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Time-dependent orbital-free density functional theory (DFT) is an efficient method for calculating the
dynamic properties of large-scale quantum systems due to the low computational cost compared to standard
time-dependent DFT. We formalize this method by mapping the real system of interacting fermions onto a
fictitious system of noninteracting bosons. The dynamic Pauli potential and associated kernel emerge as key
ingredients of time-dependent orbital-free DFT. Using the uniform electron gas as a model system, we derive an
approximate frequency-dependent Pauli kernel. Pilot calculations suggest that space nonlocality is a key feature
for this kernel. Nonlocal terms arise already in the second-order expansion with respect to unitless frequency and
reciprocal space variable ( ω

q kF
and q

2 kF
, respectively). Given the encouraging performance of the proposed kernel,

we expect it will lead to more accurate orbital-free DFT simulations of nanoscale systems out of equilibrium.
Additionally, the proposed path to formulate nonadiabatic Pauli kernels presents several avenues for further
improvements which can be exploited in future work to improve the results.
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I. INTRODUCTION

The simulation of large-scale quantum systems (such as
nanometer-scale quantum dots) when their electrons are out
of equilibrium has been a challenging undertaking and cause
for frustration [1–5]. The challenge is multifaceted. First,
the simulation methods need to be predictive, and although
time-dependent density functional theory (TD-DFT) is the
workhorse for these types of simulations, it still lacks broad
applicability across the possible excited states characters
(valence, charge transfer, Rydberg) [6–13]. Second, the com-
putational cost is a major concern. The cubic scaling of the
ground-state DFT algorithm and of the real-time or linear-
response TD-DFT algorithms (provided a small number of
states are computed) cripple the applicability of these meth-
ods to nanoscale systems [14,15]. The problem is further
exacerbated when systems with dense spectra are considered
[16–18]. Beyond DFT, an array of accurate methods is avail-
able. However, their computational cost is typically orders of
magnitude larger [19].

In this work, we tackle issues of computational feasibility
by exploring an alternative path: orbital-free DFT (OF-DFT)
[20,21]. OF-DFT effectively reduces the complexity of the
problem by considering only a single active orbital. This is in
stark contrast with commonly adopted Kohn-Sham DFT (KS-
DFT) methods in which a set of occupied orbitals equal in
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number to the electrons in the system needs to be considered
[22,23]. Thus, OF-DFT massively reduces the complexity of
the problem, provided that accurate approximations for the
density functionals involved are available. An important fea-
ture distinguishing OF-DFT from KS-DFT is that in addition
to the exchange-correlation (XC) functional, OF-DFT also
requires the knowledge of the noninteracting kinetic energy
functional.

Employing currently available density functional approx-
imants, the ground-state version of OF-DFT scales linearly
with the system size and has been shown to be applicable
to main group metals and III–V semiconductors [24–28]. Re-
cently, nonlocal functionals such as HC [25] and LMGP [29]
have achieved chemical accuracy for a wider range of systems.

OF-DFT can be formulated in the time domain to approach
systems out of equilibrium [30–42]. It is sometimes referred
to as the time-dependent Thomas-Fermi method [31–33] and
also hydrodynamic DFT [36–39]. In this work, we will refer to
it as TD-OF-DFT. Practical implementations initially featured
the adiabatic Thomas-Fermi (TF) [43,44] plus von Weizsäcker
(vW) [45] approximation [30,32] (TFW, hereafter), and later
including nonadiabatic corrections in the potential [40–42].
TD-OF-DFT has seen a wide range of applications includ-
ing atoms and clusters in laser fields, electron dynamics and
optical response in nano-structures, and oscillators in electric
fields [32,33,46–50]. Despite the drastic approximations, TD-
OF-DFT has been quite successful in describing the optical
spectra of metal clusters [32,51].

In this work we propose an alternative formalism of TD-
OF-DFT by introducing a map between the real system and
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a fictitious system of noninteracting bosons. We show that
this formalism is in principle exact by following proofs to
theorems similar to the ones at the foundation of regular
TD-DFT. The resulting boson-like singe-orbital representa-
tion is a compact and computationally amenable represen-
tation of the density and velocity field in a single complex
object. Thus, TD-OF-DFT accomplishes a similar goal as
the Madelung wave function typical of hydrodynamic DFT
[36–39] and other treatments [52]. However, the Madelung
wave function is ad hoc for multi-electron systems and its
use involves making the approximation that the electronic
structure of a many-electron system can be described by a
function of a single, collective variable. Such approximations
are not invoked in TD-OF-DFT which is an exact formalism.

However exact, TD-OF-DFT’s formalism does not pro-
vide practically usable expressions for the time-dependent
potentials involved. Approximations to these potentials (and
specifically the Pauli potential contribution to the total time-
dependent potential) are the subject of this work, and finding
good approximations is key to the accuracy of the method. We
should stress that our undertaking is not an academic exercise,
it is rather a search for time-dependent electronic structure
methods that are much cheaper computationally to currently
available methods. In this work we formulate exact conditions
which are a foundational aspect of functional development
[53] and focus particularly on the TD-OF-DFT Pauli kernel,
its nonadiabatic behavior, spatial nonlocality, and approxima-
tions needed for practical calculations.

To cast our developments in the current state of the art,
we should mention other quantum dynamic methods, such as
time-dependent density functional tight binding (TD-DFTB)
[54–57], which is capable of handling systems of much
greater size than conventional TD-DFT as well as simplified
versions of TD-DFT [58–61].

This work is organized as follows. In Sec. II we first es-
tablish an exact map between the real system of interacting
electrons, a system of noninteracting electrons and a sys-
tem of noninteracting bosons. This allows us to formulate
TD-OF-DFT as an exact formalism with theorems and exact
properties/conditions for the building blocks of the method.
In Sec. III we derive the real-time formalism of this approach
(i.e., the Schrödinger-like equation), and the Pauli potential
that needs to be approximated in actual calculations, as well
as some properties of the exact Pauli potential. In Sec. IV
we focus on the linear response formalism and derive Dyson
equations relating the response to external perturbations of the
real system, the KS system and the fictitious noninteracting
boson system. We then proceed to uncover a route to approx-
imate the Pauli kernel recovering needed nonadiabaticity and
nonlocality. Pilot calculations are also presented to showcase
the newly developed Pauli kernel.

II. NONINTERACTING BOSON SYSTEM

The foundation of ground-state Kohn-Sham (KS)-DFT and
TD-DFT is the existence of a unique and invertible map be-
tween the real system of interacting fermions and a fictitious
system of noninteracting fermions (KS system, hereafter).
However, other unique and invertible maps can be found
between the real system and other fictitious systems. For

example, it is possible to use a system of bosons having the
same charge, point-like shape and mass as the electrons. Such
a bosonic system is fictitious, and thus does not need to be
rooted in reality. A bosonic system at zero temperature yields
the following wave function to density relationship:

n(r) = N |φB(r)|2. (1)

OF-DFT implicitly takes advantage of the fictitious
bosonic system because it can be formulated in a way that re-
duces to Eq. (1), i.e., utilizes only a single active orbital. This
can be seen by invoking the KS-DFT total energy functional

E [n] = TS[n] + EH[n] + EXC[n] +
∫

dr n(r)v(r), (2)

where TS is the kinetic energy of N noninteracting electrons
having a density of n(r). EH is the Hartree energy, EXC is
the XC energy, and v(r) is the external potential. A search
over electron densities to find the minimum of the energy
functional must be carried out with the constraint that the
densities must integrate to N electrons. Thus, the following
Lagrangian is typically invoked:

L[n] = E [n] − μ

[ ∫
dr n(r) − N

]
. (3)

Formally, the minimum of the above Lagrangian is also a
stationary point [62], and therefore its functional derivative
with respect to the electron density must vanish,

0 = δTS[n]

δn(r)
+ vS(r) − μ, (4)

which is known as the Euler equation of DFT. If the first term
on the r.h.s. of the above equation is written as the vW poten-
tial, vvW(r) = 1√

n(r)
[− 1

2∇2√n(r)], plus a correction, δTS[n]
δn(r) =

vvW(r) + [ δTS[n]
δn(r) − vvW(r)], then because the vW potential is

exact for wave functions of up to two electrons and for bosonic
systems, the correction term is known as Pauli potential, vP(r),
as it accounts for Fermi statistics.

The single-orbital wave function now emerges as simply
φB(r) = 1√

N

√
n(r) and the following Schrödinger-like equa-

tion derives directly from Eq. (3):[
− 1

2
∇2 + vP(r) + vS(r)︸ ︷︷ ︸

vB(r)

]
φB(r) = μφB(r). (5)

Following Eq. (1), the many-body wave function of the
noninteracting boson system is a Hartree product:

�B(r1, r2, . . . , rN , t ) =
N∏
l

φB(rl , t ). (6)

In this article we use the subscript B for the noninteracting
boson system and subscript S for the KS system, and use no
subscript for the real system.

When considering systems away from equilibrium (i.e.,
when the density, wave function and potentials become time-
dependent) the DFT theorems remain largely valid [63].
Before going into the details of the formal proofs, we sum-
marize in Table I the most important quantities involved in the
three reference systems (interacting, KS, and noninteracting
boson). The wave functions of the three systems are different.
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TABLE I. Comparison between the interacting, KS and noninteracting boson system.

Interacting system KS system Noninteracting boson system

Density n(r, t ) n(r, t ) n(r, t )
Wave function �(r1, . . . , rN , t ) 1√

N!
det[{φS,l (rl , t )}] ∏N

l φB(rl , t )
Effective potential v(r, t ) vS[n](r, t ) = v(r, t ) + vH[n](r, t ) + vXC[n](r, t ) vB[n](r, t ) = vS[n](r, t ) + vP[n](r, t )
Hamiltonian T̂ + Ŵ + v(r, t ) T̂ + vS(r, t ) T̂ + vB(r, t )

For the interacting system it can be a very complex function
of coordinates of every electron and time; for the KS system
it is a single Slater determinant; and, as mentioned, for the
noninteracting boson system it is a simple Hartree product
of the same function, φB. The interacting system features an
electron-electron Coulomb repulsion term Ŵ in the Hamil-
tonian, whereas the two noninteracting systems do not. To
compensate for the missing electron-electron interaction, the
KS system employs an effective potential, vS[n](r, t ), which
includes the external potential v(r, t ), the Hartree potential,
vH[n](r, t ), and the XC potential, vXC[n](r, t ). For the nonin-
teracting boson system, there is a different effective potential,
vB[n](r, t ), which includes an additional Pauli potential term,
vP[n](r, t ), required to compensate for the neglect of the Pauli
exclusion principle. In the end, all three systems yield the
same time-dependent density.

To provide a visual and formal framework, we introduce
bijective maps connecting the three systems and realized in
practice by the vS and vP potentials. We shall indicate with
�, �S, and �B bijective maps linking every v-representable
time-dependent density to a unique time-dependent multi-
electron wave function �(r1, . . . , rN , t ), every noninteracting
vS-representable density to a unique set of KS orbitals
{φl (rl , t )}, and every noninteracting vB-representable density
to a unique single orbital φB(r, t ), respectively (see Fig. 1).

To establish the exactness of these maps, we now prove
analogs of two fundamental theorems in TD-DFT. The first
theorem establishes one-to-one bijective maps between time-
dependent densities, time-dependent wave functions, and
time-dependent effective potentials for any one of the systems,
particularly for the noninteracting boson system. From Eq. (1)
and Eq. (6), given a wave function the density is uniquely
determined, and with a given density, the wave function is
uniquely determined up to a phase factor. The forward one-
to-one map between the time-dependent effective potentials
and time-dependent densities is also found by plugging the
potential in the corresponding Hamiltonian and solving for the
time-dependent Schrödinger-like equation. The reverse one-
to-one map between the time-dependent effective potentials
and time-dependent densities is proved by the Runge-Gross
theorem [64]. The proof of this theorem does not require the
Hamiltonian and the wave function of the system to be in a
particular form, except for the effective potential to be Taylor
expandable [65]. Therefore, it applies to the noninteracting
boson system without any effort.

Next, we are going to establish a one-to-one map be-
tween the external potential of the interacting system and the
effective potential of the noninteracting boson system (up
to a constant). This requires one to prove an analog of the
van Leeuwen theorem [66]: For any time-dependent density,
n(r, t ), associated with the system of interacting fermions

and the external potential, v(r, t ), and initial interacting state,
�0, there exists a unique potential vB(r, t ) up to a purely
time-dependent constant, c(t ), that will reproduce the same
time-dependent density of a system of noninteracting bosons,
where the initial state �0

B of this system must be chosen such
that the densities and their time derivative of the two systems
are the same at the initial time.

The proof of our analog of the van Leeuwen theorem is
very similar to that of the original one. Here we are going
to follow Ref. [63] and only point out the differences. We
start with the Hamiltonian of the two systems, the interacting
fermions,

Ĥ = T̂ + Ŵ + V̂ (t ), (7)

with the time-dependent wave function �(t ) and initial state
�0, and the noninteracting bosons,

ĤB = T̂ + V̂B(t ), (8)

with the time-dependent wave function �B(t ) and initial state
�0

B. Both systems yield the same time-dependent density

FIG. 1. Three representations of an electronic system discussed
in this work. The circles represent electrons, and the dotted lines
represent electron-electron interactions. The noninteracting fermion
and boson systems are depicted in the bottom left and right en-
closures, respectively, while the interacting (real) system is at the
top. Gray circles represent bosons. All three systems have a one to
one bijective map between its wave function, effective potential, and
time-dependent density, n(r, t ) which are indicated by the symbols
�, �S, and �B. The density is the same across all representations.
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n(r, t ). We can Taylor expand v(r, t )

v(r, t ) =
∞∑

k=0

1

k!
vk (r)(t − t0)k, (9)

where vk (r) = ∂kv(r, t )/∂t k|t=t0 , and vB(r, t )

vB(r, t ) =
∞∑

k=0

1

k!
vk

B (r)(t − t0)k, (10)

where vk
B (r) = ∂kvB(r, t )/∂t k|t=t0 . Our goal is to find a way to

uniquely determine each Taylor expansion coefficients vk
B (r).

Next, we note that the current density operator should be
the same for both systems, namely, its expectation value

ĵ(r) = 1

2i

N∑
l

[∇lδ(r − rl ) + δ(r − rl )∇l ]. (11)

should be the same whether it is evaluated with the KS wave
function or the bosonic wave function.

Thus, applying Eq. (11) to the wave functions of the inter-
acting, KS, and noninteracting boson systems we obtain the
current densities for these systems:

j(r, t ) = 〈�(t )|ĵ(r)|�(t )〉, (12)

jS(r, t ) = 1

2i

N∑
l

[φS
∗
,l (r, t )∇φS,l (r, t ) + φS,l (r, t )∇φS

∗
,l (r, t )],

(13)

jB(r, t ) = N

2i
[φ∗

B (r, t )∇φB(r, t ) + φB(r, t )∇φ∗
B (r, t )]. (14)

If we apply the equation of motion for ĵ(r) in the noninter-
acting boson system, we will get (see Appendix A for detailed
derivation)

∂

∂t
jB(r, t ) = −n(r, t )∇vB(r, t ) − Fkin(r, t ), (15)

where the kinetic force Fkin is in the following form:

Fkin(r, t )

= N

4
{4[∇φ∗

B (r, t )][∇2φB(r, t )]

+ 4[∇2φ∗
B (r, t )][∇φB(r, t )] − ∇3[φ∗

B (r, t )φB(r, t )]}.
(16)

Equation (15) is in the same form as Eq. (3.27) in Ref. [63] if
we consider the interaction force Fint = 0 because the system
is assumed to be noninteracting. Taking the divergence of
Eq. (15) and use the continuity equation, we obtain

∂2

∂t2
n(r, t ) = ∇ · [n(r, t )∇vB(r, t )] + qB(r, t ), (17)

where qB(r, t ) = ∇ · Fkin(r, t ). Subtract Eq. (17) from its
counter part for the interacting system Eq. (3.48) in Ref. [63],
we obtain

∇ · [n(r, t )∇γ (r, t )] = ζ (r, t ), (18)

where γ (r, t ) = v(r, t ) − vB(r, t ) and ζ (r, t ) = qB(r, t ) −
q(r, t ). Note that Eq. (18) is in the exactly same form as
Eq. (3.50) in Ref. [63].

The last part of the proof is to derive the equations that
uniquely determine vk

B (r) from Eq. (18). This part of the proof
is exactly the same as those from Eq. (3.51) to Eq. (3.55) in
Sec. 3.3 of Ref. [63]. Now we reach the conclusion which
is that vB(r, t ) is uniquely determined by the density and the
initial states, e.g.,

vB ≡ vB

[
n, �0,�

0
B

]
(r, t ). (19)

We formally proved that for every interacting system with
a v-representable time-dependent density and given an initial
condition, there is a unique, noninteracting boson system that
yields the same density. This is important because without
such a map a reference noninteracting boson system cannot
be employed. We recall that this approach has been analyzed
before by several authors in several regimes under different
sets of approximations [1,2,32,34,36,39,40,42,67–70] as well
as in the context of the exact factorization method of recent
formulation [71]. In the next section, we discuss how to deter-
mine the effective bosonic potential in practical calculations
and we also review some of its exact properties that can be
useful for guiding the development of approximations.

III. ADDITIONAL THEOREMS AND PROPERTIES

A. Time-dependent Schrödinger-like equation

The typical setup is that the system starts in its ground
state at t = t0 and begins to evolve under the influence of a
time-dependent external potential for t > t0. Thus, the initial
wave function, �0

B, can be found with ground-state OF-DFT
by solving Eq. (5). In the following, it will be convenient
to define the time-independent Pauli potential as a functional
derivative of the Pauli kinetic energy, namely,

vP[n](r) = δTP[n]

δn(r)
, (20)

where TP[n] = TS[n] − T vW
S [n].

Given the initial orbital φ0
B ,

φ0
B (r) = 1√

N

√
n0(r), (21)

where n0(r) is the ground-state density at t = t0, in order to
propagate the system after t > t0, we need to solve a time-
dependent Schrödinger-like equation:[

−∇2

2
+ vB[n](r, t )

]
φB(r, t ) = i

∂

∂t
φB(r, t ), (22)

with the initial condition

φB(r, t0) = φ0
B (r), (23)

and the time-dependent effective potential is given by

vB[n](r, t ) = vP[n](r, t ) + vS[n](r, t ), (24)

which defines the time-dependent Pauli potential.

B. Properties of vP(r, t )

While the exact form of the time-dependent Pauli potential
is unknown for the general case, we can still derive some
properties and exact conditions. Equation (24) indicates that
the role of the time-dependent Pauli potential in TD-OF-DFT
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is similar to the role of time-dependent XC potential in TD-
DFT because it ensures that the fictitious boson system has the
same electronic dynamics as the fermion system. In TD-DFT,
the XC potential ensures that the dynamics of the noninter-
acting fermion system is the same as the interacting fermion
system. Therefore, for many properties of the time-dependent
XC potential, we can find analogies for the time-dependent
Pauli potential. Here we are going to list some of such
properties.

1. Functional dependency

The functional dependencies of vP, vS and vB, in terms of
n0, �0, �0

S , and �0
B:

vS ≡ vS

[
n0, �0,�

0
S

]
(r), (25)

vB ≡ vB

[
n0, �0,�

0
B

]
(r), (26)

vP ≡ vP

[
n0,�

0
S ,�

0
B

]
(r). (27)

We stress that the formal dependency of the time-dependent
boson potential in Eq. (26) is a direct result of the initial
conditions of the time-dependent problem as it arises in the
proof of the van Leeuwen theorem in Sec. II. Equation (27)
links the KS system with the noninteracting boson system.
Thus, it does not depend on the interacting wave function.

2. The zero-force theorem

The total momentum of a many-body system can be ex-
pressed as [63]

P(t ) =
∫

dr j(r, t ). (28)

Combine Eq. (15) and Eq. (28) and notice that Fkin in the form
of Eq. (16) is the divergence of a stress tensor and thus the
integral of Fkin over the space vanishes, we obtain

∂PB(t )

∂t
= −

∫
dr n(r, t )∇vB(r, t ). (29)

The total momentum of the noninteracting boson system
and the KS system are the same at all time because the densi-
ties of the two systems are the same, thus

0 = ∂PS(t )

∂t
− ∂PB(t )

∂t
= −

∫
dr n(r, t )∇[vS(r, t ) − vB(r, t )]

(30)
or ∫

dr n(r, t )∇vP(r, t ) = 0. (31)

The implication of this theorem are that vP(r, t ) cannot
exert a total, net force on the electronic system. This is also
the case for the XC potential [72].

3. The one- or two-electron limit

Similar to the XC potentials in KS-DFT and TD-DFT, an
exact condition for the Pauli potential arises for one- and two-
electron densities. In the event of the system having only one
electron or two spin-compensated electrons, the KS system is
given by a single orbital. This orbital is the same as the orbital

of the noninteracting boson system. Thus,

vP(r, t ) = 0 for
∫

dr n(r) � 2. (32)

Even though this is a clear exact condition, its imposition in
real-life density functional approximations is nearly impossi-
ble resembling the self-interaction error for the XC functional
[73].

4. The relation between TP and vP

Let us define the time-dependent energy of the noninteract-
ing boson as

E (t ) = 〈�B(t )|ĤB(t )|�B(t )〉. (33)

We then plug Eq. (8) and Eq. (24) in Eq. (33) to obtain

E (t ) = TB(t ) + TP(t ) + EH(t ) + EXC(t ) +
∫

dr v(r, t )n(r, t ),

(34)
where

TB(t ) = −
√

n(r, t )
∇2

2

√
n(r, t ), (35)

TP(t ) = TS(t ) − TB(t ), (36)

EH(t ) = 1

2

∫
dr
∫

dr′ n(r, t )n(r′, t )

|r − r′| , (37)

EXC(t ) = T (t ) − TS(t ) + W (t ) − EH(t ). (38)

Note that the definitions of EH(t ) and EXC(t ) are exactly the
same as those in TD-DFT [63].

If we apply the Heisenberg equation of motion

dO

dt
=
〈
∂Ô

∂t

〉
+ i〈[Ĥ, Ô]〉 (39)

to the Hamiltonians of the KS and the noninteracting boson
system, we get [63]

dTS(t )

dt
= −

∫
dr

∂n(r, t )

∂t
vS(r, t ) (40)

and (see Appendix B for detailed derivation)

dTB(t )

dt
= −

∫
dr

∂n(r, t )

∂t
vB(r, t ). (41)

Subtracting Eq. (41) from Eq. (40) we obtain

dTP(t )

dt
=
∫

dr
∂n(r, t )

∂t
vP(r, t ). (42)

Equation (42) can be used to check the accuracy of numer-
ical calculations, or as an exact constraint for approximations
of vP as done for other functionals [74]. This is also the case of
its analog in vXC [75] being used in developing XC functionals
[76].

5. Nonadiabaticity and causality

It is possible to define time-dependent potentials and ker-
nels from action functionals. Here we use an analogy of the
variational principle method proposed by Vignale [5] which
takes into account the “causality paradox” [1].
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The action integral of the noninteracting boson system can
be written as

AB[n] = A0B[n] −
∫ t1

t0

dt
∫

dr n(r, t )vB(r, t ), (43)

where

A0B[n] =
∫ t1

t0

dt

〈
�B[n](t )

∣∣∣∣i ∂

∂t
− T̂

∣∣∣∣�B[n](t )

〉
. (44)

Imposing AB in Eq. (43) to be stationary with respect to varia-
tions of the density leads to

vB(r, t ) = δA0B[n]

δn(r, t )
− i

〈
�B[n](t1)

∣∣∣∣δ�B[n](t1)

δn(r, t1)

〉
. (45)

Relating the action integrals of the noninteracting boson
system and the KS system, we obtain

A0B[n] = A0S[n] + AP[n], (46)

and carrying out a similar analysis as Eq. (43) through Eq. (45)
for the KS system, plugging in the results of both systems into
Eq. (46), we obtain

vP(r, t ) = δAP[n]

δn(r, t )
+ i

〈
�S[n](t1)

∣∣∣∣δ�S[n](t1)

δn(r, t1)

〉

− i

〈
�B[n](t1)

∣∣∣∣δ�B[n](t1)

δn(r, t1)

〉
. (47)

The above equation highlights the fact that in order to avoid
the so-called “causality paradox,” the functional derivative of
AP should be augmented by two boundary terms, one stem-
ming from the KS system and one from the noninteracting
boson system. This is an analog to the functional derivative
of AXC in conventional TD-DFT augmented by the boundary
terms from the interacting system and the KS system.

IV. APPROXIMATING THE PAULI KERNEL

In this section, we will first derive appropriate Dyson equa-
tions relating response functions of the interacting system, the
KS system, and the noninteracting boson system. In a second
step, we analyze the poles of these response functions to better
appreciate the nonadiabaticity of the Pauli kernel. Finally, we
derive an approximate Pauli kernel and test it in several pilot
calculations.

A. Response functions and Dyson equations

Dyson equations relating the interacting, KS and the non-
interacting boson systems are important as they give us
a framework to formulate approximations for the involved
kernels [77–80].

In linear response theory, we expand the time-dependent
density in orders of vB (where vB1 is the first-order potential
term) and the first-order change in the density, n1, is given by

n1(r, t ) =
∫

dt ′
∫

dr′ χB(r, t, r′, t ′)vB1(r′, t ′), (48)

where the density-density response function is

χB(r, t, r′, t ′) = δn[vB](r, t )

δvB(r′, t ′)

∣∣∣∣
vB[n0](r)

. (49)

FIG. 2. Top panel: Density of states of a Ag19 rod (see depiction
in inset of Fig. 6). Red solid line: noninteracting boson system using
the TF potential as vP. Blue dashed line: KS system. Both systems are
computed with the same XC functional (LDA). Bottom three panels
show the energy value of the poles of various response functions.
Blue dots: KS system; red dots: approximate noninteracting boson
system with TF as vP; black dots: noninteracting boson system with
vP found by inversion of the KS density [see Eq. (55)]. Note: the
bottom panel x axis runs from 0 to 30 eV as opposed to the other
panels which run from 0 to 3 eV, as indicated by the black vertical
dashed line and the blue arrow.

Defining the time-dependent Pauli kernel

fP(r, t, r′, t ′) = δvP[n](r, t )

δn(r′, t ′)

∣∣∣∣
n0

, (50)

and by noticing that both χB and fP only depend on t − t ′,
they can be represented in frequency space using Fourier
transformations

χB(r, r′, ω) =
∫

d (t − t ′) eiω(t−t ′ )χB(r, r′, t − t ′), (51)

and the same for fP. We can now introduce the relevant Dyson
equations:

fP(r, r′, ω) = χ−1
B (r, r′, ω) − χ−1

S (r, r′, ω), (52)

fPHXC(r, r′, ω) = χ−1
B (r, r′, ω) − χ−1(r, r′, ω), (53)

fHXC(r, r′, ω) = χ−1
S (r, r′, ω) − χ−1(r, r′, ω). (54)

Equation (52) shows the role the Pauli kernel fP plays
in linking the poles of the response functions of the non-
interacting boson system and the KS system. Clearly, the
response functions of the two systems have poles at different
frequency values. To further investigate this, in Fig. 2 and
Table II we compare the frequency positions of the poles
of the noninteracting boson system and the KS system for
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TABLE II. Comparison of the lowest bosonic and KS pole in eV
for the Ag19 nanorod and icosahedral Na55 cluster (see Fig, 6 for a
depiction of their structures and Fig. 2 for additional information).

System KS Boson TF Boson inversion

Ag19 0.173 0.436 4.717
Na55 0.358 0.368 3.282

a Ag19 nanorod [16] computed by simply diagonalizing the
KS and noninteracting boson Hamiltonians. LDA is used as
the XC potential to determine vS, and TF or an exact inver-
sion are used to determine vP. TF is equivalent to employing
the Thomas-Fermi-von-Weizsäcker approximation (TFW) for
TS[n] while the exact inversion of the KS system is carried out
via the following relation:

vB[n](r) = ∇2√n(r)

2
√

n(r)
, (55)

where n(r) is KS-DFT density. This inversion method is im-
plemented to ensure that the poles of χB and χS derive from
the same ground-state density.

Figure 2 and Table II show that for the Ag19 system the
onset of the poles of the KS response comes at significantly
lower frequencies compared to the corresponding poles of the
boson response. It is interesting to note that the approximate
TF vP yields excitation energies for the boson system that are
much closer to the KS excitations compared to the true boson
system computed by inversion.

This demonstrates the role of fP which is to red shift the
poles of the boson response towards those of KS response
in addition to changing their character by mixing the boson
excited states through the Pauli kernel. Unlike the poles of KS
response which are generally close to the poles of the inter-
acting response, the differences between poles of boson and
KS response seem much larger, highlighting the importance
of accounting for nonadiabaticity in fP.

B. Approximating fP accounting for nonadiabaticity
and nonlocality

The KS response function for the noninteracting uniform
electron gas (free electron gas, or FEG, hereafter), also known
as the frequency-dependent Lindhard function, plays an im-
portant role in TD-DFT for deriving approximations to the XC
kernel [81–87] and is also used as the target response function
for parametrizations of nonadiabatic Pauli potentials [40,67].
Following a similar paradigm, we first derive the exact re-
sponse function for the bosonic FEG (BFEG), and then we
use the Dyson equation in Eq. (59) to derive approximations
to the Pauli kernel.

For deriving the BFEG response function, assume N non-
interacting bosons confined in a d-dimensional cubic cell with
the volume of Ld , with a uniform external potential. Assum-
ing spin compensation, the BFEG response function can be
written as [88]

χB(q, ω) = 1

Ld

∑
k

nk − nk+q

ω + εk − εk+q + iη
, (56)

where nk = 1/(e(εk−μ)/T − 1) is the Bose-Einstein average
occupation of state k at temperature T and chemical potential
μ. We refer the reader to chapter 4 of Ref. [88] for a thorough
introduction and derivation of the Lindhard functions in one,
two, and three dimensions.

Equation (56) can be rewritten with a change of variable
k → k − q:

χB(g, ω) = 1

Ld

(∑
k

nk

ω + εk − εk+q + iη

+
∑

k

nk

−ω + εk − εk−q − iη

)
, (57)

where the summation is over all occupied states. In the limit
of T → 0, only k = 0 states are occupied with the occupation
number N , therefore we can replace the summation with a
multiplication of N :

χB(q, ω) = N

Ld

(
1

ω − q2/2 + iη
+ 1

−ω − q2/2 − iη

)

= k3
F

3π2

(
1

ω − q2/2 + iη
+ 1

−ω − q2/2 − iη

)
,

(58)

where the Fermi wave vector kF = (3π2n)1/3.
We note that the formula for χB of the BFEG is simpler than

the one for χS of the FEG due to the omission of the integral
over k. Figure 3 shows the comparison between χS, χB and the
approximate response function for TFW functional χ TFW for
the FEG. The χ TFW response function is given by Eq. (18) of
Ref. [67] χ TFW = −(kF /π2)[1 + 3q2/4k2

F − 3ω2/(k2
F q2)]−1

which was also found in Ref. [38]. The η → 0 limit of
the BFEG response in Eq. (58) lim

η→0
χB = −(k3

F /3π2)[q2/4 −
ω2/q2]−1 reproduces the results in Refs. [38,67] by taking the
TF part out of χ TFW. χB has the same asymptotic behavior as
χS for both q → 0 and q → ∞. It has a similar shape to χ TFW

but the singularity is at a different position. Additionally, both
χB and χ TFW feature vary narrow peak dispersions compared
to χS.

Combining Eq. (58), the Lindhard function and the Dyson
equation Eq. (52), we can generate the exact Pauli kernel for
the FEG (in reciprocal space):

f FEG
P (q, ω) = 3π2

k3
F

(
1

ω − q2/2 + iη
+ 1

−ω − q2/2 − iη

)−1

− π2q

k2
F

[
�3

(
ω + iη

qkF
− q

2kF

)

−�3

(
ω + iη

qkF
+ q

2kF

)]−1

, (59)

where

�3(z) = z

2
+ 1 − z2

4
ln

z + 1

z − 1
. (60)

Figure 4 shows that the Pauli kernel Eq. (59) follows
strongly the features of the Lindhard function. The real part of
fP has two cusps at the same position of the cusps of the Lind-
hard function for χS, and the imaginary part has a wide feature
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FIG. 3. Comparison between the Lindhard function (χS for the FEG), χB for the BFEG [see Eq. (58)] and the Thomas-Fermi-von-
Weizsäcker (TFW) response function χTFW [Eq. (18) of Ref. [67]] with respect to q for a uniform density value of n = 0.004 a.u. (corresponding
to a Fermi wave vector value of kF = 0.491 a.u.), the excitation frequency is set to ω = 0.125 a.u. and spectral broadening is set to η =
0.0001 a.u.

with the same width as the peak in the Lindhard function
for χS. Figure 5 compares the fP-ω dependence for different
choices of density values. fP gets closer to 0 as the density
increases because the system becomes more Thomas-Fermi-
like [89]. On the other hand, at lower density, the nonzero
features of fP are more pronounced, for example, the feature
between ω from 0.2 a.u. to 0.8 a.u. for n = 0.001 a.u.

C. Extending the Pauli kernel from the uniform electron gas to
inhomogeneous systems

One way to extend Eq. (59) to general systems is to replace
the Fermi wave vector kF with a two-body Fermi wave vector
ξ (r, r′), such as

ξ (r, r′) =
[

kγ
F (r) + kγ

F (r′)
2

]1/γ

(61)

or a geometric average

ξ (r, r′) = k1/2
F (r)k1/2

F (r′). (62)

Equation (61) is used in functionals of the noninteracting
kinetic energy (TS[n]) such as CAT [90] and WGC [24] and
has the advantage of ξ (r, r′) always being positive as long
as the density is not 0 at both r and r′. However, it leads
to a quadratic scaling algorithm because it is not possible to
formulate the resulting equations in terms of convolution-like
integrals where fast Fourier transform can be applied. With
the choice of Eq. (62) for the Fermi wave vectors, we propose
the nonadiabatic correction to the Pauli kernel in the following
form (see Appendix C for detailed derivation):

f nad
P (ω, q) = iπ3

12

(
6

ξ 2q
+ q

ξ 4

)
ω + π2(16 − π2)

4ξ 3q2
ω2

+ π2(16 − 3π2)

48k5
F

ω2. (63)

FIG. 4. Pauli kernel, fP, for the free electron gas. Plots of fP with respect to q are shown for different ω (in a.u.) at n = 0.004 a.u.
(kF = 0.491 a.u.) and η = 0.0001 a.u.
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FIG. 5. Pauli kernel, fP, for the free electron gas. Plots of fP with respect to ω are shown for different n (in a.u.) at q = 1 a.u. and η =
0.0001 a.u.

Note the last term in Eq. (63) is purely local (e.g., does not
have a contribution from q).

We point out that the procedure discussed here is equiva-
lent to the one presented in Ref. [67]. We, however, include
additional terms in the expansion. As will be clear below, the
additional terms (and particularly terms nonlocal in space)
contribute significantly. The second-order expansion of the
kernel in Eq. (63) features both imaginary and real valued
terms. The immediate effects of the real-valued terms is
to shift the position of the poles, and the imaginary terms
broaden the line shapes. While in this work we focus mainly
on excitation energy shifts, broadening of the peaks also is
important to represent the increase of accessible states in the
KS system compared to the boson system.

To use the kernel in practical calculations, Casida matrix
elements need to be computed, such as

Ki j =
∫

dr
∫

dr′φ0(r′)φ∗
j (r′) f nad

P (ω, r, r′)φ∗
0 (r)φi(r),

(64)

we need to treat the space dependence of kF in the following
way. For last term in Eq. (63) which is local, we apply the
local-density approximation or LDA, namely, kF ≡ kF (r) =
(3π2n0(r))1/3. The LDA results in the following commonly
employed integrals (e.g., for the so-called ALDA kernel in
TD-DFT):

K local
i j =

∫
dr
∫

dr′φ0(r′)φ∗
j (r′)

× f nad,local
P (ω, r)δ(r′ − r)φ∗

0 (r)φi(r). (65)

For the nonlocal terms, for example, the second to the last
term in Eq. (63), we use kF = k1/2

F (r)k1/2
F (r′), and

Ki j =
∫

dr′φ0(r′)φ∗
j (r′)k−2/3

F (r′)

×F−1

[
π2(16 − π2)

4q2
ω2F

[
k−2/3

F (r)φ∗
0 (r)φi(r)

]]
, (66)

where F{·} and F−1{·} represent forward and inverse Fourier
transform, respectively.

D. Pilot calculations involving the nonadiabatic Pauli kernel

To demonstrate the effect of the nonadiabatic Pauli kernel,
we present several pilot calculations involving the solution
of the Dyson equation in Eq. (52) linking the boson and KS
response functions. That is, we begin with the boson response
function, χB, and through Eq. (52) employing an approximate
Pauli kernel we recover an approximate χS which we compare
to the exact one.

The role of the nonadiabatic Pauli kernel is to line up the
poles of χB with the poles of χS. According to the examples
provided in Fig. 2 and Table II, the Pauli kernel should red
shift the bosonic poles by as much as 4.5 eV and 2.8 eV for
the silver nanorod and sodium cluster, respectively. Therefore,
we expect fp and its matrix elements with respect to occupied-
virtual orbital products to be large in size and comparable to
the orbital energy differences.

Therefore, it is problematic that the simplest approxima-
tion to it [i.e., the TF functional with kernel f TF

p (r, r′) =
10
9 CTFδ(r − r′)n− 1

3 (r)] is strictly positive. From the single-
pole approximation (i.e., ωS = √ω2

B + 2KωB, where ωS/B are
the KS/boson orbital excitations and K is the matrix element
of the Pauli kernel), we see that the positivity of the kernel
leads to a blue shift of the first excited state which is oppo-
site to the sought behavior. For these reasons, we expect the
nonadiabatic part of the kernel to play a very significant role.

In the calculations presented below we start from the
bosonic poles calculated by diagonalizing the noninteracting
boson Hamiltonian of Eq. (8), where the vP is determined by
inversion using Eq. (55) and therefore it is exact within the
numerical precision of the inversion procedure. We then com-
pute the lowest-lying KS pole by solving the Casida equation
[91] associated with the Dyson equation Eq. (52) with an
approximate Pauli kernel and compare to the exact KS pole
computed by diagonalization of the KS Hamiltonian.

We use the adiabatic TF as the adiabatic part of the
Pauli kernel and Eq. (63) evaluated according to the pre-
scriptions given in Sec. IV C for the nonadiabatic part.
The Dyson equation in Eq. (63) needs to be solved it-
eratively starting from the adiabatic result. The iterations
evolve as follows: (1) at the nth cycle we evaluate the
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FIG. 6. The convergence of the first KS pole with the nonadiabatic fP correction for an icosahedral Na55 cluster and a Ag19 nano-rod
(structures in inset). The yellow solid line is the position of the bosonic pole, the green dotted line is the position of the KS pole calculated
using only the adiabatic fP and the black dashed line is the position of the KS pole from diagonalizing the KS Hamiltonian. Red filled circles:
uses only the local term and couples the first state with the others only. Blue half-filled circles: uses full correction and couples the first state
with the others only. Black empty circles: uses full correction and full coupling.

KS response function via the Dyson equation, χn
S (ωout

n ) =
χB(ωout

n ) + χB(ωout
n ) fP(ωin

n−1)χn
S (ωout

n ); (2) the kernel is up-
dated with the value of the new frequency ωin

n = βωout
n +

(1 − β )ωin
n−1, and the Dyson equation is solved again to

find yet another pole frequency. The β mixing param-
eter was determined adaptively from β = 1 to β = 0.1
to find the balance between speed of convergence and
stability.

Figure 6 shows that the nonadiabatic Pauli kernel derived in
Sec. IV C succeeds in bringing the bosonic pole closer to the
KS pole for a sodium cluster, Na55 and a silver nanorod, Ag19,
respectively. For the Na55 system, we carried out additional
analyses: (1) we show the effect of applying the Pauli kernel
on one row/column of the Casida matrix or on the full matrix
(blue half-filled circles vs black empty circles) and (2) we
show that applying only the space-local part of the nonadi-
abatic Pauli kernel is not enough to substantially red shift the
bosonic pole (red filled circles).

To ensure that the numerical artifacts in the inverted vP

do not affect the final results, we also performed the same
calculations in Fig. 6 with vP multiplied by a mask function
m(r) = 1 − 1/{1 + [nKS(r)/ncutoff ]2}, where nKS(r) is the KS
density used as the input density of the inversion, and ncutoff =
10−4 a.u.. The mask function removed all artifacts from vP.
The results of these calculations are almost identical to those
in Fig. 6.

The above examples show that the proposed nonadiabatic
correction to the Pauli kernel provides the required red shift

to the bosonic pole towards the KS pole, provided the kernel
contains space-nonlocal terms.

V. SUMMARY

In the first part of this work, we present orbital-free TD-
DFT and derive properties (or conditions) that the Pauli
energy, potential and kernel must satisfy. Furthermore, we
provide proofs of theorems that also apply to conven-
tional TD-DFT, such as the Runge-Gross and van Leuuwen
theorems.

In the second part of this work, we derive an approxi-
mation for the Pauli kernel based on the response properties
of the uniform electron gas. The derived kernel is nonlocal
in space as well as nonlocal in time because it features an
explicit frequency dependence. Pilot calculations show that
the nonadiabatic part of the kernel is much more important
than the adiabatic part and that space-nonlocal terms in the
kernel play a fundamental role. The proposed kernel is capa-
ble of correctly red shifting the orbital free (bosonic) orbital
excitation energies, bringing them close to the KS orbital ex-
citations. While the final result of the excitation energy of the
lowest-lying KS excited state for a sodium cluster and a silver
nanorod are only in semiquantitative agreement with the exact
result, this work sheds light on a path to develop nonadiabatic
Pauli kernels for modeling with time-dependent orbital-free
DFT systems out of equilibrium in a computationally cheap
and semiquantitatively accurate way.
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APPENDIX A: DERIVATION OF Eq. (15)

We start with the equation of motion for the current density operator

i
∂

∂t
j(r, t ) = 〈φB(t )|[ĵ(r), ĤB(t )]|φB(t )〉

= 〈φB(t )|ĵ(r)ĤB(t ) − ĤB(t )ĵ(r)|φB(t )〉
= 〈φB(t )|ĵ(r)T̂ − T̂ ĵ(r) + ĵ(r)V̂B(t ) − V̂B(t )ĵ(r)|φB(t )〉, (A1)

where

〈φB(t )|ĵ(r)V̂B(t ) − V̂B(t )ĵ(r)|φB(t )〉

= 1

2i

N∑
l

∫
dr1 . . . drNφ∗

B (r1, r2, . . . , rN , t )

[∇l [δ(r − rl )vB(rl , t )] + δ(r − rl )∇lvB(rl , t ) − vB(rl , t )∇lδ(r − rl ) − vB(rl , t )δ(r − rl )∇l ]

φB(r1, r2, . . . , rN , t )

= N

2i
{φ∗

B (r, t )∇[vB(r, t )φB(r, t )] − ∇[φ∗
B (r, t )vB(r, t )φB(r, t )] + φ∗

B (r, t )∇[vB(r, t )φB(r, t )]

+ ∇[φ∗
B (r, t )vB(r, t )φB(r, t )] − φ∗

B (r, t )vB(r, t )∇φB(r, t ) − φ∗
B (r, t )vB(r, t )∇φB(r, t )}

= N

i
φ∗

B (r, t )φB(r, t )∇vB(r, t )

= 1

i
n(r, t )∇vB(r, t ) (A2)

and

〈φB(t )|ĵ(r)T̂ − T̂ ĵ(r)|φB(t )〉

= − 1

4i

N∑
l

N∑
k

∫
dr1 . . . drNφ∗

B (r1, r2, . . . , rN , t )

{∇l
[
δ(r − rl )∇2

k

]+ δ(r − rl )∇l∇2
k − ∇2

k ∇lδ(r − rl ) − ∇2
k [δ(r − rl )∇l ]

}
φB(r1, r2, . . . , rN , t )

= −N

4i
{φ∗

B (r, t )∇3φB(r, t ) − ∇[φ∗
B (r, t )∇2φB(r, t )] + φ∗

B (r, t )∇3φB(r, t )

− φ∗
B (r, t )∇3φB(r, t ) + 3∇[φ∗

B (r, t )∇2φB(r, t )] − 3∇2[φ∗
B (r, t )∇φB(r, t )] + ∇3[φ∗

B (r, t )φB(r, t )]

− φ∗
B (r, t )∇3φB(r, t ) + 2∇[φ∗

B (r, t )∇2φB(r, t )] − ∇2[φ∗
B (r, t )∇φB(r, t )]

+ (N − 1){φ∗
B (r, t )∇φB(r, t ) − ∇[φ∗

B (r, t )φB(r, t )] + φ∗
B (r, t )∇φB(r, t )

+ ∇[φ∗
B (r, t )φB(r, t )] − φ∗

B (r, t )∇φB(r, t ) − φ∗
B (r, t )∇φB(r, t )}

∫
dr′φ∗

B (r′, t )∇′2φB(r′, t )}

= −N

4i
{4∇[φ∗

B (r, t )∇2φB(r, t )] − 4∇2[φ∗
B (r, t )∇φB(r, t )] + ∇3[φ∗

B (r, t )φB(r, t )]}

= −N

4i
{−4[∇φ∗

B (r, t )][∇2φB(r, t )] − 4[∇2φ∗
B (r, t )][∇φB(r, t )] + ∇3[φ∗

B (r, t )φB(r, t )]}. (A3)

Combining Eq. (A1) through Eq. (A3) we get

∂

∂t
j(r, t ) = −n(r, t )∇vB(r, t )) − Fkin(r, t ), (A4)

245102-11



KAILI JIANG AND MICHELE PAVANELLO PHYSICAL REVIEW B 103, 245102 (2021)

where

Fkin(r, t ) = N

4
{4[∇φ∗

B (r, t )][∇2φB(r, t )] + 4[∇2φ∗
B (r, t )][∇φB(r, t )] − ∇3[φ∗

B (r, t )φB(r, t )]}. (A5)

APPENDIX B: DERIVATION OF Eq. (41)

Plugging the Hamiltonian of the noninteracting boson system as Ô into Eq. (39), we obtain

dE (t )

dt
=
〈
∂Ĥ

∂t

〉

=
〈
∂T̂

∂t

〉
+
〈
∂V̂B(t )

∂t

〉

=
∫

dr
∂vB(t )

∂t
n(t ). (B1)

From Eq. (34) we obtain

dE (t )

dt
= dTB(t )

dt
+
∫

dr vB(r, t )n(r, t ). (B2)

Combining Eq. (B1) and Eq. (B2) we get

dTB(t )

dt
= −

∫
dr

∂n(r, t )

∂t
vB(r, t ). (B3)

APPENDIX C: DERIVATION OF NONADIABATIC CORRECTION TO THE PAULI KERNEL

First, we replace variables ω, q, η with their dimensionless counterparts ω̄ = ω/qkF , η̄ = q/2kF , γ̄ = η/qkF . We can rewrite
χB and χS

χB(ω̄, η̄, γ̄ ) = 6π2η̄

kF

(
1

ω̄ − η̄ + iγ̄
+ 1

−ω̄ − η̄ − iγ̄

)−1

, (C1)

χS(ω̄, η̄, γ̄ ) = 2π2η̄

kF
[�3(ω̄ − η̄ + iγ̄ ) − �3(ω̄ + η̄ + iγ̄ )]−1. (C2)

Using the Dyson equation Eq. (52) that relates χB and χS, we find the nonadiabatic and adiabatic Pauli kernel fP and fP0 as
follows:

fP(ω̄, η̄, γ̄ ) = χB(ω̄, η̄, γ̄ ) − χS(ω̄, η̄, γ̄ ), (C3)

fP0(η̄) = χB(ω̄ = 0, η̄, γ̄ = 0) − χS(ω̄ = 0, η̄, γ̄ = 0). (C4)

Expanding fP and fP0 around η̄ = 0 up to the second order of η̄, we obtain

fP(ω̄, η̄, γ̄ ) =π2

kF

([
−3γ̄ 2 + 6iγ̄ ω̄ + 3ω̄2 + 2i

2i + (γ̄ − iω̄) log
( 1+iγ̄+ω̄

−1+iγ̄+ω̄

)
]

+
⎧⎨
⎩−3 − 4

3[γ̄ − i(−1 + ω̄)]2[γ̄ − i(1 + ω̄)]2
[
2i + (γ̄ − iω̄) log

( 1+iγ̄+ω̄

−1+iγ̄+ω̄

)]2
⎫⎬
⎭η̄2 + O(η̄4)

)
, (C5)

fP0(η̄) = π2

kF

[
1 − 8

3
η̄2 + O(η̄3)

]
. (C6)

Taking the limit γ̄ → 0 and expanding around ω̄ = 0 up to the second order of ω̄, we obtain

fP(ω̄, η̄) = π2

kF

[(
1 − 8

3
η̄2

)
+ iπ

6
(3 + 2η̄2)ω̄ + 1

12
(48 − 3π2 + 16η̄2 − 3π2η̄2)ω̄2 + O(ω̄3)

]
. (C7)

The nonadiabatic correction to the Pauli kernel is

f nad
P (ω̄, η̄) = fP(ω̄, η̄) − fP0(η̄)

=π2

kF

[
iπ

6
(3 + 2η̄2)ω̄ + 1

12
(48 − 3π2 + 16η̄2 − 3π2η̄2)ω̄2

]
. (C8)
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We note that exchanging the order of the ω̄ and η̄ limits does not affect the final form of the kernel because the ω̄ → 0 limit
must occur for a finite q. This is in contrast to taking the limit with respect to ω and q where the nonanalyticity of the Lindhard
function in terms of these variables results in a limit dependent on the order of operations [88].

Replacing the variables back, we get

f nad
P (ω, q) = iπ3

12

(
6

k2
F q

+ q

k4
F

)
ω + π2(16 − π2)

4k3
F q2

ω2 + π2(16 − 3π2)

48k5
F

ω2. (C9)
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