefore excitonic structures in the spectral function
are not a hallmark of excitonic coherence, as it is erroneously
predicted by the HF theory.

To obtain the spectral function in the incoherent regime we
evaluated Eq. (14), see Appendix A, at T = 100 using the
same τ window of integration as in the left panel of Fig. 1.
The result is shown in the middle panel of the same figure. The
excitonic sideband is still clearly visible although it is slightly
shifted downward. In fact, it would be more appropriate to
refer to this spectral feature as the exciton-polaron sideband.
The experiment of Ref. [42] has most likely measured such
sideband as the system was probed after 0.5 ps from the
resonant excitation. We also observe that phonon-dressing is
responsible for an energy broadening of the sideband, consis-
tently with the reported damping of the polarization.

The energy shift of the excitonic sideband as the system
evolves from the coherent to the incoherent phase can be
related to the Stokes shift [49]. At zero momentum the co-
herent peak is detected at energy E (x), i.e., at the onset of
the photoabsorption spectrum, whereas the incoherent peak
is red shifted by the “reorganization energy”, i.e., the energy
gain in the transition from an exciton to an exciton-polaron.
Therefore the energy of the incoherent peak lies at the onset
of the photoluminescence spectrum [61,62]. This also agrees
with the fact that the photoluminescence signal is proportional
to the population of (incoherent) excitons [34]. In this respect
trARPES provides a unique investigation tool as it allows for
extracting information, which would otherwise require two
independent experiments, i.e., absorption and luminescence.

In Fig. 2 (top) we show the evolution of the k-resolved
electron density in the conduction band. At time t = 0
the profile is proportional to the square of the exciton
wave function in momentum space, i.e., nc

k (0) ∝ |Y (x)
k |2, see

Appendix A. As time increases the exciton transforms into an
exciton-polaron and the wave function slightly spreads. Thus
the dressed eh wave packet becomes more localized in real-
space, in agreement with the larger binding energy observed
in Fig. 1 (middle). We observe that the phonon dressing occurs
on a much faster time-scale than the decoherence time, i.e.,
the timescale over which the polarization damps. This can
also be seen from the plot of the time-dependent standard
deviation σQ(t ), see Fig. 2 (bottom). According to Eq. (C9) the
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FIG. 2. Top: Time-dependent k-resolved electronic occupations
in the conduction band. Bottom: Time-dependent standard deviation
of the phonon momentum.

standard deviation grows like σQ(t ) ∝ (1 − cos ωst ). Hence
the timescale τdress for the phonon dressing is

τdress = 2π

ωs
 16.3. (50)

The envelope function of the polarization can be found from
Eq. (49). After some simple algebra one finds an approximate
exponential decay exp[−t/τdecoh] with decoherence time

τdecoh = ωs

2λ2
0

= 23.8. (51)

In Fig. 1 (right) the envelope function nicely interpolates all
maxima of the time-dependent polarization, see red curve. We
emphasize that the dressing time is dictated by the largest
phonon frequency whereas the decoherence time is dictated
by the smallest polaronic shift. Furthermore, the dressing
timescale does not appear in an exponential function, see
again Fig. 2. We also notice that σQ(t )  0.5 in the long-time
limit; hence, similar results would have been obtained for a
dispersive conduction band with a shallow enough minimum.

Although the electronic occupations as well as the polar-
ization attain a steady value in the long time limit the phononic
occupations do not. This behavior is a direct consequence
of the acoustic dispersion and the low dimensionality. In
Appendix C we demonstrate that nq(t ) = | fq(t )|2 where the
function fq(t ) is given in Eq. (42). Therefore the total number
of phonons at time t is given by Nph(t ) = 2

N
∑

q( λq

ωq
)2(1 −

cos ωqt ). For large times the main contribution to the
sum comes from low-momentum phonons. Approximating

ωq  ωs|q|, λq  λ0 and taking the thermodynamic limit
N → ∞ we then find

Nph(t )  λ2
0

ωs
t = 1

2

t

τdecoh
. (52)

Thus the total number of phonons increases linearly in time.
It is easy to show that the divergence of Nph(t ) as t → ∞
is milder in two dimensions, being it log(t ), and it is absent
in three dimensions. We also observe that the free-phonon
contribution to the total energy Eph(t ) = ∑

q ωqnq(t ) diverges
like log(t ) in one dimension whereas it approaches a constant
value for larger dimensions.

V. NONRESONANT PUMPING

Electrons pumped in the conduction band have enough
energy to emit optical phonons and hence to decay into a
bound exciton state. The issue we intend to address here is
whether the spectral function exhibits an excitonic structure
inside the gap and, in the affirmative case, what the shape is.

As already pointed out the exact solution of the two-band
model Hamiltonian does not attain a steady state for optical
phonons, see discussion in Sec. III A. However, probing the
system with pulses of duration much longer than the inverse
of the phonon frequency the spectral function Ak (T, ω) be-
comes independent of T as T → ∞. We consider again a 1D
model with a flat conduction band and a dispersive valence
band separated by an energy gap Eg: εc

k = εc = Eg/2 (CBM
at Eg/2) and εv

k = Eg[cos k − 1] − Eg/2 (VBM at −Eg/2).
We also consider the same short-range Coulomb interaction
Up = 0.65 (all energies are in units of Eg) as in the previous
section—hence the system admits one exciton state at energy
E (x) = 0.81. Let us assume that the pump has excited the
system in a wave packet of continuum eh states Y(c) of the
Bethe-Salpeter Hamiltonian H with energy E (c)  Eg, hence

Y0 = 1√
N 0

∑
c:E (c)Eg

Y(c), (53)

where N 0 is the number of eigenstates in the sum. In the
thermodynamic limit the ratio r0 = N 0/N � 1 remains fi-
nite. At zero pump-probe delay, i.e., T = 0, we can ignore
phonon effects and the spectral function reads [compare with
the resonant case Eq. (48)]:

Ak (0, ω) = 2π |β|2∣∣Y 0
k

∣∣2
δ(ω − Eg/2). (54)

As Y 0
k is peaked around k = 0 the spectral function Ak0(0, ω)

is peaked at frequency ω  Eg/2 = εc (CBM), and it is van-
ishingly small for nonvanishing momenta.

In Appendix A we show that for electrons coupled to a
branch of optical phonons of frequency ω0 the spectral func-
tion in the long-time limit becomes

lim
T →∞

Ak (T, ω) = lim
T →∞

|β|2
T

×
{∣∣Ỹk0

(
ω − εv

k

)∣∣2

+
∞∑

M=1

1

N
∑

p

∣∣ỸpM
(
ω − εv

p + Mω0
)∣∣2

}
.

(55)
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The amplitudes ỸM (ω) are the Fourier transform of the
time-dependent amplitudes YM (t ) in Eq. (31). Interestingly
only the first term (M = 0) depends on k. All remaining
terms (M � 1) contribute with a k-independent function of
the frequency (a consequence of the nondispersive nature
of the conduction band). Expanding the amplitudes like in
Eq. (34) we can equivalently calculate ỸM (ω) from the
Fourier transform of the hierarchy in Eq. (35). We neglect
here the couplings Lcc′ between low-energy continuum states
since these scatterings are suppressed by energy conservation.
We instead consider the couplings Lcx = Lxc = λ0/

√
N be-

tween the exciton state and the continuum states. We then
find

iα̇cM = (E (c) + Mω0)αcM

+ λ0√
N

[
√

MαxM−1 + √
M + 1αxM+1], (56)

iα̇xM = (E (x) + Mω0)αxM

+ λ0√
N

∑
c

[
√

MαcM−1 + √
M + 1αcM+1], (57)

to be solved with boundary conditions αcM (0) = δM0/
√
N 0

if E (c)  Eg and zero otherwise, see Eq. (53). The symmetry
of the electron-phonon coupling preserves the symmetry of
the initial state, i.e., αcM (t ) is independent of c if E (c)  Eg

and αcM (t ) = 0 otherwise. We can therefore simplify the hi-
erarchy by introducing the quantity αCM (t ) = ∑

c αcM (t ) and
by taking into account that E (c)  Eg for all c in the initial
wave packet. To gain some insight we solve the simplified
hierarchy to lowest order in λ0, i.e., we neglect processes
with the emission of two or more phonons. These processes
are relevant for strong electron-phonon coupling and give
rise to phononic replica bands [63–69]. Fourier transforming
Eqs. (56) and (57) we find

α̃C0(ω) = − 1√
N 0

Im

⎡
⎣ 1

ω − Eg − r0λ
2
0

ω−E (x)−ω0

⎤
⎦, (58)

α̃x1(ω) = −λ0r0 Im

[
1(

ω − Eg − r0λ
2
0

)
(ω − E (x) − ω0)

]
,

(59)

and α̃C1(ω) = α̃x0 = 0. Using these solutions the asymptotic
spectral function of Eq. (55) becomes

lim
T →∞

Ak (T, ω) = lim
T →∞

|β|2
T

{∣∣α̃C0(ω + Eg/2)Y 0
k

∣∣2

+ 1

N
∑

p

∣∣α̃x1
(
ω − εv

p + ω0
)
Y (x)

p

∣∣2
}
. (60)

In Fig. 3 we show the spectral function for a system with
N = 501 k-points, r0 = 0.05 and phonon frequency ω0 =
Eg − Ex  0.2. In the weak coupling regime λ0 = 0.02 (top
panel) the quasiparticle peak at the CBM (frequency ω =
Eg/2, black curve) is accompanied by an excitonic struc-
ture (blue curve) having asymmetric lineshape and offset at
frequency ω  E (x). The main effect of an increased electron-
phonon coupling is the splitting of the quasiparticle peak

FIG. 3. Spectral function Ak0(ω) in the long-time limit T → ∞
for a weak (λ0 = 0.02, top panel) and intermediate (λ0 = 0.05, bot-
tom panel) electron-phonon coupling. The exciton contribution (blue
line) is magnified by a factor 104 (top) and 103 (bottom). The dashed
(red) line in the top panel is the exciton wave function in energy
space, see main text. The insets show the color plot of the spectral
function in the k − ω plane.

(energy splitting  λ2
0r0) and a larger intensity of the excitonic

structure, see bottom panel.
In both (weak and intermediate) regimes the momentum

and energy dispersion of the excitonic structure is consider-
ably different from the resonant case, compare insets of Fig. 3
with left and middle panels of Fig. 1. We point out that this
marked qualitative difference is not related to the phonon
dispersion. For resonant pumping a replica of the valence band
would have emerged even with optical phonons. The results in
Fig. 3 clearly indicate that incoherent excitons forming after
nonresonant pumping give rise to a replica of the conduction
band, thus confirming the nonequilibrium T -matrix Green’s
function treatment [20,21,48].

It is also worth commenting on the asymmetric lineshape
at fixed k (blue line) of the excitonic structure. This feature
too was observed in the nonequilibrium T -matrix Green’s
function treatment [20,21]. The exact solution allows for a
precise characterization of it. The excitonic sideband origi-
nates from the second term in Eq. (60). Taking into account
the explicit form of α̃x1(ω) in Eq. (59) we see that the
asymmetric lineshape is well described by L(ω) ≡ ∑

p δ(ω −
E (x) − εv

p )|Y (x)
p |2. The function L is shown in the top panel of

Fig. 3 (dashed line) and it can be interpreted as the excitonic
wave function in “energy space”.
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VI. SUMMARY

We have calculated the trARPES spectra of a two-band
model semiconductor with a flat conduction band from the
analytic solution of the time-dependent many-body wave
function. Both electron-electron and electron-phonon inter-
actions have been taken into account, and the exact solution
has been worked out for acoustic as well as optical phonons.
Numerical results have been presented to address open
issues on the spectra of resonantly and nonresonantly ex-
cited semiconductors after phonon-induced decoherence and
relaxation.

In resonantly excited semiconductor the initial excitonic
sideband is a replica of the valence band located at the onset
of the photoabsorption spectrum (with respect to the VBM).
After phonon-induced decoherence the excitonic sideband
changes slightly but it does not fade away. In particular its
position is red-shifted (Stokes shift) ending up at the onset of
the photoluminescence spectrum (with respect to the VBM).
Phonon-dressing is also responsible for a broadening of the
sideband, in agreement with the transition from excitons to
exciton-polarons. We also find that phonon dressing occurs on
a much faster time-scale than phonon-induced decoherence,
the former being dictated by the largest phonon frequency
whereas the latter by the smallest polaronic shift. In the
incoherent phase the electronic subsystem is in a station-
ary state, i.e., the electronic occupations and the electronic
Green’s function are invariant under time translations. The
stationarity of the phononic subsystem does instead depend
on the dimensionality; the number of low-momentum acoustic
phonons grows in time linearly in one-dimension, logarithmi-
cally in two dimensions and attains a constant value in larger
dimensions.

In nonresonantly excited semiconductor the excitonic side-
band forms only after phonon-driven relaxation. Its shape is
a replica of the conduction band and its energy distribution at
fixed momentum has a highly asymmetric lineshape. The line-
shape is proportional to the exciton wave function in energy
space.

The considered two-band model ignores several aspects of
real materials, e.g., multiple bands and valleys, intraband and
interband long-range Coulomb interactions, band anisotropies
and degeneracies, multiple phonon branches, etc. [70]. How-
ever, the addressed issues are independent of these details. In
Ref. [23] we have shown that the excitonic features of the
ARPES spectrum of a bulk LiF in the resonant phase could be
predicted using the same model. The scenario emerging from
our exact solution is therefore expected to be generally appli-
cable to the interpretation of experimental trARPES spectra.
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APPENDIX A: CONDUCTION-CONDUCTION GREEN’S
FUNCTION

Let us begin with the calculation of the conduction-
conduction Green’s function defined in Eq. (12). For conve-
nience we rewrite it as

Gcc
k (t, t ′) = i|β|2ρcc

k (t, t ′), (A1)

where ρcc
k (t, t ′) ≡ 〈�x(t ′)|ĉ†

ke−iĤ (t ′−t )ĉk|�x(t )〉. Using the expansion in Eq. (19) we have

ρcc
k (t, t ′) =

∑
pp′

∞∑
M=0

1

(M!)2

∑
q1 . . . qM

q′
1 . . . q′

M

Y ∗
p′q′

1...q
′
M

(t ′)Ypq1...qM (t )〈p′q′
1 . . . q′

M |ĉ†
ke−iĤ (t ′−t )ĉk|pq1 . . . qM〉. (A2)

For vanishing electron-phonon coupling Yk (t ) = Y 0
k (t ) and Ypq1...qM (t ) = 0 for all M � 1. We thus recover the purely electronic

result

ρ0cc
k (t, t ′) ≡ lim

{λk
q}→0

ρcc
k (t, t ′) = eiεv

k (t ′−t )Y 0∗
k (t ′)Y 0

k (t ). (A3)

If the initial state Y0 is an eigenstate Y(μ) of H with energy E (μ) then Y 0
k (t ) = Y (μ)

k e−iE (μ)t and Eq. (A3) becomes

ρ0cc
k (t, t ′) = ∣∣Y (μ)

k

∣∣2
e−i(εv

k +E (μ) )(t−t ′ ). (A4)

In this case the spectral function Ak (T, ω) in Eq. (14) is independent of T and for each k it exhibits a single peak at energy
εv

k + ε (μ):

Ak (T, ω) = 2π |β|2∣∣Y (μ)
k

∣∣2
δ(ω − εv

k − E (μ) ). (A5)

To proceed with the calculation of the Green’s function of the coupled electron-phonon system we observe that the state
ĉk|pq1 . . . qM〉 in Eq. (A2) is a state with no electrons in the conduction band and with a hole of momentum p in the valence
band. Therefore

eiĤτ ĉk|pq1 . . . qM〉 = ei(−εv
p+ωq1 ...+ωqM )τ ĉk|pq1 . . . qM〉. (A6)
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Furthermore

〈p′q′
1 . . . q′

M |ĉ†
k ĉk|pq1 . . . qM〉 = δp′ p

∑
P

M∏
j=1

δq′
j qP( j)δk,p−q1...−qM . (A7)

1. q-independent coupling

We insert Eqs. (A6) and (A7) into Eq. (A2) and use the
solution in Eq. (30) for the amplitudes. We find

ρcc
k (t, t ′) =

∑
q1...qM

δk,p−q1...−qM

×
∑

p

∞∑
M=0

1

NM Y ∗
pM (t ′)YpM (t )ei(εv

p−Mω0 )(t ′−t )

= Y ∗
k0(t ′)Yk0(t )eiεv

k (t ′−t )

+ 1

N
∑

p

∞∑
M=1

Y ∗
pM (t ′)YpM (t )ei(εv

p−Mω0 )(t ′−t ). (A8)

For vanishing electron-phonon coupling only the first term on
the right hand side contributes and we recover Eq. (A3).

Let us study the steady-state limit of Eq. (A8). We define
the center-of-mass time T = (t + t ′)/2 and the relative time
τ = (t − t ′). Given a function a(t ) with Fourier transform
ã(ω) we have

lim
T →∞

a(t )a∗(t ′) =
∫

dω

2π
e−iωτ lim

T →∞

∫
d�

2π
e−i�T

× ã

(
ω + �

2

)
ã∗

(
ω − �

2

)

= lim
T →∞

1

T

∫
dω

2π
e−iωτ |ã(ω)|2, (A9)

where in the last equality we used the Riemann-Lebesgue
theorem. Using this result in Eq. (A8) with functions a(t ) =
YpM (t )e−i(εv

p−Mω0 )t and taking into account Eq. (14) for the
spectral function we find Eq. (55).

2. k-independent coupling

Proceeding along the same lines as for the q-independent
coupling but using the solution in Eq. (45) we find

ρcc
k (t, t ′) =

∑
p

eiεv
p (t ′−t )Y 0∗

p (t ′)Y 0
p (t )�∗(t ′)�(t )

∑
M

1

M!

×
∑

q1...qM

δk,p−q1...−qM

M∏
j=1

f ∗
q j

(t ′) fq j (t )e−iωq j (t ′−t )
.

(A10)

We define the function

hq(t, t ′) ≡ f ∗
q (t ′) fq(t )e−iωq (t ′−t ), (A11)

and its Fourier expansion

hq(t, t ′) =
∑

n

eiqn h̃n(t, t ′)
N . (A12)

Depending on the dimensionality D of the system the prod-
uct qn ≡ ∑D

i=1 qini stands for the scalar product between the
vector q in the first Brillouin zone and the position n of
the unit cell. The domain over which n runs is such that

1
N

∑
n ei(q−q′ )n = δqq′ and 1

N
∑

q eiq(n−n′ ) = δnn′ . We can then
use the identity

∑
q1...qM

δk,p−q1...−qM

M∏
j=1

hqj (t, t ′) =
∑

n

ei(p−k)n [h̃n(t, t ′)]M

N
(A13)

to perform the sum over M in Eq. (A10), obtaining the follow-
ing compact expression

ρcc
k (t, t ′) =

∑
p

Kk−p(t, t ′) eiεv
p (t ′−t )Y 0∗

p (t ′)Y 0
p (t ). (A14)

In Eq. (A14) the kernel

Kk−p(t, t ′) ≡ �∗(t ′)�(t )
1

N
∑

n

ei(p−k)neh̃n (t,t ′ ) (A15)

is the only quantity depending on the electron-phonon cou-
plings and phonon frequencies.

For vanishing electron-phonon coupling, i.e., λq = 0 for
all q, the Langreth function �(t ) = 1, see Eq. (40), and the
function h̃n(t, t ′) = 0. Therefore

K0
k−p(t, t ′) ≡ lim

{λq}→0
Kk−p(t, t ′) = δkp (A16)

and Eq. (A14) correctly reduces to the purely electronic result
in Eq. (A3). The conduction-conduction Green’s function of
the interacting electron-phonon system is a convolution in
momentum space between the Green’s function of the purely
electronic system ρ0cc and the kernel K . Indeed Eq. (A14) can
be rewritten as

ρcc
k (t, t ′) =

∑
p

Kk−p(t, t ′)ρ0cc
p (t, t ′). (A17)

For the system to attain a steady state in the long-time limit
the kernel Kk−p(t, t ′) has to approach a function of τ = t − t ′
for t, t ′ → ∞. If we denote by Kk−p(ω) its Fourier transform
then the steady-state spectral function in Eq. (14) reads

lim
T →∞

Ak (T, ω) =
∑

p

∫
dω′

2π
Kk−p(ω − ω′)A0

p(ω′), (A18)

where A0
p(ω′) is the spectral function of the purely electronic

system.

APPENDIX B: CONDUCTION-VALENCE GREEN’S
FUNCTION

The calculation of the off-diagonal Green’s function in
Eq. (13) is straightforward. We start by rewriting it as

Gcv
k (t, t ′) = iα∗βρcv

k (t, t ′), (B1)
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where ρcv
k (t, t ′) ≡ 〈�0|v̂†

k e−iĤ (t ′−t )ĉk|�x(t )〉. Inserting the ex-
pansion in Eq. (19) and using Eq. (A6) we find

ρcv
k (t, t ′) =

∑
p

∞∑
M=0

1

M!

∑
q1...qM

Ypq1...qM (t )

× ei(εv
p−ωq1 ...−ωqM )(t ′−t )〈�0|v̂†

k ĉk|pq1 . . . qM〉.
(B2)

The bracket in this equation is nonvanishing only for M = 0
and k = p, in which case its value is unity. Hence

ρcv
k (t, t ′) = Yk (t )eiεv

k (t ′−t ). (B3)

For k-independent coupling this result further simplifies since
Yk (t ) = �(t )Y 0

k (t ), see Eq. (45).

APPENDIX C: TIME-DEPENDENT PHONON
OCCUPATIONS AND MOMENTUM DISTRIBUTION

The time-dependent phonon occupancy is defined in
Eq. (10). Taking into account the expansion in Eq. (19) we
have

nq(t ) =
∞∑

M=0

1

(M!)2

∑
kk′

∑
q1 . . . qM

q′
1 . . . q′

M

Y ∗
k′q′

1...q
′
M

(t )

×Ykq1...qM (t )〈k′q′
1 . . . q′

M |b̂†
qb̂q|kq1 . . . qM〉. (C1)

From the inner product in Eq. (20) it follows that

〈k′q′
1 . . . q′

M |b̂†
qb̂q|kq1 . . . qM〉

= δk′k

∑
P

M∏
j=1

δq′
j qP( j)

M∑
j=1

δqq j . (C2)

Using the total symmetry of the amplitudes we then get

nq(t ) =
∞∑

M=0

1

M!

∑
k,q1...qM

M∑
j=1

δqq j |Ykq1...qM (t )|2. (C3)

We are also interested in the phonon-momentum distri-
bution. The phonon-momentum operator is given by Q̂ =∑

q q n̂q. The average momentum of the exciton-polaron state
is therefore

Q(t ) = 〈�x(t )|Q̂|�x(t )〉

=
∞∑

M=0

1

M!

∑
k,q1...qM

M∑
j=1

q j |Ykq1...qM (t )|2, (C4)

whereas the standard deviation is

σ 2
Q(t ) = 〈�x(t )|Q̂2|�x(t )〉 − Q2(t )

=
∞∑

M=0

1

M!

∑
k,q1...qM

M∑
i j=1

qiq j |Ykq1...qM (t )|2 − Q2(t ). (C5)

The condition in Eq. (26) is satisfied provided that Q(t ) 
0 and σQ(t ) is much smaller than the momentum-scale over
which the conduction band changes.

1. q-independent coupling

Let us evaluate Eq. (C3) using the solution of Eq. (30) for
q-independent couplings. It is straightforward to find

nq(t ) =
∞∑

M=0

M ×
∑

k

|YkM (t )|2
N . (C6)

Hence the phonon occupancy depends on the initial electronic
state Y0 but it does not depend of q (all modes are equally
populated). This implies that Q(t ) = 0 and hence the standard
deviation is simply

σ 2
Q(t ) =

∑
q

q2
∞∑

M=0

M ×
∑

k

|YkM (t )|2
N . (C7)

2. k-independent coupling

For k-independent couplings we substitute the solution of
Eq. (45) and find

nq(t ) =
∞∑

M=0

1

M!
M| fq(t )|2

(∑
q′

| fq′ (t )|2
)M−1

|�(t )|2

= | fq(t )|2, (C8)

where we have taken into account that
∑

k |Y 0
k (t )|2 =

Y0†eiHt e−iHt Y0 = 1. In this case the phonon occupancy in
Eq. (C8) is independent of the initial state.

Assuming that fq(t ) = f ∗
−q(t ) the average momentum

Q(t ) = 0 for all times. Therefore the standard deviation reads

σ 2
Q(t ) =

∑
q

q2| fq(t )|2. (C9)
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