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Chemical sensing with graphene: A quantum field theory perspective
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We studied theoretically the effect of a low concentration of adsorbed polar molecules on the optical conduc-
tivity of graphene, within the Kubo linear response approximation. Our analysis is based on a continuum model
approximation that includes up to next-to-nearest neighbors in the pristine graphene effective Hamiltonian. Our
results show that the conductivity can be expressed in terms of renormalized quasiparticle parameters ṽF , M̃,
and μ̃ that include the effect of the molecular surface concentration ndip and dipolar moment P , thus providing
a quantum field theory approach to model a graphene-based chemical sensor.
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I. INTRODUCTION

The remarkable transport properties of graphene [1–5],
as well as its affinity for the physisorption of different
molecules, has attracted much attention toward its application
as a field-effect transistor (FET) in chemical sensing [6–9].
In particular, the detection of polar molecules in gas phase
has been investigated both experimentally as well as the-
oretically [9–12], with the later approach mainly based on
ab initio methods. While providing an accurate prediction of
the electronic structure for single adsorbed molecules [13],
ab initio methods are not suitable to describe molecular con-
centrations, finite temperature, and disorder effects. On the
other hand, as a complement with those numerical studies,
the effects of molecular concentration, disorder, and finite
temperature can be described by analytical models based on
the continuum Dirac approximation within quantum field the-
ory [14–17], thus providing an intuitive and accurate [18]
picture of the underlying physical phenomena. Moreover, with
appropriate approximations, these analytical models can often
provide explicit formulas that are useful to interpret actual
experiments. In this work, we present a quantum field theory
that describes the optical conductivity in graphene under a
given concentration of adsorbed polar molecules. This theory
is a direct application of our previous work [17,19], based
on a continuum description of graphene involving the ef-
fects of up to next-to-nearest neighbors on the underlying
atomistic tight-binding Hamiltonian [20], which is analyzed
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by means of quantum field theory methods to include the
electrostatic effects of adsorbed polar molecules on the sur-
face of graphene. In the present model, we assume that the
spatial distribution, as well as the orientation of the dipole
moments of the adsorbed molecules, is disordered, and hence
we obtain a quantum field theory representation for the optical
conductance by performing a statistical average over these
effects. The continuum model describing pristine graphene is
summarized by the Lagrangian density [17,19]

L = i

2
[ψ†∂tψ − ∂tψ

†ψ] + ψ†eA0ψ − 1

2M
{[(p − eA

+ θσ )ψ]† · [(p − eA + θσ )ψ] − 2θ2ψ†ψ}, (1)

with θ = MvF , and the effective-mass parameter [17,19,20]
M = −2/(9t ′a2

0) < 0 capturing the effect of next-to-nearest-
neighbor hopping t ′ on the continuum energy spectrum near
both Dirac points.

II. SCATTERING BY RANDOMLY ADSORBED
MOLECULES

We assume for simplicity that the electric properties of
a single molecule adsorbed at a distance a > 0 above the
surface of graphene can be modeled through a dipole poten-
tial, with two point charges +Q and −Q located at (d/2, a)
and (−d/2, a), respectively, with d a two-dimensional (2D)
vector. The corresponding potential at a position r = (x, y, 0)
on the surface of graphene (z = 0) is

Vd(r) = P
4πεd

(
1√

(r−d/2)2+a2
− 1√

(r+d/2)2+a2

)
, (2)
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FIG. 1. Pictorial (not in actual scale) representation of polar
molecules adsorbed at positions Ri and R j on the surface of
graphene.

with P = Qd the dipole moment of the molecule and ε the
local dielectric permittivity. The strict dipole approximation
corresponds to the limit d → 0, while P remains finite. In
this limit, the 2D Fourier transform of the potential in Eq. (2)
reduces to (see Appendix A)

V̂P (q) = lim
d→0

V̂d(q) = iP · q
2εq

e−qa. (3)

Let us now consider the effect of scattering by adsorbed polar
molecules, randomly distributed with a surface concentration
ndip, on the optical conductivity of graphene (see Fig. 1).
For this purpose, we first analyze their effect on the effective
propagators arising from the Lagrangian Eq. (1) at finite tem-
perature. A given realization within the ensemble of adsorbed
molecular configurations is given by the potential

V (r) =
N∑

j=1

Vd j (r − R j ). (4)

The basic assumptions are that the positions R j , as well as the
orientations of the dipolar moments P j , are independent and
identically distributed random variables, i.e.,

〈Ri · R j〉 = δi j〈R2〉, 〈P i · P j〉 = δi j
P2

2
, (5)

where in the last equation we further assumed that the dipole
orientations are uniformly distributed in the azimuthal angle.
Using standard diagrammatic methods and an average over
disorder [21], it is shown (see Appendix A for details) that for
low molecular concentrations ndip, the scattering effects are
correctly described by a disorder-averaged self-energy of the
form (see Appendix A)

�̂(iωn, p) = ndip

∫
d2q

(2π )2 |V̂avg(p − q)|2
̂E (iωn, q). (6)

FIG. 2. The Feynman diagram corresponding to the Dyson
equation for the dressed propagator. The self-energy is expressed
by Eq. (6).

Here, ωn = (2n + 1)πT for n ∈ Z are fermionic Matsubara
frequencies in the finite-temperature (Euclidean) representa-
tion, while 
̂E (iωn, p) is the fully dressed propagator arising
from the solution of the Dyson equation (as depicted in Fig. 2)


̂−1
E (iωn, p) = 
̂−1

E0 (iωn, p) − �̂(iωn, p). (7)

The Fourier transform of the dipole potential, averaged over
dipole orientations, is defined as (see Appendix A)

|V̂avg(p)|2 = 1

2

e2P2

4ε2
e−2pa. (8)

From our previous work [17,19], the bare, finite-temperature
inverse (Euclidean) propagator is given by the expression


̂−1
E0 (iωn, p) =

(
iωn + μ − p2

2M

)
1 − vF σ · p, (9)

where the effective-mass parameter involved in the quadratic
dispersion term arises from the next-to-nearest-neighbor
hopping t ′ in the atomistic tight-binding Hamiltonian of
graphene [20], M = −2/(9a2

0t ′) ∼ −1.36 × 10−30 K g. On
the other hand, we show that the self-energy in Eq. (6) can
be reduced to the expression (see Appendix B)

�̂(iωn, p) = ndip
e2P2

8ε2

[
1 I1(iωn, p) + σ · p

p
I2(iωn, p)

]
,

(10)

where the exact definitions of the scalar functions I1(iωn, p)
and I2(iωn, p) are given by Eq. (B4) in Appendix B. Con-
sistently with the second-nearest-neighbor contribution in the
graphene Hamiltonian, we consider only contributions up to
second order in momentum in these integrals, such that

I1(iωn, p) = I (0)
1 (iωn) + p2I (2)

1 (iωn) + O(p4),

I2(iωn, p) = pI (1)
2 (iωn) + O(p3). (11)

Inserting the expression for the self-energy Eq. (10) and the
bare inverse propagator Eq. (9) into the Dyson Eq. (7), we
obtain the inverse full propagator


̂−1
E =

(
iωn + μ − ndipe2P2

8ε2
I (0)

1 (iωn) − p2

2M

[
1 + Mndipe2P2

4ε2
I (2)

1 (iωn)

])
1 − σ · p vF

(
1 + ndipe2P2

8ε2vF
I (1)

2 (iωn)

)

= z−1

{(
iωn + μ̃ − p2

2M̃

)
1 − σ · p ṽF − �̃(2)(ωn, p)

}
. (12)

The fact that the tensor structure of the disorder-averaged
propagator Eq. (12) is the same as the free one Eq. (9) supports
the renormalized quasiparticle picture [22–24]. Therefore,

after expanding at low frequencies with respect to the chem-
ical potential, we defined the renormalized quasiparticle
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FIG. 3. Renormalized parameters M̃/M (blue, dashed line) and
ṽF /vF (red, solid line), and renormalization factor z (inset) as a
function of the concentration of adsorbed polar molecules ndip (in
units of 1016 m−2).

parameters

M̃−1 = zM−1

(
1 + Mndipe2P2

4ε2
Re I (2)

1 (0)

)
,

μ̃ = z

(
μ − ndipe2P2

8ε2
Re I (0)

1 (0)

)
,

ṽF = zvF

(
1 + ndipe2P2

8ε2vF
Re I (1)

2 (0)

)
, (13)

with the wave-function renormalization factor

z−1 = 1 − ndipe2P2

8ε2
Re

∂

∂ (iω)
I (0)

1

∣∣∣∣
ω=0

, (14)

while the matrix �̃(2)(ωn, p) contains the self-energy con-
tributions at higher frequencies O(ω2). Neglecting such
higher-energy contributions, we therefore define the quasipar-
ticle propagator


̃−1
E (iωn, p) =

(
iωn + μ̃ − p2

2M̃

)
1 − σ · p ṽF . (15)

The dependence of the renormalized quasiparticle parameters
defined in Eq. (13) on the adsorbed molecular concentration
is presented in Fig. 3, where for illustration we have cho-
sen the parameters for NH3, with a dipole moment of P =
1.42 D, and a = 3.6 Å.

These equations show that the disordered-averaged system
under the presence of the adsorbed polar molecules can be
reduced to an effective Lagrangian as in Eq. (1), but in terms
of “free” renormalized quasiparticles defined by the scaled
fermion fields z−1/2ψ (r), along with the renormalized param-
eters defined in Eq. (13). As usual in such a renormalization
group (RG) procedure [25,26], Callan-Symanzik equations
govern the flow of the renormalized n-point correlation ver-
tices in parameter space as a function of a relevant energy
scale �,

�̃(n)(p1, . . . , pn; M̃(�), ṽF (�), μ̃(�))

= zn/2(�)�(n)(p1, . . . , pn; M, vF , μ), (16)

where M, vF , and μ represent the bare parameters, which are
independent of the energy scale �. By applying the math-
ematical condition d�(n)(p1, . . . , pn; M, vF , μ)/d� = 0, the
corresponding Callan-Symanzik equations are[
�

∂

∂�
+ β(ṽF )

∂

∂ ṽF
+ γMM̃

∂

∂M̃
+ γμμ̃

∂

∂μ̃
− nγ

]
�̃(n) = 0,

(17)

where we defined the RG functions

β(ṽF ) = ∂ ṽF

∂ ln(�)
, γM = ∂ ln(M̃ )

∂ ln(�)
, γμ = ∂ ln(μ̃)

∂ ln(�)
,

γ = 1

2

∂ ln(z)

∂ ln(�)
. (18)

In our model, as clearly inferred from Eq. (13), the relevant
energy scale that induces the RG flow is � = endipP/ε, i.e.,
the electrostatic energy of the adsorbed polar molecules. In
this language, Eq. (13) give the explicit solution of the RG
flow equations at first-order in � = endipP/ε. Therefore, the
corresponding vertex functions in the renormalized quasipar-
ticle effective theory, in particular for n = 2, are obtained
by substituting vF → ṽF , M → M̃ into the definition of the
“free” vertex functions [17]

�k
ab(p; M, vF ) → �̃k

ab(p; M̃, ṽF ) = [δab pk + 2M̃ṽF [σ k]ab].

(19)

Higher-order corrections to this vertex can be incorpo-
rated systematically [26] in terms of quasiparticle propaga-
tors in the spirit of contour-improved perturbation theory
(CIPT) [27,28], also known as renormalized perturbation the-
ory (RPT) [22,23] in condensed-matter systems. However, we
shall neglect such higher-order contributions in our present
analysis, under the assumption of relatively low molecular
concentrations.

III. CONDUCTIVITY

From the Kubo linear response theory, the optical conduc-
tivity tensor is given by the expression [17,19]

σkl (ω) = 4 × �R
kl (p)

iω

∣∣∣∣
p=(ω,0)

. (20)

The retarded component of the polarization tensor is obtained
via analytic continuation from the Euclidean, following the
standard prescription �R

kl (ω, p) = �E
kl (iωn → ω + iε, p).

In our previous work, we have derived the expression of the
Euclidean polarization tensor, which, in the present context, in
terms of free renormalized quasiparticles reads [17,19]

�E
kl (iωn, p) = e2

4M̃2

1

β

∑
q4=ωn,n∈Z

∫
d2q

(2π )2
�̃k

ab(p + 2q)

× 
̃E
bc(p + q)�̃l

cd (p + 2q)
̃E
da(q), (21)

where the renormalized quasiparticle vertex �̃k
ab(p) was de-

fined in Eq. (19).
Following the analysis in our previous work [17,19], we

obtain that the tensor is symmetric and diagonal, σ11 = σ22,
σ12 = σ21 = 0. In particular, for the real part of the optical
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FIG. 4. Optical conductivity of graphene, calculated after Eq. (22) and normalized by the “universal” value σ0 = e2/(4h̄), as a function of
frequency, for different adsorbed molecular concentrations ndip. We considered three temperatures (a) T = 5 K, (b) T = 30 K, and (c) T =
298 K, and a “bare” chemical potential μ = 0.1 eV. The intercept with the horizontal dashed line corresponds to the center of each of the
sigmoidal curves.

conductivity that can be measured in electronic transport ex-
periments, we obtain the analytical expression [19]

Re σ11(ω, T )

= e2

8h̄
sign(ω)

{
tanh

[
1

2kBT

(
h̄2ω2

8M̃ṽ2
F

+ h̄ω

2
− μ̃

)]

− tanh

[
1

2kBT

(
h̄2ω2

8M̃ṽ2
F

− h̄ω

2
− μ̃

)]}
. (22)

It is worth noting that an equivalent expression for the
conductance can be obtained in the framework of standard
perturbation theory by substituting the dressed propagators
in Eq. (21), but keeping the bare vertices �k

ab(p; M, vF ).
This alternative approach leads to an overall multiplicative
factor (zvF /ṽF )2 that only affects the definition of the zero-
temperature limit of the conductance, but not the locus of the
center of the sigmoidal. Moreover, it can be checked that this
factor is nearly equal to 1 within the broad range of concentra-
tions considered in this study, thus showing the equivalence of
standard and renormalized perturbation theory results at this
level. We notice that the zero-temperature limit of Eq. (22)
reduces to the universal value e2/(4h̄) as follows [19]:

Re σ11(ω, T → 0) =
{

e2

4h̄ ,
h̄|ω|

2|M̃|ṽ2
F

> 1 −
√

1 − 2μ̃

|M̃|ṽF
,

0 otherwise.

In Fig. 4, we display the optical conductance, normalized
by the “universal” value σ0 = e2/(4h̄), as a function of fre-
quency for different molecular surface concentrations and
three different temperatures: (a) T = 5 K, (b) T = 30 K, and

(c) T = 298 K. For this example, we used the representative
parameters of NH3 and a chemical potential of μ = 0.1 eV.
A second example, but with a different chemical potential
μ = 0.3 eV, is displayed in Fig. 5. At any finite tempera-
ture, the center of the sigmoidal curve, represented in Figs. 4
and 5 by the intersection with the horizontal dashed line, is
located at

h̄ωcenter = 2|M̃|ṽ2
F

(
1 −

√
1 − 2μ̃

|M̃|ṽ2
F

)
∼ 2μ̃ + μ̃2

|M̃|ṽ2
F

.

(23)

While temperature determines the steepness of the sigmoidal
curve, we remark that the locus of this central point is inde-
pendent of temperature, but it only depends on the chemical
potential and the molecular surface concentration. In Fig. 6,
we display the locus of this point as a function of the molecule
surface concentration for the same representative parame-
ters of NH3 and two different values of the “bare” chemical
potential: (a) μ = 0.1 eV and (b) μ = 0.3 eV, respectively.
The inset in these figures displays the corresponding val-
ues for the renormalized chemical potential. In both cases,
a change of about 6% is predicted from the model within
the range of molecular concentrations displayed, independent
of temperature. Although this change is proportionally small,
it corresponds in absolute terms to ∼12 meV for the first
case, and to ∼35 meV for the second case, which are experi-
mentally detectable energy magnitudes. While the chemical
potential values we chose here to illustrate the effect are
relatively large, the simple relation [4] μ ∼ h̄vF

√
πn indi-
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FIG. 5. Optical conductivity of graphene, calculated after Eq. (22) and normalized by the “universal” value σ0 = e2/(4h̄), as a function of
frequency, for different adsorbed molecular concentrations ndip. We considered three temperatures (a) T = 5 K, (b) T = 30 K, and (c) T =
298 K, and a “bare” chemical potential μ = 0.3 eV. The intercept with the horizontal dashed line corresponds to the center of each of the
sigmoidal curves.

cates that μ ∼ 0.1–0.3 eV corresponds to electronic charge
densities of the order of n ∼ (1 × 1012)–(7 × 1012) cm−2.
Indeed, electronic transport experiments in graphene have
been performed with charge densities up to an order of
magnitude higher than these values [29], and the measured
resistivity curves are fully compatible with the Dirac effective
theory [4,29].

IV. CONCLUSION

We developed a quantum field theory that describes the ef-
fects of different concentrations of adsorbed polar molecules

on the optical conductivity of graphene, at finite temperature
and chemical potential. Our analytical results show that from
electric transport measurements at finite frequency, it is pos-
sible to read the shift in the conductivity curve [defined as
ωcenter in Eq. (23)]. From this value, which is temperature-
independent, as illustrated in the examples displayed in Fig. 6,
it is possible to estimate the molecular surface concentration,
since it determines the renormalized parameters μ̃, M̃, and
ṽF in terms of the “bare” graphene parameters M and vF ,
as well as the actual chemical potential μ, through the an-
alytical Eqs. (13) and (14). Finally, it is worth noticing that
the quadratic term in the dispersion relation of quasiparti-

FIG. 6. The locus of the center of the sigmoidal conductance curve defined in Eq. (23) (main figure), and renormalized chemical potential
(inset), as a function of adsorbed molecular concentration ndip. The “bare” chemical potential is set to (a) μ = 0.1 eV and (b) μ = 0.3 eV,
respectively.
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cles is induced by the adsorbed dipoles even in the M → ∞
limit (which corresponds to the linear model of graphene)
as follows from the first line in Eq. (13) and Eq. (B12) in
Appendix B.
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APPENDIX A

In this Appendix, we present the basic considerations in-
volved in the disorder averaging that leads to the noncrossing
approximation (NCA) applied in this work. This analysis
closely follows Ref. [21]. We start by considering the potential
experienced at site r ∈ R2, due to the presence of an ensemble
of N polar molecules adsorbed over the graphene surface with
a total area A, such that the surface concentration is ndip =
N/A. The position of the center of mass of each molecule is
at (R j, a), with a > 0 the height with respect to the graphene
surface (at z = 0) and R j ∈ R2 the position over the plane, for
1 � j � N . The corresponding potential is

V (r) =
N∑

j=1

Vd j (r − R j ), (A1)

where, as displayed in the main text, the potential for each
dipole is

Vd j (r) = P
4πεd

⎛
⎝ 1√

(r − d j

2 )2 + a2
− 1√

(r + d j

2 )2 + a2

⎞
⎠.

(A2)

The 2D Fourier transform of this potential is given by the
expression

V̂d j (q) =
∫
R2

d2r eiq·rVd j (r)

= iP sin
( q·d j

2

)
2πεd

∫ ∞

0
dr

r√
r2 + a2

∫ 2π

0
dφ eiqr cos(φ)

= iP sin
( q·d j

2

)
εd

∫ ∞

0
dr

rJ0(qr)√
r2 + a2

= iP sin
( q·d j

2

)
εqd

e−qa. (A3)

In the strict dipole approximation, i.e., d → 0 but P j finite,
the Fourier transform reduces to the simpler expression

lim
d→0

V̂d j (q) ≡ V̂P j (q) = iq · P j

2εq
e−qa. (A4)

With this result, the 2D Fourier transform of the potential is
given by

V̂ (q) =
∫
R2

d2r eiq·rV (r)

=
N∑

j=1

∫
R2

d2r eiq·rVd j (r − R j )

=
N∑

j=1

eiq·R j

∫
R2

d2r eiq·rVd j (r)

=
N∑

j=1

V̂d j (q)eiq·R j
d→0−−→

N∑
j=1

V̂P j (q)eiq·R j . (A5)

We shall assume that the positions of the adsorbed molecules
over the graphene surface, i.e., the set {R j}N

j=1, as well as the
orientation of the dipole moments {P j}N

j=1 are independent
and identically distributed random variables. Therefore, writ-
ing P j = P ( cos(ϕ j ), sin(ϕ j )), with ϕ j ∈ [0, 2π ] a uniformly
distributed random variable, we have that the average dipole
moment is

〈P j〉 = P (〈cos(ϕ j )〉, 〈sin(ϕ j )〉) = 0, (A6)

and hence the average of a single Fourier component of the
potential also vanishes,

〈V̂P j (q)〉 = ie−qa

2εq
q · 〈P j〉 = 0. (A7)

Similarly, for q1 = q1( cos(φ1), sin(φ1)) and q2 =
q2( cos(φ2), sin(φ2)), we obtain the following for the
disorder-averaged product of a pair of Fourier components of
the potential:

〈V̂P j (q1)V̂P j′ (q2)〉

= i2e−(q1+q2 )a

4ε2q1q2
〈q1 · P jq2 · P j′ 〉

= i2e−(q1+q2 )aP2

4ε2
(cos φ1 cos φ2〈cos ϕ j cos ϕ j′ 〉

+ sin φ1 sin φ2〈sin ϕ j sin ϕ j′ 〉 + cos φ1 sin φ2

×〈cos ϕ j sin ϕ j′ 〉 + sin φ1 cos φ2〈cos ϕ j sin ϕ j′ 〉)

= i2e−(q1+q2 )aP2

8ε2
δ j, j′ (cos φ1 cos φ2 + sin φ1 sin φ2)

= δ j, j′
i2e−(q1+q2 )aP2

8ε2

q1 · q2

q1q2
. (A8)

Generalizing this procedure, it is straightforward to show that
the average over orientations of the product of an odd number
of potential terms is identically zero,

〈V̂P j1
(q1)V̂P j2

(q2) · · · V̂P j2n+1
(q2n+1)〉 = 0, (A9)

since

〈cos(ϕ j1 ) cos(ϕ j2 ) · · · cos(ϕ j2n+1 )〉 = 0,

〈sin(ϕ j1 ) sin(ϕ j2 ) · · · sin(ϕ j2n+1 )〉 = 0. (A10)

On the other hand, the statistical average over orientations
of the product of an even number of potential terms does
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FIG. 7. (a) Feynman diagrams for the self-consistent Lippmann-
Schwinger series that determines the retarded Green’s function under
an external scattering potential in Eq. (A14). (b) Expansion of the
infinite series generated by the scattering diagram described in (a).

not vanish, but it factors into all possible products of pair
correlators (contractions) as defined in Eq. (A8),

〈V̂P j1
(q1)V̂P j2

(q2) · · · V̂P j2n+1
(q2n+1)〉 = all contractions.

(A11)

For instance, consider the average over a product of four
potential terms that factors into three different contractions,

〈V̂P j1
(q1)V̂P j2

(q2)V̂P j3
(q3)V̂P j4

(q4)〉
= δ j1, j2δ j3, j4〈V̂P j1

(q1)V̂P j1
(q2)〉〈V̂P j3

(q3)V̂P j3
(q4)〉

+ δ j1, j4δ j2, j3〈V̂P j1
(q1)V̂P j1

(q4)〉〈V̂P j2
(q2)V̂P j2

(q3)〉
+ δ j1, j3δ j2, j4〈V̂P j1

(q1)V̂P j1
(q3)〉〈V̂P j2

(q2)V̂P j2
(q4)〉.

(A12)

Similarly, for the average over the molecular positions R j ,
we have

〈ei(q−q′ )·R j 〉 = 1

A

∫
R2

d2Rje
i(q−q′ )·R j = (2π )2

A
δ(q − q′).

(A13)

Let us now consider the Lippmann-Schwinger series, in
momentum space, for the scattering process across a given re-
alization of the ensemble of adsorbed molecules. This can be
written in closed form in terms of the self-consistent integral
equation for the retarded Green’s function ĜR(p, p′; ω),

ĜR(p, p′; ω) = (2π )2δ(p − p′)
̂R
0 (p, ω) + 
̂R

0 (p, ω)

×
∫

d2 p1

(2π )2
eV̂ (p− p1)ĜR(p1, p′; ω), (A14)

where the “free” retarded Green’s function is trivially transla-
tionally invariant and hence diagonal in momentum space,

ĜR
0 (p, p′; ω) = (2π )2δ(p − p′)
̂R

0 (p, ω). (A15)

This equation can be expressed diagrammatically as depicted
in Fig. 7(a), where the scattering term represents an expansion
over a series including all possible numbers of individual
scattering events, as depicted diagrammatically in Fig. 7(b).
In these Feynman diagrams, the double line represents the
retarded Green’s function ĜR(p, p′; ω), while the single line
represents the “free” retarded Green’s function defined in
Eq. (A15), and the dashed lines with a cross on top represent
potential scattering terms V̂ (p − p1).

We perform a statistical average over the disordered dis-
tribution of positions and dipole orientations in Eq. (A14) to
obtain the series [see Fig. 7(b)]

〈ĜR(p, p′; ω)〉 = (2π )2δ(p − p′)
̂R
0 (p, ω) + 
̂R

0 (p, ω)
∫

d2 p1

(2π )2
〈eV̂ (p − p1)ĜR(p1, p′; ω)〉

= (2π )2δ(p − p′)
̂R
0 (p, ω) + 
̂R

0 (p, ω)〈eV̂ (p − p′)〉
̂R
0 (p′, ω)

+ 
̂R
0 (p, ω)

∫
d2 p1

(2π )2
〈e2V̂ (p − p1)V̂ (p1 − p′)〉
̂R

0 (p1, ω)
̂R
0 (p′, ω) + · · · . (A16)

To analyze this series expansion, we need to consider the
statistical averages of the Fourier components of the potential,
as well as of their products at different orders. Notice that the
disorder average of the potential, under the assumptions of
statistical independence of the parameters, is

〈V̂ (p − p′)〉 =
N∑

j=1

〈ei(p−p′ )·R j 〉〈V̂P j (p − p′)〉

= N

A
(2π )2δ(p − p′)〈V̂P j (0)〉

= 0, (A17)

where in the second line we applied Eq. (A13), and in the last
step we used Eq. (A7). Therefore, clearly this first correction
vanishes after averaging over dipole moment orientations.
Moreover, as a consequence of Eq. (A9), all the averages

involving a product of an odd number of potential terms will
vanish, as depicted in Fig. 8(a), while those involving an even
number will remain finite.

Let us now consider the second-order contribution,

〈e2V̂ (p − p1)V̂ (p1 − p′)〉

=
N∑

j=1

〈ei(p−p′ )·R j 〉〈e2V̂P j (p − p1)V̂P j (p1 − p′)〉

= N

A
(2π )2δ(p − p′)

e2P2

8ε2
e−2a|p−p1|

= (2π )2δ(p − p′)ndip|V̂avg(p − p1)|2, (A18)

where ndip = N/A is the molecular surface concentration. We
remark that this contribution is explicitly diagonal in momen-
tum. This term is represented diagrammatically in Fig. 8(b),
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FIG. 8. (a) Statistical average over the random scattering po-
tential represented by an odd number of X’s in each diagram. (b)
Statistical average over the scattering potential in the diagram with
two X’s, as calculated in detail in the main text. (c) Statistical average
over the scattering potential in the diagram with four X’s, that leads
to three subsequent diagrams.

where the averaging process in Eq. (A18) is graphically de-
scribed as pairing the crosses into a single blob. Therefore,
from this result we obtain that the second-order contribution
to the averaged retarded propagator, as depicted in Fig. 8(b),
corresponds to the expression

〈Ĝ(2)(p, p′; ω)〉 = (2π )2δ(p − p′)
̂R
0 (p, ω)

× ndip

∫
d2 p1

(2π )2
|V̂avg(p − p1)|2
̂R

0 (p1, ω)

× 
̂R
0 (p, ω), (A19)

where we defined the disordered-averaged potential energy

|V̂avg(p)|2 = e2P2

8ε2
e−2a|p|. (A20)

As a final explicit example, let us consider the next nonvan-
ishing contribution corresponding to the fourth-order diagram
depicted in Fig. 8(c). This term involves the statistical aver-
age over a product of four potential scattering terms, which
according to Eq. (A12) leads to three terms involving pairing
contractions,

〈e4V̂ (p − p1)V̂ (p1 − p2)V̂ (p2 − p3)V̂ (p3 − p′)〉
= C1 + C2 + C3. (A21)

The term C1, following Eq. (A12), involves the pairings
δ j1, j2δ j3, j4 , in correspondence to the first diagram on the right
in Fig. 8(c) that lumps the corresponding crosses into blobs.
The algebraic expression is

C1 =
∑
j1, j3

〈eiR j1 ·(p−p2 )〉〈eiR j3 ·(p2−p′ )〉〈V̂P j1
(p − p1)

× V̂P j1
(p1 − p2)〉〈V̂P j3

(p2 − p3)V̂P j3
(p3 − p′)〉

= (2π )4δ(p − p2)δ(p2 − p′)n2
dip|V̂avg(p − p1)|2

× |V̂avg(p3 − p′)|2, (A22)

where we used Eq. (A13), and the definition in Eq. (A20). The
term C2, following Eq. (A12), involves the pairings δ j1, j4δ j2, j3 ,
in correspondence to the second diagram on the right in
Fig. 8(c) that lumps the corresponding crosses into blobs. The
algebraic expression is

C2 =
∑
j1, j2

〈eiR j1 ·(p−p1+p3−p′ )〉〈eiR j2 ·(p2−p3+p1−p2 )〉

×〈V̂P j1
(p − p1)V̂P j1

(p3 − p′)〉
×〈V̂P j2

(p1 − p2)V̂P j2
(p2 − p3)〉

= (2π )4δ(p − p′ + p3 − p1)δ(p1 − p3)

×n2
dip|V̂avg(p − p1)|2|V̂avg(p1 − p2)|2, (A23)

where we used Eq. (A13) and the definition in Eq. (A20).
Finally, the term C3, following Eq. (A12), involves the pair-
ings δ j1, j3δ j2, j4 , in correspondence to the third diagram on
the right-hand side in Fig. 8(c) that lumps the corresponding
crosses into blobs. The algebraic expression is

C3 =
∑
j1, j2

〈eiR j1 ·(p−p1+p2−p3 )〉〈eiR j2 ·(p1−p2+p3−p′ )〉

× 〈V̂P j1
(p − p1)V̂P j1

(p2 − p3)〉
× 〈V̂P j2

(p1 − p2)V̂P j2
(p3 − p′)〉

= (2π )4δ(p − p1 + p2 − p3)δ(p1 − p2 + p3 − p′)

× n2
dip|V̂avg(p − p1)|2|V̂avg(p1 − p2)|2. (A24)

Integrating expressions C1, C2, and C3, we obtain the fourth-
order contribution corresponding to the diagram in Fig. 8(c),

〈Ĝ(4)(p, p′; ω)〉

= 
̂R
0 (p, ω)

∫
d2 p1

(2π )2

∫
d2 p2

(2π2)

∫
d2 p3

(2π )2

× [C1 + C2 + C3]
̂R
0 (p1, ω)
̂R

0 (p2, ω)
̂R
0 (p3, ω)

FIG. 9. (a) The Dyson equation for the average retarded prop-
agator, with the one-particle irreducible self-energy represented by
the open symbol �̂(p). (b) We adopt the NCA, as explained in
the main text. (c) The infinite expansion represented by the dia-
grams contributing to the average one-particle irreducible self-energy
in the NCA.

235431-8



CHEMICAL SENSING WITH GRAPHENE: A QUANTUM … PHYSICAL REVIEW B 103, 235431 (2021)

× 
̂R
0 (p′, ω)

= (2π )2δ(p − p′)
̂R
0 (p, ω)�̂(4)(p, ω)
̂R

0 (p, ω), (A25)

which, as Eq. (A19), is clearly diagonal in momentum
space, and we defined the “self-energy” contributions ac-
cording to the three diagrams on the right-hand side of
Fig. 8(c),

�̂(4)(p, ω) = �̂
(4)
1 (p, ω) + �̂

(4)
2 (p, ω) + �̂

(4)
3 (p, ω).

(A26)

While �̂
(4)
1 (p, ω) represents a reducible diagram, given by

the iteration of the irreducible diagram in Fig. 8(b), the term
�̂

(4)
2 (p, ω) represents an irreducible diagram of second order,

and so does the third diagram �̂
(4)
3 (p, ω).

Performing this procedure to all orders, the resulting ex-
act expression for the disorder-averaged propagator can be
written in closed form as a Dyson equation, as depicted

diagrammatically in Fig. 9(a),


̂R(p, ω) = 
̂R
0 (p, ω) + 
̂R

0 (p, ω)�̂(ω, p)
̂R(p, ω),

(A27)

where �̂(ω, p) represents the one-particle irreducible self-
energy. In what follows, we shall adopt the NCA [21], as
indicated in Fig. 9(b), by neglecting diagrams where the po-
tential lines cross [as, for instance, �̂

(4)
3 (p, ω) in Fig. 8(c)],

which allows us to perform a resummation of the infinite
series of diagrams depicted in Fig. 9(b). The corresponding
NCA irreducible self-energy is therefore defined by

�̂(ω, p) = ndip

∫
d2q

(2π )2
|V̂avg(p − q)|2
̂R(ω, q), (A28)

with |V̂avg(p − q)|2 defined in Eq. (A20).

APPENDIX B

In this Appendix, we present the calculation of the self-energy coefficients I1(iωn, p) and I2(iωn, p), as defined in the main
text. We start by considering the self-energy in Eq. (A28), and, for low molecular concentrations, we substitute in the integral
the expression for the free propagator,


̂R(q, ω) → 
̂R
0 (q, ω) = iωn + μ − q2

2M + vF σ · q(
iωn + μ − q2

2M

)2 − v2
F q2

. (B1)

By defining the coordinates p = p(cos ϕ, sin ϕ) and q = q( cos(θ − ϕ), sin(θ − ϕ)), we have

q · σ = q

(
0 e−i(θ−ϕ)

ei(θ−ϕ) 0

)
, (B2)

such that the self-energy in Eq. (A28) is given by the expression

�̂(iωn, p) = ndip
e2P2

8ε2

(
1 I1(iωn, p) + σ · p

p
I2(iωn, p)

)
, (B3)

where we defined the integrals

I1(iωn, p) =
∫

d2q

(2π )2

e−2|p−q|a(iωn + μ − q2

2M

)
(
iωn + μ − q2

2M

)2 − v2
F q2

, I2(iωn, p) =
∫

d2q

(2π )2

e−2|p−q|aqe±iθ(
iωn + μ − q2

2M

)2 − v2
F q2

. (B4)

Here we use polar coordinates d2q = q dq dθ , θ ∈ [0, 2π ), and q ∈ [0,∞). To evaluate those integrals, we perform a series
expansion in powers of the external momentum p, retaining up to second order consistently with the next-to-nearest-neighbor
approximation in the graphene Hamiltonian [20]. Therefore, for the first integral we have

I1(iωn, p) = I (0)
1 (iωn) + p2 I (2)

1 (iωn) + O
(
p4

)
, (B5)

where

I (0)
1 (iω) = −μ + iω

8πvF
2

{
e− 2a(μ+iω)

vF �

(
0,−2a(μ + iω)

vF

)
+ e

2a(μ+iω)
vF �

(
0,

2a(μ + iω)

vF

)}
+ (μ + iω)2

16πMvF
5

×
{

vF [vF
2 − 4a2(μ + iω)2]

2a2(μ + iω)2
+ e

2a(μ+iω)
vF [3vF + 2a(μ + iω)]�

(
0,

2a(μ + iω)

vF

)

× −e− 2a(μ+iω)
vF [−3vF + 2a(μ + iω)]�

(
0,−2a(μ + iω)

vF

)}
+ O

(
1

M2

)
(B6)

235431-9



FALOMIR, LOEWE, AND MUÑOZ PHYSICAL REVIEW B 103, 235431 (2021)

and

I (2)
1 (iω) = 1

8πvF
2

{
vF

2

μ + iω
− ae− 2a(μ+iω)

vF [−vF + 2a(μ + iω)]�

(
0,−2a(μ + iω)

vF

)
− ae

2a(μ+iω)
vF [vF + 2a(μ + iω)]

× �

(
0,

2a(μ + iω)

vF

)}
+ a(μ + iω)

8πMvF
5

{
−2avF (μ + iω) + e

2a(μ+iω)
vF

[
2a2(μ + iω)2 + 4avF (μ + iω) + vF

2
]

× �

(
0,

2a(μ + iω)

vF

)
− e−

2a(μ+iω)
vF

[
2a2(μ+ iω)2 − 4avF (μ+ iω)+ vF

2
]
�

(
0,−2a(μ + iω)

vF

)}
+ O

(
1

M2

)
. (B7)

For the second integral, we obtain

I2(iωn, p) = p

8πvF

{[(
1

4M
∂a + vF

2

)
∂a∂μ − 1

] ∫ ∞

0
dq

e−2aq(
iω + μ − q2

2M + vF q
)
}

= pI (1)
2 (iωn) + O

(
p3

)
, (B8)

where

I (1)
2 (iω) = − 1

4πvF
2

+ a(μ + iω)

4πvF
3

{
e

2a(μ+iω)
vF �

(
0,

2a(μ + iω)

vF

)
− e− 2a(μ+iω)

vF �

(
0,−2a(μ + iω)

vF

)}

− 1

8πMvF
6

{
−2vF

2(μ + iω) + a(μ + iω)2

[
e− 2a(μ+iω)

vF [−3vF + 2a(μ + iω)]�

(
0,−2a(μ + iω)

vF

)
+

× e
2a(μ+iω)

vF [3vF + 2a(μ + iω)]�

(
0,

2a(μ + iω)

vF

)]}
+ O

(
1

M2

)
. (B9)

Here, �(0, z) is the Incomplete Gamma function, while E1(z) and Ei(z) are the Exponential Integral functions.
The quasiparticle parameters introduced in Eqs. (13) and (14) in the main text are thus obtained from the expressions above,

and they correspond to

I (0)
1 (0) = 1

32πMv5
F

{
vF (v2

F − 4a2μ2)

a2
+ 2μe

2aμ

vF

(
μ(2aμ + 3vF ) − 2Mv3

F

)
E1

(
2aμ

vF

)
− 2μe− 2aμ

vF [μ(2aμ − 3vF )

+2Mv3
F

][
Ei

(
2aμ

vF

)
+ iπ

]}
, (B10)

∂I (0)
1

∂ (iω)
(0) = − 1

8πMv6
F

{
−e− 2aμ

vF

[
Ei

(
2aμ

vF

)
+ iπ

](−2a2μ3 − 2aμMv3
F + 6aμ2vF + Mv4

F − 3μv2
F

)

× +e
2aμ

vF

(−2a2μ3 + 2aμMv3
F − 6aμ2vF + Mv4

F − 3μv2
F

)
E1

(
2aμ

vF

)
− 2Mv4

F + 5μv2
F

}
, (B11)

I (2)
1 (0) = 1

8πMv5
F

{
vF (Mv4

F − 2a2μ3)

μ
+ ae

2aμ

vF

[
μ

(
2a2μ2 + 4aμvF + v2

F

) − Mv3
F (2aμ + vF )

]
E1

(
2aμ

vF

)

− ae− 2aμ

vF

[
μ

(
2a2μ2 − 4aμvF + v2

F

) − Mv3
F (vF − 2aμ)

][
Ei

(
2aμ

vF

)
+ iπ

]}
, (B12)

I (1)
2 (0) = 1

8πMv7
F

{
−aμ

[
e

2aμ

vF E1

(
2aμ

vF

)(
μ(2aμ + 3vF ) − 2Mv3

F

) + e− 2aμ

vF

[
Ei

(
2aμ

vF

)
+ iπ

]

× (
μ(2aμ − 3vF ) + 2Mv3

F

)] − 2v2
F

(
Mv2

F − μ
)}

. (B13)
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