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Spin dynamics from a constrained magnetic tight-binding model
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A dynamics of the precession of coupled atomic moments in the tight-binding (TB) approximation is
presented. By implementing an angular penalty functional in the energy that captures the magnetic effective
fields self-consistently, the motion of the orientation of the local magnetic moments is observed faster than the
variation of their magnitudes. This allows the computation of the effective atomic magnetic fields that are found
consistent with the Heisenberg’s exchange interaction, by comparison with classical atomistic spin dynamics on

Fe, Co, and Ni magnetic clusters.
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I. INTRODUCTION

Nowadays, the coupling between structural and magnetic
properties in 3d-based magnetic materials plays a key role
in the manufacture of high-performance spintronics devices
[1]. Moreover, it is also central in numerous anomalous evolu-
tions of structural parameters [2] with pressure. For instance,
one of its salient consequence is that the bcc phase of «-Fe
is stabilized by its magnetic properties [3]. Thus, to accu-
rately describe the dynamics of 3d metals and their alloys, a
fully coupled spin-lattice dynamics with an ab initio level of
precision is highly desirable. Unfortunately, despite notable
progress [4,5], no such tool is available so far.

However, the theory of magnetism is fundamentally a the-
ory of electronic structure. Antropov et al. first presented
a description of the motion of local magnetic moments in
magnetic materials [6], in the framework of first-principles
methods. Their idea was motivated by the fact that the in-
teratomic exchange energy among atomic magnetic moments
is small compared to intra-atomic exchange and bandwidth
energy. Thus, this adiabatic spin-density approximation al-
lows them to treat the angles defining the directions of these
magnetic moments as sufficiently slow varying degrees of
freedom, to separate them from the individual motion of their
underlying electrons, exactly like the nuclear coordinates in
the Born-Oppenheimer adiabatic approach to molecular dy-
namics [7]. Moreover, by assuming that the magnetization
density in the immediate vicinity of each atom has a uniform
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orientation, each direction of every magnetic moment can be
followed in time according to a precession equation, as it
is the case of classical atomistic spin dynamics [8]. Conse-
quently, the initial many-electron system is mimicked by this
system of classical moments, when the directions and ampli-
tudes are determined self-consistently from the requirement
of minimizing a given free energy. Thus for each moment, the
effective field that enters in the precession equation depends
only on the variation of the spin-dependant free electronic
energy as a functional of the magnetization direction only.
Moreover, by assuming that the relevant electronic corre-
lation hole is essentially in the inner part of each atomic
volume, for this type of adiabatic transformation, the longi-
tudinal moment dynamics is nonadiabatic in this approach.
It is governed by individual electronic spin flips like Stoner
excitations, which are also fast [9]. Thus, even if the ampli-
tude of each moment cannot be globally constant in time,
for a small temporal excursion fast enough to keep the adi-
abatic approximation, the longitudinal dynamics can be often
neglected.

The paper is organized as followed. In Sec. II, we review
the framework used to derive noncollinear magnetism within
the tight-binding (TB) approximation. Angular magnetic con-
straints are imposed by penalty functionals that are solved
equally during the self-consistently computation of the elec-
tronic structure. In Sec. IID, the derivation of an equation
of precession of the local magnetic moments that involves
constrained magnetic fields is presented that allows considera-
tions both transverse and longitudinal dampened torques. The
dynamics of various magnetic dimers and trimers of Fe, Co,
and Ni is studied in detail in Secs. IIT A and III B to access the
validity of the isotropic Heisenberg exchange approximation
that is commonly assumed. Lastly, in Sec. III C we analyze in
depth the example of an Fe dimer exposing the strength of our
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method as opposed to the limitations introduced by describing
this system in the global Heisenberg picture.

II. METHODOLOGY

When an Hamiltonian H is a functional of the magnetiza-
tion M, the effective field is nothing else than the functional
derivative of H with the respect of the magnetization [10]. To
calculate such an effective field acting on the atomic magnetic
moments, the atomistic spin dynamics (ASD) uses a param-
eterized spin-Hamiltonian, where ab initio methods calculate
it at every self-consistent iteration with various methods. One
of the ab initio approach consists in the use of constrained
density functional theory (cDFT) [11], where a full account-
ability of accomplishments of calculations can be found now
in many references [12]. The accuracy of the cDFT methods
requires an extremely high computational price that scales
quickly with the dimension and size of the studied system.
In contrast, spin-Hamiltonian methods rely on spatial distribu-
tions of classical magnetic moments and offer an option with a
computational cost tuned by the accuracy and how interatomic
exchange parameters are treated. We offer a method that relies
in between, with a lower computational cost compared with
the full ab initio aspects of the cDFT method without having
to rely on a correct description of the parameters inside a
spin-Hamiltonian for a given system.

A. Magnetic tight-binding model

In this paper we have used a magnetic TB model that has
been described in a review article [13] and has been exten-
sively benchmarked and validated in many different magnetic
systems of various dimensionalities (bulk, surfaces, inter-
faces, wires, clusters) [14—16], including complex magnetic
structures such as spin-density wave [17] and noncollinear
configurations [18].

This is based on a parametrized spd description of the
electronic structure where in practice the parameters of the
Hamiltonian are determined by a careful fit of the total energy
and band structures obtained from ab initio data over a large
range of lattice constants of different crystallographic struc-
tures. The magnetism is described via a Stoner-like interaction
term. The Stoner parameter / of each element being also
determined from a comparison to ab initio calculations at sev-
eral lattice constants. This TB model describes the electronic,
magnetic, and energetic properties with a precision close to
density functional theory but at a much smaller computational
effort.

To avoid a very lengthy derivation, we will present a sim-
plified version of the TB formalism that focuses on the most
salient features of the model. Let us consider a nonmagnetic
TB Hamiltonian H® written in a local basis set |i). The site
index i is a composite object that also includes an orbital index
reference which can be dropped for simplicity. H? is decom-
posed into on-site energy terms 8? = (i|lH®|i) and hopping
integrals B;; = (i|H 9). The eigenfunctions of the system are
written as a combination of atomic orbitals |a) = Y, C¥i)
and the density matrix between sites reads p;; = Y_,* CF'Cs*
where the summation runs over the occupied energy levels
Eq < Eg where E}) is the Fermi level such that Zi pii 1s equal

to the total number of electrons N, of the system. The total
energy of a nonmagnetic system is here reduced to the band
energy only [19]:
occ
E) = 282 = Tr(pH") = Z'OUHJ(')i
o4 ij
occ

= CrCrH). (1)
ij «

To this nonmagnetic framework, both the magnetic in-
teraction and the local charge neutrality can be added by
appropriate constraints such as the total energy can be writ-
ten in a formalism where each electronic spins are treated
collinear, i.e.,

1
Eio = EL(())t + Z Ui(ni - n?)2 T4 Zl’mlz’ @

where n; = p;; = njy +n;, and m; = n;y —n;, are respec-
tively the charge and magnetization of site i, whereas /; is the
Stoner parameter, and U; a large positive quantity. By mini-
mizing Eq. (2) with respect to the normalized coefficient C7,
with the condition Y_,(C¥)* = 1, this leads to a Schrodinger
equation for a renormalized Hamiltonian H,, for 1 or | spins
separately. This Hamiltonian simply reads as

Ho=H'+ 31 <Ui(ni ) — %I,-m,-o) i, G

where o = +£1 is the spin 1 or |. In this Stoner picture
only the on-site terms &) — & + (Ui(n; — n?) — 1im;o’) are
affected by both the local charge neutrality and magnetism.

The generalization to noncollinear magnetism is straight-
forward. First the previous expressions is extended to spin
orbitals with spin-dependent coefficients (Cj;, C;;) on each
site. Then an on-site density matrix p; is manipulated as a
2x2 matrix with components p?° = Y ofCe e, in order
to write it more conveniently as p; = %n,»oo + %mi - 0, where
o0y is the identity matrix = I and ¢ = (oy, 0y, 0;) is a vector of
Pauli matrices, m; = Tr(p;o). As a consequence, the Hamilto-
nian H then reads as

H =H,00 +H,.0, “4)

where the components of the vector Hamiltonian H =
(H,, H,,) are

Hy =" (€ + Ui(n — nd))1dtil + Y Bislidil, (5)
i i

Hm:—%ZAmm. ©)

with A; = I;m;. When the total energy of the system is written
as the sum of the occupied eigenvalues (band-energy term) of
the renormalized Hamiltonian, one has to take into account
the so-called double-counting terms

occ l 1
Eow= D ea =5 2 Ui = (1)) + 7 2 fillmill,
(7

where ¢, are the eigenvalues of the renormalized Hamiltonian.
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B. Magnetic constraints in TB

When dealing with magnetic systems it is often interest-
ing to be able to explore the energetics of various magnetic
configurations. This can be achieved by trying several start-
ing magnetic configurations but remains a relatively limited
strategy since this produces few self-consistent solutions to
compare with. It can be very interesting to consider the situ-
ation where magnetic constraints are imposed on any given
atom i of the system. Appendix A summarizes the fixed-
spin method that is limited to collinear magnetism. However,
among all the practical methods of optimization under con-
straints [20], the penalty method is a very handy way to
proceed. This consists to supplement the total energy with a
penalty term in a similar way that has been done for the local
charge neutrality constraint. There exists many possible ways
to impose constraints on a magnetic system [11,21,22], which
have been carefully reported in the Ref. [23].

There also exists various types of penalty functional de-
pending on the quantity to impose. One can impose a given
moment m’™" on a given atomic site i as presented in
Appendix B but it is also possible to constrain only the polar
angle 6; between the atomic moments of atom i and the 7 axis,
a penalty functional of the form A(6; — 67")* can be consid-
ered. An equivalent expression can apply to the azimuthal
angle ¢; too. To constraint simultaneously both angles, we
could simply add these two functionals. However, as reported
by Ma and Dudarev [22], a combined angular penalty func-
tional can be constructed, based on the dot product of m;
and e, here considered as a unit vector of given spheri-
cal angles (67", 7"). This penalty function reads E/*" =
A(|lm;]| — " - m;), and leaves the norm of the magnetization
|lm;]|| free to vary while the direction of the magnetic moment
is constraint to be the direction of e/*". Consequently, this
introduces a renormalization of the on-site terms of the TB
Hamiltonian of the form —BY" - ¢ with BY™" = —i(e; — e™"),
where m; = ||m;||e;. Therefore the on-site term A; of the mag-
netic Hamiltonian H,, [see Eq. (6)] reads

Ai = Il-m,- + 2B§~)en . (8)

This is exactly the Eq. (1.9) of Ref. [24]. The spin-splitting
field A; is the sum of the Stoner-like exchange field I;m; and
the penalization field. This penalty scheme has many specific
properties. For example, by noting that —BY™" - m; = E", it
can be shown that there are no double counting terms as-
sociated to the the renormalization. Consequently, the total
energy can we written as in Eq. (B1) but without the last
term. Moreover, when A — oo, ¢; ~ € and BY™" - m; = 0,
the penalization field becomes perpendicular to the local
magnetization.

To be more specific, let us now consider the variation
of the total energy with respect to the polar and azimuthal
angles. By considering a variation of angle d6 on site i and
by using the force theorem, it is straightforward to show that

dE = ——— -m;d0 = —|m; || d9 - e;d0;. Now by taking the

derivative of B™" . ¢; = 0, and by noting that ¢ g = ey, we find
a relationship between the polar angle variation of the energy,

which is the effective field up to a sign, and the penalty field
1 0E

- 7= :Bl.)en ‘e _Bpen’ 9
] 96; — 1 T ©
and similarly with the azimuthal angle variation of the energy

1 1 0E gren

llm; | sin6; 9¢
Or in a more compact formulation
oE 1 0FE

Pl — — = ——— (11

om;  |m;]|| de;

€ip — B?e; (10)

i

Thanks to these penalty functionals, it becomes possible to
target any local arbitrary magnetic configuration to find the
corresponding local effective field, which is an extremely
useful technique to explore the magnetic energy landscape. It
is also possible to assign A as a site-dependent parameter, by
setting it to zero to constraint some atoms and let the others to
adapt, during the self-consistency cycles.

In the following section we will use the penalty formalism
to map the TB model onto an Heisenberg Hamiltonian and to
derive a spin-dynamics equation of motion that directly use
the penalty field hence derived.

C. Exchange parameters in TB

In this section the general features to map the total energy
of an electronic structure method onto a classical Heisenberg
model is presented, that describes a system of atomic spin,
characterized by local magnetic moments m; at site i interact-
ing via bare isotropic interactions Ji(}:

1
Eneis = ) ngmi “mj,
i#]

-1y

i#]

= —% > Jijei-ej, (12)
i#]

Within this approach the amplitude of the magnetization ||m;||
of site i can be incorporated effectively into the bare exchange
interaction to produce a dressed exchange interaction, once
assumed that the ||m;|| become independent of the magnetic
configuration. This assumption seems rather drastic but in
many magnetic systems where the magnetic moments are
not so dependent on the magnetic configuration or for small
rotations around a given angle, which is the case treated here.
By keeping this assumption in mind, we can safely drop the
dressed reference.

However, in systems that break globally the symmetry of
space rotation (particularly of nanometer size), this fails and
the classical Heisenberg model is only valid for a limited
range around a given magnetic stable (or metastable) con-
figuration C that preserves the invariance by point rotation
only locally. In such systems the Heisenberg model can only
be used to explore the dynamic around configuration C that
does not alter substantially the invariance by point rotation,
which are often found for low temperatures. Consequently,
for higher temperatures or space transitions that reduce the

lmilllmlle; - e;,
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point symmetry, the J;;’s become usually very sensitive to the
structural parameters such as the interatomic distances and
local environments, preventing their transferability to various
atomic structures. This point is well illustrated in Appendix D.

Since numerical implementations of the Heisenberg model
are by far simpler than electronic structure approaches, it is
tempting to extract the desired exchange parameters J;; from
electronic structure calculations. To do so, several methods
have been reported in the literature: (i) The simplest method
is based on a fit of the total energy obtained by multiple
magnetic collinear configurations, which do not necessitate
any noncollinear numerical implementations neither penalty
constraints [25]. (i) Another approach consists in perform-
ing finite-difference calculations of the total energy between
various magnetic noncollinear configurations [26], which can
enlarge significantly the space of the magnetic configurations
to span. In addition, by varying the relative angle between
the magnetic sites, it is possible to test the range of validity
of the Heisenberg picture [27,28]. (iii) Based on this finite
difference picture, in a seminal work, Liechtenstein et al. de-
rived an explicit expression of the exchange parameters, based
on second-order variation of the band-energy term relying on
the magnetic force theorem and Green’s function formalism
[29]. The latter one has shown big success in predicting var-
ious magnetic properties such as magnon excitation, critical
temperature and also used to perform dynamical calculation
of magnetic moments [30]. In this paper, we have used the
approach (ii), where we rotated one magnetic moment of an
angle 6 and developed an equation for E(6) for each case,
e.g., dimers (Sec. Il A) and trimers (Sec. IIIB). We have
found that the energy curve between the TB model and the
Heisenberg model agree quite well, which leads to a good
agreement between the spin dynamics of the two different
methods, shown later in Secs. III A and 111 B.

Details of the derived expression for both cases and the
fitting of the energies to find the respective exchange coupling
parameter J;; for each case is explored in more detail in
Appendix D.

D. Spin dynamics in TB

The change in direction of each of the local magnetic
moments m; = Tr(p;0) with time is given by the transverse
torque of this moment only with the effective pulsation, which

1Q 1 : ff __ pen OE
is in return precisely Bf" = —B;" = — Froal
ff pen
dm; =m; x B _ Bi_ X N (13)
=m, = ;
dt h h

Because B¢ is constructed orthogonal to m;, BT is itself a
cross product of a functional of m;, by m;. Equation (13) is
nothing else than the Larmor’s precession equation, which
is itself a nonrelativistic limit of a more complex motion of
spinning particles in a comoving frame [31].

In practice, TB SCF calculations are first performed
without any constraint to identify the stable magnetic (or
metastable) states m;?. Such a magnetic state is not neces-
sarily unique and the process has to be repeated in frustrated
systems that produce degenerate states. However this process
can be systematized by considering methods for finding min-
imum energy paths of transitions in magnetic systems [32].

Moreover if a precession around the equilibrium magnetiza-
tion is considered, the longitudinal term vanishes because B¢
is constructed orthogonal to m;. Then a given spin direction
m;(0) is chosen in the neighborhood of this equilibrium state
and a constrained SCF calculation is performed according to
the chosen penalty method described above, to get the local
effective field. Thus, a spin dynamics is produced by solving
Eq. (13) in time by using an explicit solver. In this case,
each local moment may have different starting amplitude that
remains constant over time and their motion evolve on local
spheres, according to the Rodrigues’ rotation formula that is
presented in Appendix C. The procedure is repeated for each
timestep of the spin dynamics.

III. SPIN DYNAMICS OF MAGNETIC CLUSTERS

In this section, we study the dynamics of the magnetic
moments under two different scenarios: using an “in house”
atomic spin dynamics (ASD) as implemented in Ref. [33]
based on an Heisenberg Hamiltonian and the tight-binding
spin-dynamics (TBSD) method described in the previous
Sec. II. This is applied for the most simple cases, i.e., dimers
and equilateral triangle trimers of equivalent atoms for which
the corresponding effective exchange interaction J is obtained
from our TB model and then used in the ASD for comparison
with TBSD. Note that since in the ASD code the dynamics
is expressed in terms of unit vectors and the effective field
is written as _g_f, (with no ||m;|| factor) we have used in the

TBSD an effective field given by — ||m;||BY".

We would like to highlight that Ref. [34] have explored
aspects of the results presented in this paper, in parallel.
Most of their efforts was to verify when the effective field
is exactly the negative of the constraining field, which acts
as a Lagrange multiplier to stabilize an out-of-equilibrium,
noncollinear magnetic configuration, a point already raised in
Ref. [21]. However, the quality of the derived effective field by
constrained method is very sensitive to the numerical limit of
the Lagrange multiplier, a point we have carefully monitored.
It is noteworthy to say that our results are complementary
and do not overlap in any way, specially in the spin-dynamics
aspect of this work. Moreover, Ref. [34] found that within the
DFT framework, the equivalence of the constraining field and
energy gradient is not exact and that a better relation between
them can be derived. However, it has been first observed
and then developed recently a noncollinear extension of the
exchange-correlation potential in DFT, in order to solve the
original restriction that derives this potential, in the collinear
framework only [35]. Unfortunately, to date this extension
is absent of the implementations of most of the computer
codes available that claim to address noncollinear magnetism
within the DFT. It is worth mentioning that the corrections
involved are marginal on the total energy on systems where
the spin-orbit coupling is negligible and when the phonons
are not strongly affected by the noncollinear spin directions.
In the following examples, we can safely neglect all these
considerations.

A. Magnetic dimers

Many studies have already addressed the spin dynamics
of both quantum and classical Heisenberg dimers [36], not
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FIG. 1. Magnetization and torque dynamics of individual moments for for dimers of Fe (black), Co (red), and Ni (green). TBSD
(resp. ASD) results are in solid lines (resp. circles). Unit of torques is PHz. Initial conditions are m; = g(— sin(10°), 0, cos(10°)), m, =
g(sin (10°), 0, cos(10°)), where g are the SCF Landé¢ factor for each atom (see Appendix D).

always systematically by looking the temporal dynamics of
each of their individual moments. Using the method described
in Sec. II D, we studied the time evolution of the net magnetic
moments, here treated as a classical tridimensional vectors,
for magnetic dimers of Fe, Co, and Ni. First, Eq. (13) is solved
and the precession of these magnetic moments is analyzed
without damping, by starting from a tilted angle of 10° from
the z axis for each atomic site, as the initial configuration.
Then by using the method presented in the Appendix D,
our findings are compared with an atomistic spin dynamics
approach using the exchange coupling J extracted from the
angular dependence of the total energy. Our results, depicted
in Fig. 1, show that all the three dimers behave well as un-
der the Heisenberg interaction in the studied limit, i.e., the
effective field Bfff can be described by a constant isotropic
exchange, Eq. (12), that does not depend on the instantaneous
magnetic configuration. As shown in Appendix D, between
0 =0° and 6 = 10° the fit between the energy calculated
from the TB onto a Heisenberg Hamiltonian works perfectly,
but that does not hold true for higher angles. It means that
a simple bilinear Heisenberg Hamiltonian is not enough to
describe the system globally, but only locally with respect
to the magnetic configuration. Because the z component of
the magnetization is constant in time, the z component of
the ASD torque is exactly zero, which is not the case in the
TB dynamics. However, this can be consistently monitored
by decreasing the timestep used to integrate the precession
equation, Eq. (13).

We can monitor that the precession frequency, as cal-
culated in the Appendix C, is well reproduced by the TB
calculations.

B. Magnetic trimers

It is known in the literature that in some specific situations,
the exchange coupling and Dzyaloshinskii-Moriya interac-
tions calculated from the ferromagnetic (FM) state are not a
good fit for predictions of magnetic properties, e.g., close to
the paramagnetic state [37] or the transition from the FM to
the skyrmion phase [38]. This is mainly because that in these
scenarios, interactions of higher order play an important role
and even sometimes a central role, such as the value of consid-
ering the 4-spin interaction in case of stabilizing the skyrmion
phase in hexagonal Fe film of one-atomic-layer thickness on
the Ir(111) surface [39]. These higher order interactions can
be seen as if the exchange constants become kinetic functions
of the magnetization state, a possibility theorized long time
ago [40]. One could argue that it is only needed a high-order
more specific spin-Hamiltonian to describe the problem, but in
some other cases the so called beyond-Heisenberg interactions
can also be present, i.e., interactions that cannot be mapped
into a spin-Hamiltonian [41] or cases where the Heisenberg
picture is simply broken [42]. Our goal here is to explore
the limits and differences between the spin-dynamics features
using a spin-Hamiltonian and our presented here TB spin-
dynamics method.
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FIG. 2. Schematic representation of the the equilateral triangle
trimer.

In order to do that, the magnetization dynamics of mag-
netic equilateral triangle trimers of Fe, Co, and Ni is explored,
as can be seen in Fig. 2. The magnetization dynamics of Fe,
Co, and Ni triangle trimers, are depicted in Fig. 3 as well as
the torques in Fig. 4.

In order to evaluate the exchange coupling between the
magnetic moments in this case, an analogous procedure to
what was done to the dimer is performed, more precisely

Atom 1

Atom 2

described in the Appendix D. Fitting with the energy ob-
tained from the TB calculation, the parameters are reported in
Appendix D. Note that in this particular case Jj; = Jo3 = J31
due to the symmetry. Initially, self-consistent calculations un-
der the angular penalty function were performed in order to
determine the magnetic moments of each atom in the sys-
tem. With that information, one performs simulations of the
magnetization dynamics using the spin-Hamiltonian, Eq. (12).
Parallel to it, the process described in Sec. IID is followed,
the magnetization dynamics is calculated and the comparison
between the different methods is shown in Fig. 3. Similarly to
the dimers case, the systems here presented show themselves
as Heisenberg systems within the studied limit, e.g., 6 = 10°,
when calculating the precession of the magnetic moments
around the z axis.

So far, these limits have served to prove the reliability of
our method, and not to justify the extra computational cost
introduced to reproduce the behavior of an ASD approach. In
the next section we exhibit the simplest situation that demon-
strate its relevance.

C. Configuration dependence of the exchange
coupling parameters J;;

The task of finding a reliable Hamiltonian to describe
variations of magnetic configurations is not straightforward.
Continuous efforts have been made throughout the years in
the attempt to understand the microscopic origin of these
exchange parameters and their consequences [43]. Recently,
amethod to calculate the exchange coupling parameter J;; for
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0-6 “““““\\\\‘\\\\

!

0.2
g0
0.2
0.4]
0.6

% |

B A
YUY

pwww‘yav‘

0.4
0.2

€0

20.2 g;g

-04 Y ¥ I ¢ g

_0.67\\\\‘\\\\‘\\\\‘\\\\7 7\\\\ | - \\\\7 7\\\\‘\\\\‘\\\\ Il -

2.5F == 2 Frrree

2

157 1 E 1 :
1E 1k Ega E
‘vvxv‘xvvx‘vxvvlvv:v _VVIV‘IVVI‘VKVV]VVIV_ _VVAV‘IVVI‘VKVV‘VVIV_
0O 5 10 15 200 5 10 15 200 5 10 15 20

time (fs) time (fs) time (fs)

FIG. 3. Magnetization dynamics of Fe (black), Co (red), and Ni (green) triangle trimers. TBSD (resp. ASD) results are in

solid (resp. circles) lines. Initial conditions are m;(0)

= g(—0.17365, 0.0, 0.98481), m,(0) = g(0.08682, —0.15038, 0.98481), m;(0) =

£(0.08682, 0.15038, 0.98481), where g are the SCF Landé factor for each atom (see text).
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FIG. 4. Torque dynamics of Fe (black), Co (red), and Ni (green) triangle trimers. TBSD (resp. ASD) results are in solid (resp. circles)
lines. Units of the torques are in PHz. Initial conditions are identical than those in Fig. 3.

any given magnetic configuration, via first-principles simula-
tions, was developed and applied to study these interactions
on Fe-bcc [44]. In fact, these configuration dependent J;;’s
significantly improved the spin-wave dispersion comparison
between the theory and the experiment. Within the TB approx-
imation, Ref. [45] reports a configuration dependence of the
exchange parameters by comparing various effective field B
between the Heisenberg model and direct TB calculations.
Moreover, it is crucial to understand the relevance of higher
order parameters in the expansion of the magnetic Hamil-
tonian, e.g., and biquadratic terms, 3-spins, 4-spins, etc., as
can be seen in works like Refs. [28,39] and [46]. Lastly,
Ref. [47] as implemented in Ref. [48] offers an attractive
solution to the problem of a statistically under-represented
magnetic reference state, but at a cost of a span of the en-
tire magnetic configuration space. In principle, this allows
the derivation of effective exchange coupling constants that
average the effect of more than 2 independent configura-
tions of spins. Unfortunately this statistical method is more
suitable in the dilute magnetic limit and appears not ade-
quate to capture the magnetic behavior of a single specific
dimer or trimer. Moreover its implementation for alloys is
complex.

So far, we have calculated the exchange coupling parame-
ters by fitting the energy from the TB calculations around the
ground state, i.e., FM for Fe, Co, and Ni. These past studies
have revealed the non-Heisenberg behavior of Fe in particular
and in order to illustrate our argument, we picked up the Fe
dimer as an example. For a dimer, one can express the total TB
energy as an expansion on a basis of Legendre polynomials up

to a given order N, such as

N
E©) = E©) =Y _J{3P.(cos(6)).

n=1

(14)

When this series ends to N = 1, Jl(;) is just the usual intensity
of the Heisenberg coupling constant. If this series ends to
N > 2, we can interpret JS) as a biquadratic component
of the intensity of the magnetic coupling, characterized by
a beyond-Heisenberg behavior. In the Fig. 5 we show on
the left, the total energy of Fe dimer as a function of the
angle 6 between the magnetic moments of each Fe atom,
along with the exchange coupling Ji(jl) calculated by fitting
the Heisenberg model around the local 6 (at every step of
6 = 10°), on the right.

It is clear from the total energy calculations that, for that
case, it cannot be fitted by a simple bilinear Heisenberg model.
We tried then to add a biquadratic correction to the model as
cos?(0), as done in Ref. [49], by analyzing the P>(cos(f)) =
%(3 cos?(8) — 1) part of the Legendre expansion, and then
reported in the Fig. 5 along the N = 2 curve. One can note that
this N = 2 term improves globally the model curve, but quite
not match the TB calculations rigorously, in particular in the
range of angles when the FM order is not the preferred mag-
netic ground state. It is needed to go up to the 6th order to get a
reasonable fit that captures all the energetic features, including
the reversal in the sign of the energy behavior at intermediate
angles. It is noteworthy to mention that the magnetic moment
of each of the Fe atoms changes throughout the rotation of
about 40% (data not shown), from 3z (FM configuration) to
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FIG. 5. TB total energy as a function of the angle between the
two magnetic moments of an Fe dimer on the left y axis and the
N = 1 exchange coupling parameter derived locally for each angle,
on the right y axis. In addition, the TB total energy is globally fitted
by expansion in Legendre polynomials in terms of cos(6). Here,
N =1 would be the bilinear Heisenberg Hamiltonian, N = 2 in-
cludes the biquadratic term and so on so forth.

~1.8up (AF configuration); a feature that is also not covered
by the Heisenberg model. The parametric derivation of such
a simple configuration space indicates the magnitude of the
task at hand in much more complex systems, such as alloys
and materials with noncollinear magnetic configurations as
ground state. However, we argue that properties strongly de-
pendent on small variations around the ground state, such as
spin-wave spectra, are well described with a local Heisenberg
Hamiltonian, as already anticipated by Holstein and Primakoff
[50], but we need a more precise electronic structure behavior,
in order to compute the correct effective field far from the
ground state and not necessarily represented by the magnon
state of lowest energy. In that scenario the effective field
directly derived from the electronic structure, produces the
correct dynamics in time for any directions of any local mag-
netic moments, without prior knowledge of any exchange
values and represents, by construction, a direct solution to
avoid such issue.

IV. CONCLUSION

In this paper, we have presented a method that offers
an alternative between full ab initio and spin-Hamiltonian
based spin-dynamics. Our approach uses a penalty functional
on the magnetic moments of each site in order to calculate
self-consistently, at every timestep, the respective effective
magnetic field. We have solved the precession equation on
each site, without damping, for dimers and trimers of Fe,
Co, and Ni, and compared our findings with an ASD ap-
proach, where the magnetic effective field is not calculated
directly from the electronic structure, but from a parameter-
ized spin-Hamiltonian. The exchange coupling interaction J,
as a parameter, was calculated by fitting the TB total energy
with a parameterized spin-Hamiltonian for a range of direc-
tions of the atomic magnetic moments. Our results showed

that within this limit, they can be seen as good Heisenberg
systems locally and the comparison between the TB and ASD
are fairly good. That is not the case where the same set of mag-
netic moments connect different magnetic extrema, meaning
that different parametric local representations have to be cal-
culated, which breaks the whole Heisenberg picture. For those
systems, one cannot map globally the electronic structure onto
a single Heisenberg model, although these parameters still can
predict with good accuracy properties of their local ground
states. We have illustrated this situation by studying the de-
pendance of the total energy of an Fe dimer, as a function of
the angle between the atomic magnetic moments, and proved
that this cannot be mapped globally into a bilinear Heisenberg
Hamiltonian only. In fact, a high-order expansion in power
of the angular directions between the atomic magnetic mo-
ments is mandatory to match the landscape of the TB energy
adequately. Finally, the TBSD here presented is a satisfying
solution, with a reasonable computational cost, to study the
spin dynamics of systems that are not dominated by the pair
Heisenberg’s interaction only, because the construction of the
ab initio effective field is free from such hypothesis. This
technique may serve also to investigate the dynamics of more
complex magnetic systems that include spin-orbit mediated
interactions in low-dimensional symmetries, and appears to
be both versatile and general.

The data that support the findings of this study are available
from the corresponding author, upon reasonable request.
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APPENDIX A: FIXED SPIN MOMENT

The fixed spin-moment calculation is probably the most
straightforward method, but is limited to the case of collinear
magnetism and is independent of the site index. This is to im-
pose exactly a total magnetization of the system and therefore
the total number of 1 and | electrons. One therefore needs
to define two separate Fermi levels E7. For a homogeneous
system where each atom carries the same charge and the same
magnetization, the total energy is

leJ I<E} led|<E}

Eio = Z el + Z 8i+%1m2,
o o

where €7 = €0 — 1Imo. Then the total energy can be rewrit-
ten as

(AD)

e <Ef+1Im |eQ|<Ef—LIm

Eior = Z 82 + Z 82 - %Imz.

o o

(A2)

Consequently, the derivative of the total energy with the mag-
netization becomes simply proportional to the difference of
Fermi’s energies

dEo _ (E} — E})

dm 2 (A3)
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An effective field B = —(E! — E})/2, aligned to these mo-
ments, can be defined. It comes out that at the extrema of E,
the two Fermi levels are equal and the effective field becomes
zero. By looking at the sign of the second derivative of the
energy around m = 0, this is simple to recover the Stoner
criterion as described in the Ref. [51]. Although useful, the
fixed spin-moment method is limited to rather homogeneous
systems.

APPENDIX B: PENALTY METHOD FOR ATOMIC
SPIN MOMENT

Let us consider the case where a given magnetization
P! is imposed on each atom. A quadratic penalty term as
EF" = %|m; — mfe“H2 can be added to each site, where A is
a large positive number. In principle A should go to infinity,
but in practice a good compromise is found by increasing its
value and to check the convergence of the desired quantity
computed with. However, this problem can be circumvented
by implementing the augmented Lagrangian method, that
introduces a quadratic constraint term in the renormalized
Hamiltonian, such as the A parameter remains finite [52]. This
is at the cost of an additional computational complexity and
the penalization approach with a sufficient large A term is
preferred.

This consists to supplement Eq. (6) with the term A(m; —
m?)|i)(i |. Consequently, the on-site diagonal renormalization
term can formally be written U;An;o0 — (BY™ + B'*") . o
with BY"" = 2 Iim;, BY" = —\(m; — m{™") and An; = (n; —
n?). The total energy should be corrected accordingly by the
double counting terms and reads

m

occ

1
B {m}] =3 ea =5 2 Ui = (n))
g it = 5 3 (i — " )
2 [, il|m; ) - l i ’

B

In the limit A — oo, —A(m; —m!™") ~ B and m; ~
mP". Consequently, the corresponding double counting term
—2(lm;|)* = m" I*) can be rewritten as BY" . mP",

The fixed spin moment can be seen as a special case of the
penalty method applied for collinear magnetism with only one
type of atom. The term —BP*"o in the renormalized Hamilto-
nian just shifts rigidly the eigenvalues by —BP*" for 1 spin
and BP*" for | spin, such as g, = 82 — %Ima — BP"o. The
total energy of Eq. (A2) is recovered once provided EZ =
Er 4+ oBP*". Then one gets BP*" = %(E; — EP{) = —B°ff.

APPENDIX C: SOLUTION OF THE SPIN DYNAMICS
OF FERROMAGNETIC DIMERS

The motion of each individual moments of ferromag-
netic dimers within the Heisenberg interaction is a two-body
problem admitting an exact solution. Let us Q¥ = J°/A the
magnitude of the exchange pulsation and E = —J/'m,; - m,
its interaction energy, with J% > 0. The motion of each un-
damped moment is the solution of a set of 2 coupled equations

of precession, which are

dm1 0

— =Q/my xmy,

dt

dm2 0

—=Q , Cl
7 s X my (C1)

with the given initial conditions m(0) and m(0).

Equivalently when using an Heisenberg Hamiltonian with
normalized vectors E = —Je; - e, with J = J%m? (where m
is the amplitude of the magnetization) we get the coupled
evolution equations:

dey = Qe; X ey,

dt ‘

€ _ qe xen (€2)
dt )

with €, = J/h. This motion is decoupled in the frame of

the magnetization e = (e; + €3). In this frame, by combin-
ing Egs. (C2) together, one finds % = 0 and consequently

e is a constant vector given by the initial conditions
e = (e1(0) +e(0)). By noting that Q.e;xe; = Q(e; +
ey)xe; = Qsexer, Egs. (C2) become fully decoupled:

dﬁ = Qe X e,

dt ‘

9 _ oexe. (C3)
dt ‘

Then the motion of each of these unit vectors e; is simply the
motion of a vector in a constant field. Its solution is given by
the Rodrigues’ formula [53]

e;(t) = cos(€2t)e;(0) + sin(£2,t)e
+ (1 — cos(24)) xiei(0) x e, (C4)

where x; = €;(0) - e.

The same reasoning can be derived for trimers of identical
atoms with the same exchange parameters applied up to the
first neighboring shell, in between. In that very specific case,
each atomic spin follows the same equation of precession,
namely

i Qe X e;, (C5)

with e = Z?:l e;(0), where e is found to be constant of
motion. Consequently for trimers with identical atoms and in-
teractions, the precession frequency, and thus the value of the
exchange parameter, can be measured from a single motion of
any spins, as depicted in Figs. 3 and 4.

APPENDIX D: CALCULATION OF THE EXCHANGE
COUPLING PARAMETERS

The macroscopic nature of the exchange coupling parame-
ters and how they are influenced by the various circumstances
have been widely discussed in the literature. The Bethe-Slater
[54] (BS) curve explains in an insightful way, by means of
direct exchange and the distance between nearest-neighbor
(NN) atoms, the trends followed by ferromagnetism (FM) and
antiferromagnetism (AFM) ground state of the 3D transition
metals from bce Cr to hep Co. Recent studies [55] have shown
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FIG. 6. Calculated total energy (left) and effective field (right) from the tight-binding model for dimers and trimers of Fe, Co, and Ni
(interatomic distance of 2 A), in black, red, and green, respectively. Dimers on top and trimers on the bottom. The corresponding fits from an
Heisenberg Hamiltonian fall exactly on top of the tight-binding curves (and are not shown), suggesting that the Heisenberg’s pair interaction

dominates these systems within that range of 6.

that, even for the bulk case of such elements, the BS curve
reveals a complicated background behind the macroscopic
picture. Such NN interactions depend not only on the distance
but also the symmetry and their bonds, i.e., influenced by
the crystal field. That kind of dependence has also been seen
in supported nanoclusters [56], where for the same distance,
different values for the exchange coupling parameter can be
found. In case of small clusters, like the dimers and trimers
studied here, the local density of states of each atom is very
localized, which set apart the majority band from the mi-
nority band. It implies in a large band splitting that directly
affects the value of the of the exchange coupling parameter
[57,58]. As coordination number increases, the hybridization
results in the broadening of such bands, shifting the center
of it closer to the Fermi energy, thus decreasing the value of
the exchange coupling parameter as the coordination number
increases [59,60]. Moreover, the results here presented follow
this logic, as well as the BS curve trend.

For each of the magnetic configurations, the total energy
is computed with the TB parameters found in reference [13].
When only one rotating single magnetic moment is consid-
ered, the total energy in the Heisenberg model can be written
as a function of the angle with the z-axis, labeled 0. For the
dimer it reads

Edimer(e) - Edimer(o) = -,dimer(l - COS(@)), (Dl)

and for the trimer
Etrimer (9 ) - Etrimer (0) = thrimer( 1- COS(Q )) (D2)

As seen in Fig. 6, Egs. (D1) and (D2) can be fitted with the
total energy computed in the TB approximation, in order to
find the respective exchange coupling parameters J. For the
dimer, it is obvious that J1» = J>1 = J4imer and for the trimer,
because of the C3 symmetry, Ji» = Jo3 = J31 = Jysimer also.
The fact that the fitting and the energy curve fall on top of each
other, means that both Jgmer and Jyimer are constants within
the limit considered of 0, i.e., the electronic interaction in
these systems is dominated mainly by the Heisenberg’s pair
interaction (12) in that range. The computed values taken for
an equal distance d = 2 A between atoms are reported in the
Tables I and II.

TABLE I. Values of the computed SCF magnetization and ex-
change parameter for dimers (interatomic distance of 2 A) calculated
in the TB approximation. In parenthesis is shown the result obtained
from the fit of the effective field.

g (ﬂb’) Jdimer (CV)
Fe 3 0.616 (0.605)
Co 2 0.574 (0.561)
Ni 1 0.341 (0.312)
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TABLE II. Values of the computed SCF magnetization and ex-
change parameter for equilateral triangle trimers calculated in the
TB approximation. In parenthesis is shown the result obtained from
the fit of the effective field.

g (/’LB) Jtrimer (eV)
Fe 2.6666 0.442 (0.463)
Co 1.6666 0.279 (0.273)
Ni 0.6666 0.089 (0.103)

Finally another strategy has been tested to evaluate the ex-
change parameters. Instead of considering the total energy
variations E(6) as the reference quantity, we have fitted the
variation of the effective field BP" as a function of the de-
viation angle 6. Indeed it is straightforward to show that
| BP"|| |m|| is equal to J sin@ for the dimer and 2J sin6 for
the trimer, respectively. The results are reported in parenthe-
sis in the Tables I and II. The agreement between the two
approaches is good and could be systematically improved by
increasing the penalization constant A.
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