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Surface and volume photoeffect from metal nanoparticles with electron mass discontinuity
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Internal quantum efficiencies of the surface photoemission (SPE) and the volume photoemission (VPE)
from metal nanoparticles into a semiconductor environment are found and compared with each other, taking
into account the discontinuity in the electron effective mass on the metal-semiconductor interface. It is found
that SPE is less sensitive to the discontinuity of the electron effective mass than VPE. This advantage, along
with other advantages, makes SPE more efficient than VPE for generation of hot electrons from small metal
nanoparticles. General formulas for quantum efficiencies and analytical expressions for quantum efficiency on
the red photoeffect limit are presented. High efficiency of SPE from spherical gold nanoparticles with the step
potential barrier on the metal-semiconductor interface is demonstrated.
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I. INTRODUCTION

Photoemission from metal nanoparticles generates “hot”
electrons [1,2]. Hot electrons have various applications, for
example, in photodetection [3–5] and photocatalysis [6,7].
When metal nanoparticles are incorporated into a semicon-
ductor, the work function of a metal decreases, making hot
electron generation possible at the absorption of visible or
near IR light of plasmon resonance frequencies, when the
electric field inside nanoparticles is high. However, the effec-
tive mass of an electron changes when an electron passes the
barrier on the metal-semiconductor interface and comes to a
semiconductor. In order to satisfy the momentum conserva-
tion law, kinetic energy of the electron must exceed the barrier
height substantially. Thus the discontinuity in the electron
effective mass strongly reduces the photoemission from the
volume of a nanoparticle [8,9].

It is well known that the change of the electron effective
mass affects the volume photoemission (VPE) as, for exam-
ple, at the electron beam emittance from metal photochatodes
to vacuum [10]. The effective mass variation is important for
calculation of parameters of VPE in various systems, for ex-
ample, for transverse energy spread of electron beams through
the rough surface of photocathodes [11], and for two- and
three-dimensional electron emission out of a multilayer cath-
ode [12]. The electron effective mass change affects also the
electron field and the electron thermionic emissions [13–15].

In contrast, the influence of electron effective mass vari-
ation (or the electron effective mass discontinuity) on the
metal-environment interface in the case of the surface pho-
toemission (SPE) is less studied than in the case of VPE, in
particular, for metal nanoparticles, where SPE is especially
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important at certain conditions [16]. SPE from nanoparticles
into a semiconductor [17] may be more efficient than VPE
[9], even with discontinuity in the electron effective mass [17],
which has been confirmed by experiments [7,18].

The purpose of our paper is to prove theoretically that SPE
can be more efficient than VPE from metal nanoparticles into
a semiconductor, because SPE is less reduced by the change
of the electron effective mass than VPE. Such an advantage
of SPE must be taken into account and will help, in the
future, to reach the maximum efficiency of generation of hot
photoelectrons.

Absorption of an electromagnetic field in collisions of elec-
trons with the metal-environment interface (surface) followed
by SPE has been studied for a long time [19] (see also [17] and
references therein). It is well known that SPE is sensitive to
discontinuities in the potential barrier, dielectric function, and
electron effective mass on the metal-environment interface
[20,21]. The general approach for SPE in metal nanoparticles
[16], developed with quantum theory of perturbations in the
continuous spectrum [20,21], takes into account all such dis-
continuities.

The procedure of [20,21] is similar to the approach with
incoming wave solutions [22,23] or so-called inverse low-
energy electron diffraction (iLEED) states [24]. We derive
an expression for the photoemission probability amplitude in
Appendix A and show there the relation of our procedure and
the approach with iLEED states.

The approach [16] has been used, in particular, for stud-
ies of electron photoemission from plasmonic nanoantennas
[25], comparison between the surface and the volume pho-
toemission from plasmonic nanoparticles [17], broadening
of plasmonic resonance due to electron collisions with the
nanoparticle boundary [26], and enhanced electron photoe-
mission by collective resonances in nanoparticle lattices [27].
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This has been done, so far, without taking into account the
electron mass discontinuity.

In this paper we extend the study of [16,17] and com-
pare SPE and VPE taking into account the discontinuity in
the electron effective mass along with other discontinuities
on the interface of metal nanoparticles and a semiconductor
environment.

In Secs. II and III we present general formulas for internal
quantum efficiencies ηSPE of SPE and ηVPE of VPE valid for
an arbitrary barrier on the interface in the “flat” interface
approximation [20,21]. In Sec. IV we consider and compare
SPE and VPE using the example of the step potential barrier
on the metal-semiconductor interface and demonstrate how
the discontinuity in the electron effective mass affects the
photoeffect. We find explicit expressions for ηSPE and ηVPE

near the red limit of the photoeffect, and demonstrate that
ηSPE > ηVPE, which means that SPE is more efficient than
VPE. We will see that ηSPE > ηVPE also when the localized
plasmon resonance in the nanoparticle is excited. We illustrate
the results by examples of the photoemission from gold spher-
ical nanoparticles in different semiconductor environments. In
the discussion section we explain physical reasons why SPE is
less affected by the change in the electron effective mass than
VPE. Results are summarized in the conclusion. Derivation of
formulas of the main text are presented in Appendices A–C.

II. SURFACE PHOTOEMISSION

Quantitative characteristics of SPE and VPE in nanopar-
ticles, convenient for comparison, are their internal quantum
efficiencies ηSPE,VPE. Internal quantum efficiency is the ratio
of the number of photoelectrons generated per second to the
number of photons absorbed per second in the nanoparticle:

ηSPE,VPE = JSPE,VPE

Rabs
,

Rabs =
∫

Vp

rabsdV, rabs = ε′′
in|Ein|2
2π h̄

. (1)

Here JSPE, VPE is a surface or a volume photoemission current
from a nanoparticle, expressed in the number of photoelec-
trons per second; Rabs is the number of photons absorbed
in the volume Vp of the nanoparticle per second; rabs is the
photoabsorption rate in the unit of volume; Ein is the amplitude
of the electric field inside the nanoparticle; ε′′

in is the imaginary
part of the dielectric function of the metal. In general, ε′′

in takes
into account Landau damping [26].

According to [16], SPE current is

JSPE =
∫

kz,k‖
d jSPE

∫
Sp

∣∣E (n)
in

∣∣2
dSp, (2)

where E (n)
in is the component of the electric field inside the

nanoparticle near its surface and normal to this surface of the
area Sp. Differential surface density d jSPE of the photocurrent
per unit of |E (n)

in |2 is

d jSPE = (h̄k̃1z/mout)|c+|2dns. (3)

Notations of parameters in Eq. (3) are explained below.
The first integration by d jSPE in Eq. (2) is by electrons in

their initial states before absorption. The number dns of such

FIG. 1. Scheme of the metal-semiconductor interface. E0 (E1)
are energies of initial (final) states of an electron before (after)
absorption of photon h̄ω; V0 is the energy of the bottom of the con-
duction band of the semiconductor environment; V (z) is the Schottky
barrier. Definitions of other parameters are given in the text.

electrons with wave numbers in a small interval from k0 to
k0 + dk0 is

dns = fF
(
k2

0

)[
1 − fF

(
k2

0 + k2
ω

)]
k‖dk‖dkz/2π2.

Here k2
0 = k2

z + k2
‖ ; kz (k‖) is the component of the wave

vector of the electron perpendicular (parallel) to the interface,
k2
ω = 2minω/h̄,

fF (y) = {1 + exp [(h̄2y/2min − EF )/KBT ]}−1

is the Fermi distribution function, min is the effective mass
of an electron inside the nanoparticle, KB is the Boltzmann
constant, and EF is Fermi energy.

The potential barrier on the metal-semiconductor interface
and some parameters used throughout the paper are shown in
Fig. 1. The integration by d jSPE in Eq. (2) includes integra-
tions by components kz and k‖ of wave vectors of electrons.

The wave-vector component k‖ is preserved at the pho-
toemission because of the momentum conservation law; mout

and k̃1z are the effective electron mass and the component of
the electron wave vector normal to the interface outside the
nanoparticle far from the interface:

k̃1z =
√[

k2
z + k2

ω − k2
V − k2

‖ (rm − 1)
]
/rm, (4)

where kV = √
2minV0/h̄ and rm = min/mout. We suppose that

rm > 1. The photoelectron with real k̃1z has enough energy to
pass the barrier and move away the nanoparticle. Imaginary
k̃1z means that the electron has low energy, it cannot pass
through the barrier and remains in the nanoparticle.

Following [16] we express the probability amplitude of
SPE of a single electron as c+E (n)

in , where

c+ = c(0)
+ − |e|εin

W (h̄ω)2εout

∫ ∞

+0
V ′�0�1−dz,

W = �1−� ′
1+ − �1+� ′

1−, (5)
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and the prime means the differentiation with respect to z. The
first term in Eq. (5) is

c(0)
+ = |e|m

(h̄ω)2minW

{[
(rεrm − 1)

(
E0 + h̄ω

2

)
− rεrmV0

]

×�0�1− + (rε − 1)minh̄2� ′
0�

′
1−/2m2

}∣∣∣∣
z=0

, (6)

which describes discontinuities of parameters in z = 0. The
second term in Eq. (5) depends on the potential barrier V (z)
in the semiconductor environment. V (z) is changed in the z
direction perpendicular to the interface and assumed constant
(flat) parallel to the interface [20,21]; e is electron charge,
rε = εin/εout, εin (εout) is a dielectric function inside (outside)
the nanoparticle, E0 = (h̄k0)2/2min, and �0 (�1±) is a wave
function of the motion of the electron along axis z in the initial
(final, after the absorption of a photon) state [16]. Such states
are calculated by taking the effective potential Ṽ (z, k‖) = 0
for z < 0 and

Ṽ (z, k‖) = V (z) + (
m−1

out − m−1
in

)
(h̄k‖)2/2 (7)

for z � 0. The second term in Eq. (7) appears due to the
discontinuity in the electron effective mass in z = 0. In the
metal-semiconductor interface mout < min, so the second term
in Eq. (7) increases the effective height of the barrier in
z = 0. W/m and � ′

0�
′
1∓/m2 are continuous functions of z in

z = 0 [16].
Derivation of Eqs. (1)–(7), the method of calculations, and

some properties of wave functions �0 and �1± are described
in Appendix A.

Combining Eqs. (1) and (2) we obtain

ηSPE = 2π h̄

ε′′
ina

∫
kz,k‖

d jSPE, (8)

where the length

a =
∫

Vp

|Ein|2dVp/

∫
Sp

∣∣E (n)
in

∣∣2
dSp, (9)

and d jSPE is determined by Eqs. (3)–(6). Integrations in Eq. (9)
are by the volume Vp and by the surface Sp of the nanoparticle;
Ein is the amplitude of the external electric field inside the
nanoparticle and E (n)

in is the component of this field normal
to the interface inside the nanoparticle. In general a depends
on the external electric field. For small spherical nanoparti-
cles with a uniform electric field inside, a is the nanoparticle
radius.

III. VOLUME PHOTOEMISSION

We derive an expression for internal quantum efficiency of
the volume photoemission ηVPE following [17]. In [17] the
well-known so-called three step photoemission model [28,29]
has been adopted to the case of nanoparticles, as shown here
in Appendix B.

We suppose that an electron in VPE participates in three
quantum-mechanically independent (incoherent) processes:
the hot electron generation, the transport to the nanoparticle
surface without collisions with the probability Wt , and the
passage through the surface of the metal to the semiconductor

FIG. 2. Spherical coordinate system for calculations of ηVPE and
components k‖ (kz) of the electron wave vector �k parallel (perpen-
dicular) to the nanoparticle-semiconductor interface shown by the
blue semicircle. The potential barrier on the interface is shown by
the black solid line.

environment with the probability Wp. The rate of generation
of hot electrons in the unit of volume is rabs defined in Eq. (1).
The current of VPE, in electrons per second, is

JVPE =
∫

Vp

rabs〈WtWp〉dV, (10)

where

〈WtWp〉 = 1

nh

∫
WtWp fhgd3k

is averaged over hot electrons with the wave number k, distri-
bution function fh, and g = 2/(2π )3;

nh =
∫

fhgd3k, d3k = k2dk sin θdθdϕ

in the coordinate system shown in Fig. 2; nh is the number of
hot electron states in the unit of volume.

Parameters of hot electrons are the same everywhere in
a small nanoparticle, therefore Wp fhg does not depend on
spatial coordinates. So using the definition of ηVPE in Eq. (1)
we write

ηVPE = n−1
h

∫
W tWp fhgd3k, W t = Vp

−1
∫

Wt dV.

We take the probability that the hot electron is transported
to the nanoparticle surface without collisions as in [17,30]:

Wt (r, θ ) = exp [−L(r, θ )/le], (11)

where

L(r, θ ) =
√

1 − r2 sin2 θ − r cos θ

is the length of the path of the hot electron to the surface; le is
the mean free path of the hot electron in the metal; L, r, and
le are normalized to the radius a of the spherical nanoparticle
(see Fig. 2). Following [25,31] we assume homogeneous dis-
tribution of hot electrons by the energies from EF to EF + h̄ω.

235432-3



PROTSENKO, USKOV, AND NIKONOROV PHYSICAL REVIEW B 103, 235432 (2021)

After transformations carried out in Appendix B we obtain

ηVPE = 9le[1 − exp (−2/le)]

8
(
x3/2

h − x3/2
F

)

×
∫ xh

1

√
xdx

∫ (1−1/x)/rm

0
Wp(x, y)dy, (12)

where xh = (EF + h̄ω)/V0, xF = EF /V0, x = E/V0; E =
(h̄k)2/2min is the energy of the hot electron in metal and
y = r2 sin2 θ (see r and θ in Fig. 2). Only hot photoelectrons
with real wave-vector component

k̃z =
√[

k2(1 − rmr2 sin2 θ ) − k2
V

]
/rm, (13)

normal to the interface outside the nanoparticle, have enough
energy to pass the barrier on the interface.

Formulas (8) and (12) determine ηSPE and ηVPE taking into
account discontinuities in the electron effective mass, dielec-
tric function, and potential barrier on the metal-semiconductor
interface. They contain unknown �0,1± and Wp, which must
be found for each specific potential barrier as described in
Appendices A and D.

IV. COMPARISON OF EFFICIENCIES OF SURFACE
AND VOLUME PHOTOEMISSIONS

We compare the efficiencies of the surface and the volume
photoemissions in some examples. In these examples we ne-
glect the thermal excitation of electrons, set T = 0 in Fermi
distributions, and consider small spherical nanoparticles with
the uniform electric field inside [32]. We suppose the step
potential barrier

V = 0, z < 0; V = V0, z > 0,

so the second term ≈ V ′(z) ≡ (dV/dz)z>0 in Eq. (5) is zero.
We take well-known wave functions �0,± for the step poten-
tial barrier as in [16]. In Appendix C we calculate c(0)

+ and
d jSPE and find ηSPE, given by Eq. (C6).

In order to calculate ηVPE we find, in Appendix D, the
probability Wp(x, y), given by Eq. (D4), that the hot electron
passes the step potential barrier with the discontinuity in the
electron effective mass on the barrier. We insert Eq. (D4) into
Eq. (12) and find ηVPE.

General expressions for ηSPE,VPE are cumbersome, and we
postpone their analysis for the future; here we consider in
more detail a photoeffect near the red limit, i.e., with small
excess of the photoelectron energy above the barrier:

δxω ≡ (h̄ω + EF )/V0 − 1 � 1.

In this case only the electrons with (h̄kz )2/2min ≈ EF and
(h̄k‖)2/2min ≈ 0 contribute to SPE, as shown in Fig. 7.
ηSPE for the step potential barrier is given by Eq. (C6) of
Appendix C. We carry out the integration in Eq. (C6) near
the red limit and find

ηSPE = aS

a
Fεm

δx5/2
ω√
rm

,

Fεm = [1 + xF + rεrm(1 − xF )]2/4 + (rε − 1)2rm(1 − xF )

xF + rm(1 − xF )
,

(14)

where a is the radius of the spherical nanoparticle. The length

aS = 4λrb

15(2π )2ε′′
rb

e2

h̄c

√
xF

(1 − xF )3
(15)

is of the order of the maximum radius a, when SPE is still
important; the wavelengths of applied field λrb and ε′′

rb cor-
respond to the red limit. aS = 9.6 nm for the gold spherical
nanoparticle in the semiconductor with parameters as in [17]:
V0 = 6.31 eV, EF = 5.51 eV, εout = 13, and the dielectric
function of gold [16]

εin = 12 − (λ/0.136)2

1 + iλ/55
,

where λ is the wavelength of the applied field in mkm. In
examples below we take the nanoparticle radius a close to
aS ≈ 10 nm.

We take the probability (D4) that the hot electron passes
through the barrier in VPE and find, in the limit δxω � 1, the
approximate expression for Wp near the red limit:

Wp ≈ 4
√

rm

√
δxω − rmy.

We integrate Eq. (12) with this Wp and find

ηVPE ≈ 6

5

le[1 − exp (−2/le)]

1 − x3/2
F

× δx5/2
ω√
rm

. (16)

We see that near the red limit both ηSPE and ηVPE are propor-
tional to δx5/2

ω , which is the same result as in [17] obtained
without discontinuity in the electron effective mass.

Dependence (16) ηVPE ∼ 1/
√

rm is weaker than the result
ηVPE ∼ 1/rm of [9], because Reff(0) (in our notation Wp) in
Eq. (26) of [9] does not depend on rm. It was found in [9]
that the change in the electron effective mass increases (for
rm > 1) the potential barrier height as a consequence of the
momentum conservation law. We note, in addition, that the
decrease of the effective mass accelerates electrons outside
the nanoparticle and increases the photocurrent. This is why
our Wp ∼ √

rm [see the derivation of Eq. (D4) for Wp in
Appendix D]. The net effect of decrease of effective mass
still reduces VPE, because the passage through the barrier is
possible for a smaller number of electrons with large kinetic
energy, proportional to the square of electron velocity, while
the photoemission current is increased proportional to the first
power of that velocity.

In the case of SPE, the momentum conservation law also
leads to ηSPE ∼ 1/

√
rm [see Eq. (14)]. However, the net de-

pendence on rm = √
mout/min is different in ηSPE and ηVPE

due to the factor Fεm(rm, rε ) in Eq. (14). This factor is a
consequence of the fact that SPE and VPE are qualitatively
different processes. The photoabsorption and transmission of
an electron through the barrier are described by a common
wave function and interfere with each other in the SPE pro-
cess. In contrast, VPE involves three quantum-mechanically
incoherent processes: the absorption and generation of the hot
electron, the transport of the hot electron to the barrier, and
the transmission of the electron through the barrier. These
processes are not described by a common wave function and
they do not interfere with each other quantum mechanically.

Figure 3 shows spectra ηSPE(ω) given by Eq. (C3) and
ηVPE(ω) given by Eq. (12) with Wp given by Eq. (D4) and
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FIG. 3. Spectra of ηSPE (solid curves) and ηVPE (dashed curves)
for the step potential barrier near the red limit of the photoeffect
(black) and calculated exactly (red) by Eq. (C6) and by Eq. (12) for
the gold spherical nanoparticle in the semiconductor.

their approximations near the red limit (14) and (16) for gold
spherical nanoparticles of radius a = 8.4 nm in the semicon-
ductor with εout = 13, the electron mean free path (normalized
to a) le = 0.5, and rm = 2. We see from Fig. 3 that SPE
(solid curves) is more efficient than VPE (dashed curves):
ηSPE > ηVPE. We also see that the approximate calculation of
ηSPE,VPE near the red limit leads to good results, when the
relative excess δxω of the photon energy above the red limit
is less than 10–15%.

Figure 4 shows ηSPE(ω) given by Eqs. (1)–(6) and ηVPE(ω)
given by Eq. (12) for εout = 13 (the orange curve) and εout =
16 (the red curve), rm = 2, and the nanoparticle of diameter
2a = 15 nm. ηSPE > ηVPE, if the photon energy is not too
large. We see that SPE is more efficient than VPE, also for
plasmon resonance frequencies marked by vertical dashed

FIG. 4. Spectra of ηVPE (blue curve) and ηSPE (red and orange
curves for εour = 13 and εour = 16) given by Eq. (12) and Eqs. (1)–(6)
for the step potential barrier. Vertical dotted lines denote plasmon
resonance frequencies. Diameter of spherical nanoparticle 2a =
15 nm; other parameters are the same as for Fig. 3. ηSPE > ηVPE (also
at plasmon resonance frequencies) if h̄ω is not too large.

FIG. 5. ηSPE (red) and ηVPE (black) curves at plasmon resonance
frequencies vs rm characterizing the electron effective mass change.
The semiconductor environment with εout = 13 (16) corresponds
to solid (dashed) curves. The difference in ηVPE (black curves) in
different environments is because of the difference in the plasmon
resonance frequencies. ηSPE > ηVPE everywhere, apart from a small
region near rm = 1.

lines in Fig. 4. In the agreement with results of [17], ηSPE

increases with the ratio |rε| = |εin/εout| between dielectric
functions εin < 0 in the metal and εout > 0 in the semicon-
ductor environment.

Figure 5 shows ηSPE and ηVPE as functions of rm =
min/mout for gold spherical nanoparticles in the semiconduc-
tor environment with εout = 13 or 16 at plasmon resonance
frequencies. Both ηSPE and ηVPE decrease with increase of rm,
but ηSPE (red curves) decreases with rm more slowly than ηVPE

(black curves). SPE is more efficient than VPE: ηSPE > ηVPE

(in the same environment) everywhere, apart from a small
region near rm = 1.

V. DISCUSSION

Both ηSPE and ηVPE are decreased with rm = min/mout as
a result of the momentum conservation law. We will explain
why ηSPE decreases with rm more slowly than ηVPE, as it is
seen in Figs. 3–5.

A photoelectron passes the barrier and enters the semicon-
ductor environment, if its wave-vector component perpendic-
ular to the interface (k̃1z for SPE and k̃z for VPE) is real and
positive. Demanding real k̃1z in Eq. (4) and real k̃z in Eq. (13)
we find necessary conditions for SPE and VPE in terms of
the angle α of incidence (see Fig. 2) of the electron on the
metal-semiconductor interface:

sin2 α < sin2 αSPE = δxω/(rmx0),

sin2 α < sin2 αVPE = δxω/[rm(x0 + xω )]. (17)

Here αSPE,VPE are maximum angles of incidences of photo-
electrons, able to pass the barrier, on the nanoparticle surface;
xz = x0 cos2 α (x‖ = x0 sin2 α) is the normalized energy of the
motion of the electron perpendicular (parallel) to the inter-
face, and x0 = E0/V0 is the normalized energy of an electron
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FIG. 6. Near the red limit ηSPE(rm ) is different with ηVPE(rm ) by
factor Fεm; see Eqs. (14) and (16). The solid curve is for εin = 13; the
dashed curve is for εin = 16.

before absorption. So electrons, available for photoemissions,
fly inside cones with angles αSPE,VPE. The cone of electrons
available for VPE has been found also in [9].

When rm increases, both αSPE and αVPE decrease. However,
αVPE and the number of electrons available for VPE decrease
with rm faster than αSPE, and this is why ηSPE is reduced with
rm more slowly than ηVPE. As a sign of this, factor Fεm, making
the difference in ηSPE(rm) given by Eq. (14) and ηVPE(rm)
given by Eq. (16), increases with rm as shown in Fig. 6.
This figure also shows that the difference between ηSPE and
ηVPE for fixed rm is greater for larger ratio |rε| = |εin/εout| of
dielectric functions inside and outside the nanoparticle.

Physically, αSPE > αVPE because the electron at SPE inter-
acts only with the normal component of the electric field, and
the energy of the absorbed photon comes only to the motion of
electrons in the direction normal to the interface. Such motion
is affected by the potential barrier; it does not obey the mo-
mentum conservation law and, therefore, it does not require
additional energy for passing the barrier with the discontinu-
ity of the electron effective mass. The electron wave-vector
component k‖, parallel to the interface and preserved in the
photoemission, remains the same as before absorption and,
therefore, it is relatively small.

In contrast, in the case of VPE the energy of absorbed pho-
tons is, on average, equally distributed over all directions of
motion, so k‖ in VPE belongs to the electron after absorption
and, therefore, it is greater than k‖ in SPE. In order to satisfy
the momentum conservation law, the hot electron in VPE must
have larger energy for passing through the interface, relative to
the electron in SPE. A smaller number of electrons with larger
energy, passing through the barrier, makes VPE less efficient
than SPE at the discontinuity in the electron effective mass.

We present here a qualitative explanation of why SPE is
less affected by the change in the electron effective mass
than VPE. More detailed analysis of the collective influence
of discontinuities in the electron effective mass, dielectric
function, and potential barrier must take into account quantum
interference, described by the factor Fεm(rm, rε ) in Eq. (14)

near the red limit, and by a more complicated factor in general.
Optimization of quantum interference in the absorption, the
electron transport, and the emission processes in SPE for
finding the maximum of ηSPE must be a subject of special
research.

VI. CONCLUSION

Decrease of the electron effective mass on the metal-
semiconductor interface reduces the photoemission efficiency.
By comparison of the SPE with the VPE we conclude that
SPE is less sensitive to the decrease of the effective mass than
VPE. Because of that, we found that SPE from small metal
nanoparticles of a size less than 10–20 nm is several times
more efficient than VPE. This is true also at plasmon reso-
nance, when the resonant field inside nanoparticles is large
and the photoemission rate is high.

Recent experimental and theoretical studies have discov-
ered that the electron photoexcitation rates from Ag surfaces
may be significantly enhanced for frequencies of electro-
magnetic field well above the plasmon resonance, namely,
at multiples of the bulk plasmon resonance frequencies [33].
Analysis in our paper might be useful for comparison of SPE
and VPE in the above resonances.

Low sensitivity of SPE to the electron effective mass
decrease is an advantage of SPE relative to VPE in nanopar-
ticles. It is added to other advantages of SPE, such as the
increase of the photoabsorption rate due to the discontinuity in
the dielectric function and the insensitivity of SPE to losses
in the nanoparticle volume [16,17]. All these advantages en-
courage the use of SPE for highly efficient generation of hot
electrons from nanoparticles. General formulas (1)–(12) for
quantum efficiencies SPE and VPE, derived in this paper, are
helpful for finding conditions for the maximum efficiencies of
SPE and VPE from metal nanostructures.
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APPENDIX A: DERIVATION OF THE GENERAL
FORMULA FOR INTERNAL QUANTUM EFFICIENCY

OF SPE

1. General formulas for probability amplitude for single
electron photoemission

We will follow the procedure of [20]. Assume that the
electron with the variable mass m(z) and the energy E moves
in metal parallel to axis z, normal to the metal-semiconductor
interface, towards the interface. It is easy to generalize this
treatment in the case of arbitrary direction of motion of an
electron.

The interface is described by potential V (z), constant along
the interface, as shown in Fig. 1. The wave function �e−(iE/h̄)t

of the electron can be found from the stationary Schrödinger
equation with Hamiltonian H :

E� = H�,

H = T̂ + V (z), T̂ = − h̄2

2

d

dz

(
1

m

d

dz

)
, (A1)
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where T̂ is the kinetic energy operator of an electron with
variable mass m(z).

Suppose that solutions of Eq. (A1) are well known.
We choose and normalize two linear independent solutions
�±(E ) of Eq. (A1) such that �− → exp (−ikz) at z → −∞
and �+ → exp (ik̃z) at z → ∞, where k and k̃ are wave
numbers, correspondingly, at z → −∞ and ∞. Thus, �+
describes the electron propagating away from the interface
in the semiconductor, i.e., at z > 0 far from the interface.
�+ describes a single electron propagating away from the
interface in the metal, i.e., at z < 0. �± make a fundamental
set of solutions of Eq. (A1).

We will describe the interaction of an electron with a
classical electromagnetic field as a periodic perturbation
(1/2)Û e−iωt of frequency ω. We neglect the emission of
photons by the electron, so we preserve only the term ≈ e−iωt

in the perturbation and drop there the term ≈ eiωt .
Suppose the electron in the state �0 wi2th the energy

E0 < V0 collides with the interface, absorbs a photon from
the electromagnetic field, and comes to the state �1 with the
energy E1 = E0 + h̄ω > V0, where V0 is the energy of the
bottom of the conduction band of the semiconductor environ-
ment (see Fig. 1). The wave function of the electron after the
photoabsorption is

� = �0e−i(E0/h̄)t + ψe−i(E1/h̄)t . (A2)

We insert the wave function (A2) into Schrödinger equation

ih̄(∂�/∂t ) = [H + (1/2)Û e−iωt ]�, (A3)

consider Û as a small perturbation, and neglect Ûψ . Then
from Eq. (A3) we obtain the equation for ψ :

E1ψ = Hψ + f (z), f (z) = (1/2)Û�0. (A4)

According to [34], the solution ψ of the second-order linear
inhomogeneous equation (A4) is expressed as a combina-
tion of fundamental solutions of corresponding homogeneous
equation (A1). We denote fundamental solutions �±(E1) of
Eq. (A1) as �1± and write

ψ = C+(z)�1+ + C−(z)�1−, (A5)

with

C±(z) = ∓ 2

h̄2

∫ z

∓∞
dz′ m(z′)�1∓(z′) f (z′)

W (�1−�1+)
+ A±, (A6)

where

W (�1−�1+) = �1−d�1+/dz − �1+d�1−/dz, (A7)

and A± are constants determined from the boundary condi-
tions. Expressions (A6) and (A7) follow from the standard
mathematical approach [34].

In accordance with the asymptotic of �1+(z) at z → ∞,
the first term in Eq. (A5) describes the electron moving away
from the interface with the probability amplitude C+(∞).
We take A+ = 0, then C+ → 0 at z → −∞, so the electron
described by the first term in Eq. (A5) moves away from the
metal, though it penetrates in the metal near the interface,
where C+(z) �= 0. By setting A− = 0 we see that C− → 0
at z → ∞ and therefore the second term in Eq. (A5) de-
scribes the electron moving away from the interface in the

metal towards z → −∞, in accordance with the asymptotic
of �1−(−∞).

We see that C+(∞) ≡ C+ is a probability amplitude of
photoemission of a single electron from the metal to the semi-
conductor. C−(−∞) is a probability amplitude of generation
of the hot electron in the metal due to the absorption of
photons on the interface.

Taking into account that �1± satisfy Eq. (A1) with E = E1

we see that

d

dz

(
W

m

)
= − 2

h̄2 (�1−T̂ �1+ − �1+T̂ �1−) = 0,

so W (�1−�1+)/m does not depend on z and can be taken
out of the integral in Eq. (A6). Taking z = ∞ in Eq. (A6) we
obtain the probability amplitude C+ of the photoemission of a
single electron:

C+ = − m

h̄2W

∫ ∞

−∞
dz′�1−(z′)Û�0(z′). (A8)

Photoemission probabilities are often formulated in terms of
the so-called iLEED states [22] as the final photoelectron
states; these states are the famous incoming wave solutions
[23]. The probability amplitude C− given by Eq. (A8) can
be expressed in terms of iLEED states. For that we rewrite
Eq. (A8) as

C+ = −(m/h̄2W )〈�iLEED|Û |�0〉, (A9)

where 〈�iLEED|Û |�0〉 denotes the matrix element of transi-
tion between the initial state |�0〉 = �0(z) and the final state
|�iLEED〉 = �∗

1−(z), where �∗
1−(z) is an iLEED state [22].

Indeed, �1−(z) is a LEED state of an electron, which arrives
from the semiconductor in z = ∞ to the interface, where the
electron makes two scattered waves propagating away from
the interface in both directions of axis z. In contrast, �∗

1−(z)
has one emanation wave and two waves incident to the inter-
face. An example of LEED state �1− is given by Eq. (C1) for
the step potential barrier on the interface.

The state �1+ is not an iLEED state. �1+ contains one
component approaching the interface and two components
moving away from the interface, while iLEED state �∗

1−
contains two components directed to the interface and one
component moving away [see Eq. (C1)]. However �1+ can
be chosen as a state of the photoemitted electron. Indeed, �1+
describes an electron moving out of the interface in the semi-
conductor environment at z → ∞; the probability |C+(∞)|2
to find an electron in �1+ in the semiconductor is not zero
above the red photoemission limit. Otherwise, the probability
|C+(−∞)|2 to find an electron in the state �1+ far from the
interface in the metal is always zero, because of C+(−∞) = 0
in Eq. (A6) with A+ = 0.

An advantage of choosing �1+ as a state of a photoemitted
electron is that �1+ appears in clear mathematical procedure
of the perturbation theory, and that the probability amplitude
C+(z → ∞) of �1+ coincides with the probability amplitude
of the single electron photoemission at z → ∞.

2. Probability amplitude with explicit Û

The integral in Eq. (A8), taken at z = ±∞, is the matrix
element of Û for transition between �0 and �∗

1∓ states, as
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explained in the final part of the previous subsection. Now we
express this matrix element through the electromagnetic field
and reduce the integral in Eq. (A8) to the form convenient for
calculations.

We consider an electron moving along axis z normal to the
interface. In order to describe the interaction of this electron
with a classical electromagnetic field, we replace the momen-
tum operator p̂ = −ih̄(d/dz) in Schrödinger equation (A1)
by p̂ − (e/c)A, where A is the z component of the vector
potential. We add eϕ to Eq. (A1), where e is the electron
charge and ϕ is a scalar potential. Then, neglecting the term
≈ A2 in [ p̂ − (e/c)A]2, we find

Û�0 = ih̄e

2c

[
d

dz

(A
m

�0

)
+ A

m

d�0

dz

]
+ eϕ�0, (A10)

where c is the speed of light in vacuum. We insert (A10)
into (A8). Integrating in Eq. (A8) by parts, removing terms
coming to zero at z = ±∞, using E1 − E0 = h̄ω and the fact
that �0 satisfies Schrödinger equation (A1), and replacing ϕ

by
∫ z
−∞ dz′(dϕ/dz′) and −iωA/c + dϕ/dz by z component

E (n) of the electric field normal to the interface, we find after
some transformations

C±(±∞) = − |e|m
h̄2W

∫ ∞

−∞
dz�0�1∓

∫ z

−∞
E (n)dz′. (A11)

We see that the electron in SPE interacts only with the z com-
ponent of the electromagnetic field normal to the interface.

Using that �0 and �1± satisfy Schrödinger equation (A1)
we represent �0�1± as the derivative by z:

2ω

h̄
�0�1∓ = d

dz

(W±
m

)
, W± = �1∓

d�0

dz
− �0

d�1∓
dz

.

Then we integrate Eq. (A11) by parts, drop the terms coming
to zero at z → ±∞, and, after some transformations, obtain
instead of Eq. (A11)

C±(±∞) = |e|m
h̄ωW

∫ ∞

−∞
dz

(
Em

d�0

dz
�1∓ + �1∓�0

2

dEm

dz

)
,

(A12)

where we denote Em = E (n)/m. Equation (A12) for the prob-
ability amplitude C+ is Eq. (1) of [16] with W1 denoted as W .

3. Discontinuities in the probability amplitude

It is convenient to extract in C± the terms related to discon-
tinuities in the surface potential V (z), electromagnetic field
E (n)(z), and electron mass m(z) in z = 0. We show how to do
this through the example of when E (n) and m are constants,

so that

C±(±∞) = |e|E (n)

h̄ωW

∫ ∞

−∞

d�0

dz
�1∓dz. (A13)

We introduce operator Ŝ = H − E0. We see that Ŝ�0 =
0 and Ŝ�1± = h̄ω�1±. We insert �1± = (h̄ω)−1Ŝ�1± into
Eq. (A13) and obtain

C±(±∞) = |e|E
W (h̄ω)2

∫ ∞

−∞
dz

d�0

dz
(Ŝ�1∓). (A14)

Operator Ŝ (as well as H) is Hermitian, therefore∫ ∞

−∞
dz

d�0

dz
(Ŝ�1±) =

∫ ∞

−∞
dz�1±

(
Ŝ

d�0

dz

)
.

Because Ŝ�0 = 0, and only V (z) in Ŝ depends on z, we write

0 = d

dz

(
Ŝ�0

) ≡ Ŝ
d�0

dz
+ dV (z)

dz
�0

and therefore Ŝ(d�0/dz) = −[dV (z)/dz]�0. Combining the
last two expressions we obtain instead of Eq. (A14)

C±(±∞) = − |e|E (n)

W (h̄ω)2

∫ ∞

−∞
dz

dV

dz
�0�1∓.

Taking dV (z)/dz = V0δ(z)|z=0 + V ′(z)|z>0 with constant V0,
delta function δ(z), and the differentiation by z denoted by a
prime we write

C± = − |e|E (n)

W (h̄ω)2

[
V0(�0�1∓)z=0 +

∫ ∞

+0
V ′�0�1∓dz

]
.

Here the first term describes the discontinuity of potential
V (z) in z = 0 and the second term describes the influence of
the continuous part of V (z).

Using operator Ŝ in a similar way, we treat the case
of all V (z), E (n)(z), and m(z) with discontinuities in z = 0
and obtain

C+ = |e|m
W (h̄ω)2

∫ ∞

−∞

dz

m
(cV + cE + cm), (A15)

which is Eq. (2) of [16] with

cV = −E (n)V ′�0�1−,

cE = E (n)′
[

h̄2

2m
� ′

0�
′
1− +

(
E0 − V + h̄ω

2

)
�0�1−

]
,

cm = −E (n)m′

m

(
E0 − V + h̄ω

2

)
�0�1−. (A16)

Inserting (A16) into (A15) we find

C+ = |e|m
W (h̄ω)2

∫ ∞

−∞
dz

{[
−

(E (n)V

m

)′
+

(
E0 + h̄ω

2

)(E (n)

m

)′]
�0�1− + E (n)′ h̄2� ′

0�
′
1−

2m2

}
. (A17)

Expression (A17) remains true for an arbitrary angle of
incidence of the electron on the interface, if the surface
potential V does not depend on x and y coordinates along
the interface, so the electron wave function is factorized as
in Eq. (A18). There �i(z), where i = {0, 1±}, describe z

components of the motion of electrons perpendicular to the
interface.

If f (z) is a discontinuous function in z = 0 with f (+0) =
f+ and f (−0) = f−, then f ′(z)z=0 = ( f+0 − f−0)δ(0). We
consider a product of discontinuous functions as a
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single discontinuous function. Therefore (E (n)V/m)′z=0 =
(E (n)

outV0/mout)δ(0), taking into account that V (z < 0) = 0;
(E (n)/m)′z=0 = (E (n)

out/mout − E (n)
in /min )δ(0), where min (mout)

and E (n)
in (E (n)

out ) are amplitudes of the electron mass and
normal component of the electric field inside (outside) the
nanoparticle near its surface. From the boundary conditions
for the field we find E (n)

in /E (n)
out = εout/εin, where εin (εout) is

the dielectric function inside (outside) the nanoparticle.
After the integration in (A17) with delta functions

we obtain

C+ = c+E (n)
in ,

where c+ is given by Eqs. (5) and (6) of the main text.
As general properties, one can see from Eqs. (5) and (6)

that the value of the probability amplitude C+ depends on the
overlapping of �0 and �−, of � ′

0 and � ′
− in z = 0, and of

V ′�0�− at z > 0. Conditions for the maximum overlapping
at proper symmetry of �0(z) and �−(z) near z = 0 must be
a subject of special research, taking into account the inter-
ference between different terms at calculations of |C+|2. In
any case, in the model of V (z) flat in directions parallel to the
interface, an electron will interact only with the z component
of the electromagnetic field normal to the interface.

4. Calculations of wave functions

We will discuss calculations of wave functions �0,1± in
Eqs. (5) and (6). For the electron moving along axis z perpen-
dicular to the interface, �0,1± are solutions of “unperturbed”
(i.e., taken without the interaction with the electromagnetic
field) Schrödinger equation (A1) with E = E0,1 and poten-
tial V (z) = 0 for z < 0, V (z = 0) = V0, and some continuous
function V (z) for z > 0 as shown in Fig. 1.

�0 corresponds to the electron before absorption of a pho-
ton, and �1± corresponds to the electron after absorption of a
photon. In the metal, after absorption, the electron has kinetic
energy E1 = E0 + h̄ω, where E0 = (h̄k0)2/2min is the initial
energy of the electron with wave number k0 in the metal be-
fore absorption. �1+(z → ∞) → eik̃1z describes the electron
with the wave number k̃1 = √

2mout(E1 − V0)/h̄ moving to the
right in the conduction band of the semiconductor environ-
ment away from the interface (see Fig. 1).

�1−(z → −∞) → e−ik1z corresponds to the electron with
the wave number k1 = √

2minE1/h̄, reflected from the inter-
face after absorption of a photon and moving to the left away
from the interface in the metal.

Now we consider an electron moving at an arbitrary angle
to the metal-semiconductor interface. We factorize the wave
function of such an electron:

�i(z)ei�k‖ �ρ, (A18)

where indices i = {0, 1+, 1−} mark the same states of the
electron as discussed before, ei�k‖ �ρ describes the motion of
the electron parallel to the interface, �k‖ = {�exkx, �eyky}, �� =
{�exx, �eyy}, and �ex and �ey are unit vectors of the Cartesian coor-
dinate system with axes x and y parallel to the interface shown
in Fig. 2. Approximation (A18) has been used in [20,21] with
the assumption that the potential barrier is averaged over x and
y, so it is flat in these directions. In such a flat approximation

for V (z), the medium dielectric function ε and the electron
effective mass m do not depend on x and y, so �k‖ in Eq. (A18)
is preserved and remains the same as in the initial state of
the electron.

The wave function of the initial state of the electron before
absorption is �0(z) = eikzz, where (h̄kz )2/2min = Ez is a part
of the electron kinetic energy related with the motion perpen-
dicular to the interface, and kz is the z component of the wave
vector of the electron.

�1±(z) are solutions of stationary Schrödinger equation
(A1) with E = Ez + h̄ω and V (z) replaced by Ṽ (z, k‖) given
by Eq. (7).

It can be shown that only the component of the external
electric field perpendicular to the interface interacts with an
electron with an arbitrary angle of incidence on the interface.

APPENDIX B: GENERAL EXPRESSION FOR INTERNAL
QUANTUM EFFICIENCY OF VPE

We consider the VPE for small spherical nanoparticles,
following [17], in the three-step photoemission model [28,29]
and suppose that an electron in VPE is involved in three
quantum-mechanically incoherent processes: (i) the absorp-
tion of a photon, (ii) the passage to the interface without
collision, and (iii) the transition through the interface. For
simplicity, we suppose that only electrons absorb photons, and
neglect other kinds of absorption as by impurities, etc. Then
the rate of absorption rabs, given in Eqs. (1) of the main text,
is also the rate of generation of hot electrons in the unit of
volume. The rate of photoemission of hot electrons from the
unit of volume is, therefore,

rVPE = rabsWtWp, (B1)

where Wt is the probability that the hot electron avoids in-
elastic collisions and reaches the nanoparticle surface; Wp is
the probability that the hot electron passes through the barrier
on the surface and leaves the nanoparticle. Then the current
of photoemission from the volume of the nanoparticle, in
electrons per second, is

JVPE =
∫

Vp

rabs〈WtWp〉dV, (B2)

where

〈WtWp〉 = 1

nh

∫
WtWp fhgd3k

is averaged over hot electrons with the distribution function
fh, the density of states in the unit of volume g = 2/(2π )3,
d3k = k2dk sin θdθdϕ, and nh = ∫

fhgd3k is the number of
hot electron states in the unit of volume. θ and ϕ are polar and
azimuthal angles in the spherical coordinate system with polar
axes z′ shown in Fig. 2.

The internal quantum efficiency of VPE is

ηVPE = JVPE/Rabs, (B3)

where Rabs is the rate of absorption of photons in the nanopar-
ticle given by Eq. (1) of the main text. We consider small
spherical nanoparticles, with constant energy density |Ein|2 of
the electric field inside. Then, combining Eqs (B2) and (B3)
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and Rabs from Eqs.(1) we write

ηVPE = 1

nhVp

∫
WtWp fhgd3kdV. (B4)

Parameters of hot electrons everywhere inside a small
nanoparticle are the same, therefore Wp fhg in Eq. (B4) does
not depend on spatial coordinates, so we simplify Eq. (B4) by
separating their integrations:

ηVPE = 1

nh

∫
W tWp fhgd3k, W t = 1

Vp

∫
Wt dV. (B5)

Following [25,31] we approximate the distribution of hot
electrons by homogeneous distribution over the energies from
EF to EF + h̄ω so fh = 1 for k2

F < k2 < k2
F + k2

ω and fh = 0
otherwise; kF = √

2minEF /h̄; kω = √
2minω/h̄.

Nothing depends on angular coordinates in space and on
azimuthal angle in k space in spherical nanoparticles, so the
integration by these variables in Eq. (B4) gives 4π and 2π ,
respectively. We calculate

nh = 4π

∫ kh

kF

2

(2π )3
k2dk = k3

h − k3
F

3π2
,

where k2
h = k2

F + k2
ω, use the spatial coordinate r normalized

to the radius a of small spherical nanoparticles, and come from
Eq. (B4) to

ηVPE = 9

2
(
k3

h − k3
F

)
∫ 1

0
r2dr

∫ kh

kF

k2dk

×
∫ π

0
sin θdθWt (r, θ ) Re [Wp(k, θ )]. (B6)

We take Re [Wp(k, θ )] in Eq. (B6); because we consider only
hot electrons passing the barrier, such electrons fly inside the
cone with 0 < α < αVPE [9] (see α in Fig. 2); αVPE is given
by the second of Eqs. (17) of the main text. For such electrons
Wp(k, θ ) is real; otherwise Wp(k, θ ) is purely imaginary. We
rewrite Eq. (B6) in terms of dimensionless variables

x = E/V0, xF = EF /V0, xh = (EF + h̄ω)/V0 (B7)

keeping, for simplicity, the same notations for Wp(k, θ )
and Wp(x, θ ):

ηVPE = 9

4
(
x3/2

h − x3/2
F

)
∫ 1

0
r2dr

∫ xh

1

√
xdx

×
∫ π

0
Wt (r, θ ) Re [Wp(x, θ )] sin θdθ. (B8)

Following [17] we suppose that the hot electron moves bal-
listically without elastic collisions, and it cannot be emitted
if it loses energy in, at least, the single inelastic collision.
According to [30], the probability that the hot electron reaches
the nanoparticle boundary without collisions is

Wt (r, θ ) = exp [−L(r, θ )/le], (B9)

where L(r, θ ) =
√

1 − r2 sin2 θ − r cos θ is the length of the
path of the hot electron to the interface shown in Fig. 2, r
is the distance from the nanoparticle center to the point of
generation of the hot electron, le is the mean free path of an

electron in the metal, and r and le are normalized on the radius
of a spherical nanoparticle.

We simplify Eq. (B8) and separate their integrals as in
Eq. (B5). First, we separate the integration by dθ in Eq. (B8)
in two parts: from zero to π/2 and from π/2 to π . Proba-
bility Wp that hot electron passes the barrier depends on the
normalized kinetic energy x of the electron and on the part
x sin2 α of this energy, corresponding to the motion paral-
lel to the interface. Therefore Wp = Wp(x, sin2 α). We note
that sin2 α = r2 sin2 θ (see Fig. 2) and introduce in Eq. (B8)
new variable y = r2 sin2 θ instead of θ , so Wp = Wp(x, y). We
come from θ to y in Eqs. (B8) and (B9) taking into account
that sin θdθ = dy/(2r

√
r2 − y), introduce z = r2, separate

integrations in ηVPE as in Eq. (B5), and obtain

ηVPE = 9/4

x3/2
h − x3/2

F

∫ xh

1

√
xdx

∫ ym (x)

0
W tWpdy, (B10)

where

W t (y) = 1

4

∫ 1

y

dz√
z − y

Wt (z, y) (B11)

with

Wt = e−√
1−y/le [e−√

z−y/le + e
√

z−y/le ], (B12)

where Wt is given by Eq. (B9). The integral (B11) can be taken
and we obtain

W t (y) = le
2

[
1 − exp

(
−2

√
1 − y

le

)]
. (B13)

Now we determine ym(x) in Eq. (B10). The energy of the
hot electron in metal is (h̄k)2/2min. When the electron passes
through the barrier, the component k sin α of its wave vector
is preserved, while the component kz normal to the interface
is not preserved. The z component k̃z of the wave vector of
the emitted electron moving far from the barrier in the semi-
conductor environment is found from the energy conservation
law

h̄2
(
k̃2

z + k2 sin2 α
)
/2mout + V0 = (h̄k)2/2min. (B14)

Taking sin α = r sin θ (see Fig. 2), we obtain from Eq. (B14)
the expression (13) for k̃z. k̃z must be real, so only electrons
with k > kV flying inside a cone with sin θ < sin θVPE pass
through the barrier. From Eq. (13) we obtain

r2 sin2 θ < r2 sin2 θVPE ≡ yVPE(x) = (1 − 1/x)/rm,

where x = k2/k2
V . We suppose rm > 1, which is typical for the

metal-semiconductor interface; then

0 < yVPE(x) < 1.

With the result (B13) we obtain

ηVPE = 9le

8
(
x3/2

h − x3/2
F

)
∫ xh

1

√
xdx

×
∫ (1−1/x)/rm

0

[
1 − exp

(
−2

√
1 − y

le

)]
Wp(x, y)dy.

(B15)
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Since we do not know le precisely, we can ignore y depen-
dence in exp(−√

1 − y/le) in Eq. (B15) and obtain the result
(12) of the main text.

Our approach for VPE is similar to the three step
photoemission model of [29], where the VPE from macro-
scopic metal photocathodes has been studied following [28].
There are also some differences between [29] and our
approach. In particular, for the probability that the hot
electron reaches the boundary without collision, we use
expression (11) from [30], appropriate for small spherical
nanoparticles. Authors of [29] for the same probability use
their formula (4), which is appropriate for the macroscopic
photocathode.

Another difference is that [29] uses the so-called 0-1 model
for the surface potential, where the probability that the hot
electron goes outside the metal is 0 or 1, depending on
whether the electron flies below or above the barrier. The
same 0-1 model is used in many papers, for example, in [9].
In contrast, we take the probability Wp that the hot electron
passes the barrier and calculate Wp explicitly for the step
potential barrier. This is why our photocurrent spectrum near

the red limit is ≈ δx5/2
ω [see Eq. (16)], not ≈ δx2

ω as in Eq. (12)
of [29] and in [31].

We consider internal quantum efficiency of VPE, so we do
not need the optical transmission coefficient 1 − R(ω) in our
ηVPE, as it is in [29]. There is no discontinuity in the electron
effective mass on the metal-vacuum interface in [29].

The density of states available for hot electrons at zero
temperature is the same in our case and in [29], though we
integrate by hot electron states, but not by the initial states of
electrons as in [29].

APPENDIX C: EXTERNAL QUANTUM EFFICIENCY OF
SPE THROUGH THE STEP POTENTIAL BARRIER

Multipliers �0 and �1± in wave functions (A18) describe
the motion of an electron along axis z. For the step poten-
tial barriers, V = 0 for z < 0 and V = V0 for z > 0, they
are solutions of Schrodinger equation (A1) with E equal
to E0 = (h̄kz )2/2min for �0 and to E1 = E0 + h̄ω for �1±
and V (z � 0) given by Eq. (7) with V (z) = V0. Such wave
functions are

�0(z) = [exp (ikzz) + A0 exp (−ikzz)]z<0 + B0 exp (−k̃zz)z>0,

�1+(z) = [A1+ exp (ik1zz) + B1+ exp (−ik1zz)]z<0,+ exp (ik̃1zz)z>0,

�1−(z) = [A1− exp (ik̃1zz) + B1− exp (−ik̃1zz)]z>0,+ exp (−ik1zz)z<0 (C1)

where k̃z =
√

[k2
V + k2

‖ (rm − 1) − k2
z ]/rm is real, k1z = √

k2
z + k2

ω, k̃1z =
√

[k2
z + k2

ω − k2
V − k2

‖ (rm − 1)]/rm, rm = min/mout,

kV = √
2minV0/h̄,

A0 = (1 − iθ0)/(1 + iθ0), B0 = 2/(1 + iθ0),

A1− = (1 + θ1)/2, B1− = (1 − θ1)/2,

A1+ = (θ1 − 1)/2θ1, B1+ = (1 + θ1)/2θ1

and

θ0 =
√

rm[V (0)/E0 − 1],

θ1 =
√

rm[1 − V (0)/(E0 + h̄ω)].

Using wave functions (C1) we obtain �0�1−, � ′
0�

′
1−/m2, and W/m; insert them into Eq. (6) of the main text; drop in Eq. (5)

the second term ≈ V ′ ≡ dV/dz; introduce dimensionless variables

xz = (kz/kV )2, x‖ = (k‖/kV )2, xω = (kω/kV )2; (C2)

and find from Eq. (1) of the main text

ηSPE = as
√

rm

a

∫ ∞

0
dx‖

∫ ∞

0

dxz√
xz

Re [
√

xz + xω − 1 − x‖(rm − 1)]|uKdis|2 fF (x)[1 − fF (x + xω )], (C3)

where fF (x) = {1 + exp [(x − xF )/xT ]}−1 is Fermi-distribution function, which depends on the normalized kinetic energy of an
electron x = xz + x‖; xF = EF /V0, xT = KBT/V0,

u =
√

xz

{√xz + i
√

rm[1 + x‖(rm − 1) − xz]}{√xz + xω + √
rm[xz + xω − 1 − x‖(rm − 1)]} , (C4)

Kdis = (rεrm − 1)
(

xz + xω

2

)
− rεrm[1 + x‖(rm − 1)] + i(rε − 1)

√
rm(xz + xω )[1 + x‖(rm − 1) − xz]. (C5)

Taking rm = 1 we obtain Kdis = −K�ε, where K�ε is given by Eq. (17) of [17] and |u(xz )|2 is the same as G(xz ) given by Eq. (16)
of [17]. We neglect the temperature dependence of the Fermi distribution fF (x), taking fF (x) = 1 for 0 < x < x f and fF (x) = 0
otherwise, and obtain

ηSPE = a0
√

rm

a

(∫ xz0

1−xω

dxz

∫ x‖0(xz )

0
dx‖ +

∫ xF

xz0

dxz

∫ xF −xz

0
dx‖

) |uKdis|2√
xz

Re
√

xz + xω − 1 − x‖(rm − 1). (C6)
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FIG. 7. The area of integration in Eq. (C6) is shadowed,
max x‖ = (xF + xω − 1)/rm. The line oo′ restricts the integration area
for small excess of photon energy xω + xF − 1 � xF near the red
limit of photoeffect, where xz ≈ xF and x‖ ≈ 0.

Integration limits xz0 = xF + (1 − xω − xF )/rm and x‖0 =
(xz + xω − 1)/(rm − 1) are shown in Fig. 7,

a0 = λrb

(2π )2ε′′(xω )

e2

h̄c

1 − xF

x4
ω

, (C7)

λrb is the wavelength of the external field on the red limit of
the photoeffect, and ε′′ is the imaginary part of the dielectric
function of the metal of the nanoparticle.

APPENDIX D: THE STEP POTENTIAL BARRIER WITH
DISCONTINUOUS IN THE ELECTRON EFFECTIVE MASS

We calculate the wave function of the hot electron in the
coordinate system with axis z, normal to the nanoparticle sur-

face, shown in Fig. 2. Similar to the wave functions (A18) in
SPE, the wave function of the hot electron in VPE is factorized
as �z(z)ei�k‖ �ρ . In Fig. 2 we see that

k‖ = k sin α, kz = k cos α (D1)

are components of the wave vector of the hot electron, parallel
and perpendicular to the interface; the wave number of the hot
electron is k. The z-dependent part of the wave function of the
hot electron is

�z(z) = (eikzz + Ae−ikzz )z<0 + (Beik̃zz )z>0, (D2)

where A and B are c-number constants. The z component k̃z

of the wave vector of the hot electron for z > 0 is given by
Eq. (13). Inserting the wave function (D2) into the bound-
ary conditions on the interface in z = 0 �h(−0) = �h(+0)
and m−1

in (d�h/dz)z=−0 = m−1
out(d�h/dz)z=+0 we obtain B =

2/(1 + rmk̃z/kz ). With the wave function (D2) the current of
electrons in the z direction toward [away from] the interface
is j(in)

z = h̄kz/min [ j(out)
z = (h̄k̃z/mout)|B|2], so the probability

that the hot electron passes through the barrier is

Wp(k, kz ) ≡ j(out)
z / j(in)

z = 4rmkz Re (k̃z )

(kz + rmk̃z )2
, (D3)

if k̃z is real, and Wp = 0 otherwise. Using dimensionless vari-
ables (B7) and y = r2 sin2 θ we rewrite Eq. (D3) as

Wp(x, y) = 4
√

rmx(1 − y)[x(1 − rmy) − 1]

{√x(1 − y) + √
rm[x(1 − rmy) − 1]}2 . (D4)
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