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Oscillations of the electron energy loss rate in two-dimensional transition-metal dichalcogenides
in the presence of a quantizing magnetic field
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We study the hot electron energy-loss rate (ELR) induced by acoustic Pac and optical Pop phonons, in two-
dimensional transition-metal dichalcogenides (TMDCs), in presence of quantizing magnetic field B, including
the hot-phonon effect. At the low-temperature regime, the ELR is found to display a quantum oscillations with
their amplitude being found to increase with the increase of the magnetic field. The unscreened TA phonon due
to deformation potential (DP) coupling is dominant over the other screened acoustic phonon contributions. In the
extreme Bloch-Grüneisen (BG) region, the ELR displays a pronounced Pac ∝ T 4 (T 6) temperature dependence
for unscreened TA-DP phonons (other screened mechanisms). When the temperature increases, Te > TBG, the
ELR shows a linear Pac ∝ T behavior in the equipartition region. At higher temperatures, there is a crossover
from Pac dominated ELR to Pop by zeroth-order DP coupling dominated ELR with the cross-over temperature
being about Te ∼ 50 K. The hot phonon effect is demonstrated to reduce ELR significantly. The effect of the
magnetic field is found to enhance the ELR significantly, making B as its another tuning knob. Among the
four TMDC materials, MoS2 (MoSe2) displays the biggest ELR due to acoustic (optical) phonon scattering
while WSe2 (WS2) shows the smallest ELR. Our results for the MoS2 material are compared with those of the
zero-field ELR.

DOI: 10.1103/PhysRevB.103.235417

I. INTRODUCTION

The transition-metal dichalcogenides (TMDCs), the atom-
ically thin two-dimensional systems, are known as the typical
semiconductor materials with a large band-gap and strong
spin-orbit coupling (SOC) [1,2]. A prototypical TMDC is
MoS2, whose electronic structure has been demonstrated to be
dependent on its number layers: in the bulk form, MoS2 dis-
plays an indirect band-gap material of 1.3 eV, while it shows a
direct band gap of 1.8 eV in the monolayer structure [3]. This
opens to the possible applications of optoelectronic devices
based on the TMDCs materials [4]. It is well known that the
energy-transporting properties of hot electrons have rich ap-
plications in many devices such as calorimeters or detectors.
It has been also demonstrated to give rise to the photoresponse
in monolayer MoS2 [5]. Besides, the cooling of hot electrons
is an important fundamental process for novel optoelectronic
devices [6]. Therefore understanding the nature of the way of
energy transport of hot electrons in two-dimensional materials
is necessary.

One of the most important ways for transferring the energy
of the hot electrons is to lose their energies to phonons. An
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important parameter to describe this cooling is the energy-loss
rate (ELR), the typical parameter describing the rate of energy
loss of electrons by the emission of phonons. When study-
ing the hot-electron energy-loss rate in graphene due to the
interaction between the massless electrons and the acoustic
phonons Kubakaddi [7] found that at the very low tempera-
ture regime, the ELR is proportional to T 4

e with Te being the
electron temperature, agreeing with other theoretical [8] and
experimental [9–11] studies in graphene. In another experi-
mental work in graphene, Laitinen et al. [12] observed an ELR
of the form P ∝ T δ

e with δ � 3 − 5. Other studies on the ELR
in graphene also showed that the energy transfer to acoustic
phonons is dominant at the low temperature [13] while the
optical phonons begin to dominate at temperature Te � 200 K
[14,15]. The study of hot electron ELR (or cooling power) has
also been done extensively in conventional two-dimensional
electron gas (2DEG) [16–18], in bilayer graphene [19–21], in
silicene [22], in monolayer MoS2 and other transition-metal
dichalcogenides [23], in 3D Dirac semimetal [24], and in
twisted bilayer graphene [25]. These studies have provided
an insight into the thermal relationship between electrons and
phonons in two-dimensional materials. In all these studies, the
ELR is investigated in the case of zero magnetic field. How-
ever, there exist a few studies of ELR in 2DEG in quantizing
magnetic field, showing oscillatory behavior as a function of
magnetic field [26–28]. The effect of magnetic field on ELR
in other systems is still lacking.

In this work, we theoretically study the ELR in two-
dimensional transition-metal dichalcogenides as a function
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of magnetic field and electron temperature Te for different
values of the 2D electron density ne, where the electrons are
considered to interact with both acoustic and optical phonons.
The screening and the hot-phonon effects are taken into ac-
count for the case of acoustic and optical phonon scatterings,
respectively. For the acoustic phonon, we include both defor-
mation potential (DP) and piezoelectric (PE) interactions with
both transverse (TA) and longitudinal (LA) acoustic phonon
modes. Meanwhile, for the optical phonon scattering, both
the homopolar (HP) phonon mode via the zeroth-order opti-
cal deformation potential (ODP) and transverse (TO) phonon
mode via the first-order ODP as well as the longitudinal
(LO) phonon mode via the Fröhlich couplings are taken into
account [23,29,30]. We found an oscillatory behavior of the
ELR with the magnetic field where the unscreened TA-DP
(HP) phonon is dominant among the acoustic (optical) phonon
modes. Our paper is organized as follows. In Sec. II, we
introduce the theoretical basic calculations for the model
Hamiltonian and the ELR, where the perpendicular electric
field Ez and two Zeeman terms have been included [31,32].
The results for ELR at low and high electron temperatures are
presented in Sec. III. Finally, our conclusions are shown in
Sec. IV.

II. THEORETICAL CALCULATIONS

A. Basic formulation

We consider a TMDCs monolayer in the (x, y) plane in the
presence of the magnetic field B = (0, 0, B). The one-particle
Hamiltonian, including the perpendicular electric field Ez and
two Zeeman terms, can be expressed as follows [31,32]:

H = vF(τσx�x + σy�y) + �z
τ,sσz + Oτ,s + sZs − τZv,

(1)

where the valley index τ = ±1 refers to the K and K ′, σx, σy

and σz are the Pauli matrices, the canonical momentum is
� = (p + eA) with A = (0, Bx, 0) being the vector potential,
�z

τ,s = �τ,s + d�z is the effective Dirac mass with �z = eEz

and 2d being the distance between the two sublattices. The
normal Dirac mass and the offset energy are expressed as
follows [31,33–35]:

�τ,s = � − (λv − λc)τ s/4, (2)

Oτ,s = (λv + λc)τ s/4, (3)

where s = ±1 is for the spin-up and spin-down state, re-
spectively, � is the energy gap, λv and λc are the valence
and conduction band spin splitting, respectively. The Zeeman
term are Zi = giμB/2 (i = s, v), with the Bohr magneton
μB = eh̄/2me. Here me denotes the electron effective mass,
gi = 2 + g′

i with g′
i being the spin and valley Landé factor

[36]. Characteristic parameters for the TMDCs are given in
Table I.

The eigen-values for the state |α〉 = |η, ky〉, with η being
shorthand for {n, s, p, τ }, are

Eα ≡ Eη ≡ E p,τ
n,s = Oτ,s + sZs − τZv + pE τ

n,s(z), (4)

where n = 0, 1, 2, . . . is the Landau-level (LL) index, p = ±1
refers to the conduction and valence bands, respectively, and

TABLE I. The used parameters for different TDMCs: values of
h̄vF (eV Å) and � (eV) are taken from Ref. [37], λv (meV) and
λc (meV) are from Ref. [38], g′

s, gv and me (in the unit of m0) are
from Ref. [39].

h̄vF � λv λc g′
s gv me

MoS2 3.51 0.83 148 −3 0.21 3.57 0.49
WS2 4.38 0.90 430 +29 0.84 4.96 0.35
MoSe2 3.11 0.74 184 −21 0.29 3.03 0.64
WSe2 3.94 0.80 466 +36 0.98 4.34 0.40

E τ
n,s(z) = [n(h̄ωc)2 + (�z

τ,s)2]1/2. Here ωc = vF

√
2/αc is the

cyclotron frequency with αc = (h̄/eB)1/2 being the magnetic
length. The eigenvalues of the 0LL are

E τ
0,s = Oτ,s + sZs − τZv − τ�z

τ,s. (5)

The corresponding eigen-functions for K valley are
ψ

p,τ
n,s (x, y) = Ss ⊗ ϕ

p,τ
n,s (x, y), where Ss stands for the eigen-

state of the spin operator ŝz [40], and

ϕp,τ
n,s (x, y) = eikyy√

Ly

(
Ap,τ

n,s φn−1(x − x0)
ipBp,τ

n,s φn(x − x0)

)
, (6)

where φn(x − x0) are the usual harmonic oscillator
wave-functions with the center-orbit x0 = α2

c ky, and
Ap,τ

n,s = {[pE τ
n,s(z) + �z

τ,s]/2pE τ
n,s(z)}1/2, Bp,τ

n,s = {[pE τ
n,s(z) −

�z
τ,s]/2pE τ

n,s(z)}1/2. The eigen-functions for the K ′ valley
are also derived from Eq. (6) but with the exchange between
φn−1 and φn. The LLs spectrum for K ↑ state for different
TMDCs are illustrated in Fig. 1. The magenta lines show
the corresponding chemical potential, μ, which are obtained

FIG. 1. The LLs spectrum for K ↑ state (blue lines) and the
chemical potential (magenta lines) in different TMDCs: (a) MoS2,
(b) WS2, (c) MoSe2, and (d) WSe2. The results are evaluated at
ne = n0 and Te = 2 K.
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from the electron density ne given as

ne =
∫

(ε)
D(ε) f (ε)dε = 1

2πα2
c

∑
η

f (Eη ), (7)

where f (Eη ) = [e(Eη−μ)/kBTe + 1]−1 is the Fermi-Dirac distri-
bution function for the electron at the temperature Te, which is
assumed to be higher than the lattice temperature T , and D(ε)
is the density of state (DoS).

B. Theory for the energy-loss rate

In presence of the large electric field in the plane of the
monolayer, electrons get energy and set their own temperature
Te(> T ) and in equilibrium they lose their extra energy by
emitting phonons. The average energy-loss rate per electron
can be given as [7,19,23,41]

P = 1

Ne

∑
λ,q

h̄ωλq

(
∂Nλq

∂t

)
λ

, (8)

where Ne is the electron total number, h̄ωλq is the energy of a
phonon in the λ-branch and the 2D wave vector q = (qx, qy),
and the rate of change of the phonon distribution function Nλq

for a given branch λ is given by [7,23,26](
∂Nλq

∂t

)
λ

= 2π

h̄

∑
α

∣∣Cλ
α′α (q)

∣∣2
[(Nλq + 1) fα′ (1 − fα )

−Nλq fα (1 − fα′ )]δ(Eα′ − Eα − h̄ωλq), (9)

where fα ≡ f (Eα ) = f (Eη ) is the Fermi-Dirac distribution
function at electron temperature Te. The electron-phonon ma-
trix element is given by [32]∣∣Cλ

α′α (q)
∣∣2 = |Cλ(q)|2|Jη′η(u)|2δk′

y,ky+qy , (10)

where |Cλ(q)|2 is the electron-phonon coupling matrix ele-
ment, and Jη′η(u) = 〈η′|eiq·r|η〉 is the form factor, given as
follows for the intravalley transitions (τ = τ ′) [32]

|Jη′η(u)|2 = e−uu j k!

(k + j)!

[
Ap,τ

n,s A
p′,τ
n′,s′

√
k + j

k
L j

k−1(u)

+Bp,τ
n,s B

p′,τ
n′,s′L

j
k (u)

]2

. (11)

Here, u = α2
c q2/2, k = min[n′, n], j = |n′ − n|, and L j

k (u) are
the associated Laguerre polynomials. In the case of the elastic
interaction, i.e., acoustic-phonon scattering, the only permit-
ted transitions are n → n′ = n, its standard evaluation has
reduced as follows [32,36]:

|Jηη(u)|2 = e−u
[∣∣Ap,τ

n,s

∣∣2
Ln−1(u) + ∣∣Bp,τ

n,s

∣∣2
Ln(u)

]2
. (12)

Note that, the reduced expression in Eq. (12) is valid for
only acoustic-phonon scattering. For optical-phonon scatter-
ing, we have to use the general expression in Eq. (11) as it
causes inter-LL transition (n �= n′), unlike acoustic-phonon
scattering.

1. ELR due to acoustic phonons

Inserting Eq. (9) into Eq. (8), and using the
transformations

∑
α ≡ ∑

η,ky
→ gS0/2πα2

c

∑
η and∑

q → S0/(2π )2
∫

qdq
∫

dθ in the polar coordinates, we
can rewrite the ELR in a form similar to Eq. (3) in Ref. [23]

Pac =
∑

λ

[Kλ(Te) − Kλ(T )], (13)

where g = gsgv with gs and gv being the spin and valley de-
generacies, respectively, S0 is the sample area, the summation
over k′

y is eliminated using the Delta-Kronecker δk′
y,ky+qy in

Eq. (10), and

Kλ(T ) = gS0

2π h̄neα2
c

∑
η

∫ ∞

0
qdq(h̄ωλq)|Cλ(q)|2|Jηη(u)|2

× Nλq(T )Pηη(h̄ωλq). (14)

Here, ne = Ne/S0 is the 2D electron density, Nλq(T ) =
[exp(h̄ωλq/kBT ) − 1]−1 is the equilibrium acoustic phonon
distribution function at temperature T , and

Pηη(h̄ωλq) =
∫

dεδ(ε − Eη )δ(Eη − ε − h̄ωλq)

× [ f (ε) − f (ε + h̄ωλq)]. (15)

The expression for Kλ(T ) shown in Eq. (14) is inferred in
the general case, which can be used to evaluate the ELR for
different regions of temperature as well as for different types
of electron-acoustic phonon interactions.

2. ELR due to optical phonons

Since the frequencies of the optical phonons are dis-
persionless, ωλq = ωλ0, the ELR due to optical phonons
scattering, including the hot-phonon effect, is given as follows
[24]

Pop = h̄ωλ0

2πne

∑
λ,η′

∫ ∞

0
qdq�Nλ0�(q), (16)

where �Nλ0 = [(Nλ0 + 1)e−h̄ωλ0/kBTe − Nλ0], with Nλ0 being
the nonequilibrium distribution function of phonon given by
[19]

Nλ0 = N0
λ0 + τp�(q)e−h̄ωλ0/kBTe

1 + τp�(q)(1 − eh̄ωλ0/kBTe )
. (17)

Here, N0
λ0 is the thermal equilibrium distribution (Bose-

distribution) function at the temperature T of the optical
phonon of energy h̄ωλ0 and τp is the phonon lifetime
caused by phonon-phonon scattering. In Eq. (16), �(q) is
the electron-optical phonon scattering rate, which is given as
follows:

�(q) = gS0

h̄α2
c

∑
η

|Cλ(q)|2|Jη′η(u)|2δ(Eη′ − Eη − h̄ωλ0)

× f (Eη )[1 − f (Eη + h̄ωλ0)], (18)

where Jη′η(u) is given in Eq. (11).
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III. RESULTS AND DISCUSSION

A. ELR at low electron temperature

At the low-temperature region, where the electron thermal
energy is much smaller than the optical phonon one, the ELR
is mainly dominated by the interaction of electron with acous-
tic phonons. In this case, the electron-phonon coupling matrix
element is given as follows for both deformation-potential
(DP) and piezoelectric (PE) mechanisms [23,29,30,42,43]

|Cλ(q)|2 = h̄

2S0ρωλq

∣∣∣∣ Dν
λq

ε(q)

∣∣∣∣
2

, (ν = DP, PE), (19)

where ρ is the mass density of the sample and the
phonon frequency ωλq = vsλq with vsλ being the sound
velocity for the λ-acoustic phonon mode (λ = TA, LA).
In Eq. (19), ε(q) = 1 + qTF(B, q)/q is the dielectric func-
tion of an ideal 2DEG in the presence of magnetic field
[44]. Here, qTF(B, q) = 2πe2D(B)|JNN (q)|2/ε0κs is the ef-
fective Thomas-Fermi wave vector. The factor D(B) =
(πα2

c )−1 ∑
η p(EF − Eη ) is the density of states at the Fermi

level, with p(x) = (γ
√

2π )−1exp(−x2/2γ 2) being the line-
shape function, and κs is the relative permittivity of the
TMDCs. The factor |JNN (q)|2 is given in Eq. (11) with N
being the LL index closest to the Fermi level. When this
factor is set to be unity, this dielectric function reduces to
its corresponding Thomas-Fermi approximation form [44,45].
The coupling strengths of the matrix elements are [30]

Dν
λq = Dν

λq, (20)

where the coupling constants Dν
λ = �λ for ν = DP and Dν

λ =
ee11/(ε0

√
2) for ν = PE with �λ and e11 being the DP and PE

constants, respectively.
Using these features into Eq. (14) we get the following

expression for the acoustic-phonon interaction:

Kλ(T ) = gh̄
(
Dν

λ

)2

4πρneα2
c

∑
η

∫ ∞

0

q3+β

[q + qTF(B, q)]β
dq|Jηη(u)|2

× Nλq(T )Pηη(h̄ωλq), (21)

where β = 0 and β = 2 are for the unscreened and screened
couplings, respectively. This equation cannot be analytically
evaluated in the general case, however, it can be done in
two limiting cases: the Bloch-Grüneisen (BG) and the high-
temperature equipartition (EP) regions, which are separated
by the BG temperature, TBG, given as follows [30]:

TBG = 2h̄vsλkF/kB, (22)

where kF is the Fermi wave vector.

1. The extreme BG limits

In the extreme BG region, where Te � TBG and h̄ωλq � EF

(μ → EF), one can use the approximation as f (ε) − f (ε +
h̄ωλq) ≈ h̄ωλqδ(ε − EF) [7], and ε(q) ≈ qTF(B, 0)/q. Insert-
ing these relations into Eq. (21), we obtain

KBG
λ (T ) = gh̄

(
Dν

λ

)2

4πρneα2
c qβ

TF(B, 0)

∑
η

IBG
ηη (β )δ(Eη − EF), (23)

TABLE II. The used parameters for different TDMCs: the values
of D0

HP (1010 eV/m), �LA (eV), and h̄ω0,HP (meV) are taken from
Ref. [47], the values of ρ (×10−6kg/m2), vsLA (×103m/s) are taken
from Ref. [48], and κs = √

ε⊥ε‖ with ε⊥ and ε‖ being taken from
Ref. [49].

ρ �LA vsLA D0
HP h̄ω0,HP κs

MoS2 1.56 2.8a 6.6 5.8 50.9 9.9
WS2 2.36 3.2 4.3 3.1 51.8 9.3
MoSe2 2.01 3.4 4.1 5.2 30.3 11.2
WSe2 3.09 3.2 3.3 2.3 30.8 10.7

aReference [29].

where we have denoted

IBG
ηη (β ) = 1

(h̄vsλ)4+β

∫ ∞

0
dεpε

3+β
p Nλq|Jηη(εp)|2, (24)

with εp = h̄ωλq being the phonon energy. In the ultralow-
temperature limits εp → 0 and |Jηη(εp)|2 → 1, we will get the
asymptotic expression for the ELR

KBG
λ (T ) = gh̄

(
Dν

λ

)2
(3 + β )!ζ (3 + β )(kBT )4+β

4πρneα2
c qβ

TF(B, 0)(h̄vsλ)4+β

×
∑

η

δ(Eη − EF), (25)

where ζ (k) is the Riemann zeta function. We can see from
Eq. (25) that at extremely low temperature P ∝ T 4

e (P ∝ T 6
e )

for the unscreened (screened) coupling. These results are in
good agreement with those reported in the case of the absence
magnetic field in monolayer and bilayer graphene [7,15,20]
which were experimentally demonstrated [8–10,46], and also
in MoS2 monolayer [23] and silicene [22].

2. The high-temperature EP limits

In the high-temperature EP limit, one can use the
approximation Nλq ≈ kBT/h̄ωλq. Moreover, since the LL-
energies are much bigger than the phonon energy, Eη � h̄ωλq,
we have the approximation f (Eη ) − f (Eη + h̄ωλq) ≈
h̄ωλq[−∂ f (Eη )/∂Eη]. Using these approximations into
Eq. (21), we get

KEP
λ (T ) = g

(
Dν

λ

)2
kBT

4πρnevsλα2
c

∑
η

IEP
ηη (β )

[
−∂ f (Eη )

∂Eη

]
, (26)

where

IEP
ηη (β ) =

∫ ∞

0

q2+β

[q + qTF(B, q)]β
|Jηη(u)|2dq (27)

is independent of T . The P ∝ T feature predicted in Eq. (26)
agrees with that in graphene [14,15] and in MoS2 monolayer
in the zero-field case [23].

For the numerical calculations, we use the following
parameters for the MoS2: �TA = 1.6 eV, the transverse veloc-
ity vsTA = 4.2 × 103 m/s [29], and the piezoconstant e11 =
3.0 × 10−11C/m [30] corresponding to a potential DPE

λ =
2.4 eV. The others are shown in the Table II. The electron
density is taken in the range of ne = (0.5 − 5)n0, where
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FIG. 2. The ELR in MoS2 monolayer versus magnetic field B
for [(a), (b), and (d)] different acoustic-phonon coupling mecha-
nisms and (c) different electron density. (a) and (b) are for screened
couplings while (c) and (d) are for the unscreened couplings. The
results are evaluated for different electronic states: [(a) and (c)]
Zs, Zv, d�z = 0, [(b) and (d)] Zs, Zv �= 0, d�z = (λv − λc )/4 at Te =
2 K and T = 0 K.

n0 = 1016 m−2. The delta function δ(x) is taken to be the
Lorentzian with the width γ = 0.5

√
B[T] meV.

In Fig. 2, the ELRs in MoS2 monolayer is shown as a func-
tion of B at Te = 2 K and T = 0 K. The results are calculated
for different acoustic-phonon coupling mechanisms, different
electron densities, and electronic states. In the two panels (b)
and (d), the value of electric field of d�z = (λv − λc)/4 is
chosen to neglect the SOC term in K ↑ and K ′ ↓ states. We
found that the ELRs display the oscillatory behavior due to the
oscillating DoS with the magnetic field whereas the peak in-
tensities increase with magnetic field in all four panels. While
the peak oscillations occur when the chemical potential, μ, is
crossing the LLs, their increasing behavior with the magnetic
field is the result of the decrease of the magnetic length, αc,
when the magnetic field increases. Thus these oscillations
have the same origin as the Shubnikov-de Haas oscilla-
tions, as found in GaAs quantum wells [26]. Moreover, these
are similar to the oscillatory behavior of the phonon-drag
thermopower in graphene [50].

It is well-known that the screening effect is weak for the
TA-DP phonon, leaving it unscreened, but is significantly
strong for the other acoustic electron-phonon coupling mech-
anisms (i.e., LA-DP, TA-PE, and LA-PE) [30]. This explains
the results observed in Figs. 2(a) and 2(b) that, for the individ-
ual acoustic-phonon contributions to the ELR, the unscreened
TA-DP phonon dominates the others, followed by that of the
LA-DP phonon, while the TA-PE shows the weakest (note
their corresponding scales). This is supported by previous
work reported for the zero-field ELR [23] and the acoustic

FIG. 3. The ELR in TMDCs monolayer due to the unscreened
LA-DP phonon versus magnetic field B for Zs, Zv �= 0, d�z = (λv −
λc )/4 at ne = n0, Te = 2 K, and T = 0 K.

phonon limited mobility [30] in MoS2 monolayer. This result
also implies that the screening effect strongly reduces the
ELR value resulting from an enhancement of the dielectric
function when the screening effect is taken into consideration.
When comparing panel (a) with panel (b), one sees that the
combined effects of the electric and the Zeeman fields weakly
affect the peak positions but significantly enhance the peak
intensities. For the effect of electron density on the ELR, we
can see from Fig. 2(c) that when the electron density increases
the peak oscillations shift to the higher field region and also
reduce their intensities. The shift to the higher region behavior
of the peak oscillations is the result of the fact that when
the electron density increases the chemical potential would
be pushed higher. Therefore the bigger value of B is needed
to reach such a higher chemical potential to create the next
peak of oscillation. The reduction of the peak oscillations is
similar to that of the zero-field ELR in MoS2 monolayer [23].
We can see from Fig. 2(d) that when the screening effect is
not taken into consideration, the ELR due to all the phonon
modes are almost in the same order and the LA-DP dominates
the others. Besides, with higher velocity, the ELR peaks due
to LA phonons are always on the right-hand side of that due
to the TA-phonons as shown in Figs. 2(a), 2(b), and 2(d).

The effect of different materials on the ELR due to LA-DP
phonons, using the parameters given in Table II, is shown in
Fig. 3. Because the ELR magnitude for different materials is
mainly decided by the ratio (Dν

λ)2/ρvsλ the MoS2 displays
the highest peak or dominates the other due to its strongest
value of this ratio, followed by that of the MoSe2, while the
WSe2 shows the lowest. This order is different from the B
dependence of the FWHM [32]. Because the dependence of
the FWHM on the material characteristic is through the ratio
(Dν

λ)2/ρv2
sλ, which is different from that of the ELR. Besides,

with the highest velocity, the peak positions due to MoS2

appear on the right-hand side of the others, while those due
to WSe2 are on the left-hand side.

The dependence of the ELR due to acoustic-phonons on the
electron temperature Te, at B = 5 T, is shown in Fig. 4. The
general feature that the ELR increases with the increase of the
Te is found in all four panels. This is similar to that reported in
the zero-field case in graphene [7], in bilayer graphene [19], in
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FIG. 4. The ELR due to acoustic-phonons versus electron tem-
perature Te due to different coupling mechanisms [(a) and (b)],
different electron density (c), and different lattice temperature
[(b) and (d)]. The results are evaluated for Zs, Zv �= 0, d�z = (λv −
λc )/4 at B = 5 T. The symbol (•) marks the corresponding BG
temperatures.

MoS2 monolayer [23], in Dirac semimetal Cd3As2 [24], and
in twisted bilayer graphene [25]. At the low Te, the ELR due
to the unscreened TA-DP is much higher than that due to the
others (i.e., LA-DP, TA-PE, and LA-PE). However, when the
electron temperature increases, the ELR due to the screened
LA-DP, TA-PE, and LA-PE modes increase more rapidly than
that due to the unscreened TA-DP mode. Therefore the ELRs
due to these coupling mechanisms have almost the same order
and are comparable at the high temperature (Te � 100 K). One
can also see from Fig. 4(a) that the limiting result of PBG

holds well in its corresponding regime. It means that, the ELR
draws a pronounced Pac

λ ∝ T δ temperature dependence with
δ ≈ 4 (6) for unscreened TA-DP phonons (other mechanisms)
in the BG regime. When the temperature increases, Te > TBG,
the ELR shows a reduction behavior of the exponent δ from 4
(6) to the linear Pac

λ ∝ T (δ = 1) behavior in the EP regime.
For the finite lattice temperature, T = 4.2 K, as illustrated in
Figs. 4(b) and 4(c) the ELR drops quickly when the electron
temperature Te reaches the value of the lattice temperature T .
At Te � T , the ELR, in Eq. (13), is governed by the term
Kλ(Te) in comparison to the term Kλ(T ). Therefore the dashed
curves are asymptotic and then merge with their correspond-
ing solid curves in the high-temperature regime. This result is
similar to that of the zero-field ELR in MoS2 monolayer [23].
Besides, the magnitude of the ELR at B = 5 T (present work)
is found to be much bigger than that of the zero field [23].
For example, at Te = 100 K, we find from Fig. 4(a) that P ∼
1.7 × 108 eV/s as compared to P ∼ 4 × 107 eV/s in Fig. 2
of Kaasjberg et al. [23]. This implies that the magnetic field
effect enhanced the ELR due to the increased confinement
effect on the system. The electron density dependence of the

total ELR due to acoustic-phonon interaction, ADPs + PEs
(≡ Pac), is shown in Fig. 4(c). We see that the Pac decreases
with increasing ne. This is the result of the reduction of the
ELR due to the individual contribution shown in Fig. 2(c). In
Fig. 4(d), we show the temperature dependence of the ELR
due to the unscreened LA-DP phonon in different materials.
The Te-dependent behavior of the ELR is found to be almost
similar in all four materials where the MoS2 dominates the
others, similar to that shown in Fig. 3.

B. ELR at high electron temperature

At higher Te, besides the effect of the acoustic phonons,
the ELR is now also affected by optical phonons. The
optical-phonons scattering is studied via DP and Fröhlich
interactions. For the DP interaction, the electron-phonon cou-
pling matrix element is also given by Eq. (19) but with the
dispersionless frequency ωλq = ωλ0 and the coupling strength

Dν
λq = Dν

λq = Dξ
λqξ , (28)

for the zero- (ξ = 0) and first-order (ξ = 1) ODPs, with the
corresponding phonon modes being the homopolar and the
TO phonons, respectively. The coupling matrix element for
LO phonon via Fröhlich interaction is [29]

CLO(q) = gFrerfc(�q/2), (29)

where gFr = 98 meV and � = 4.41 Å are the coupling con-
stant and the effective layer thickness in MoS2 [29],
respectively.

The electron-optical phonons scattering rate in Eq. (18) can
now be written as follows for the ξ -order ODP:

�ξ (q) = g
(
Dξ

λ

)2

2ρα2
c ωλ0

∑
η′,η

q2ξ |Jη′η(u)|2δ(Eη′ − Eη − h̄ωλ0)

× f (Eη )[1 − f (Eη + h̄ωλ0)]. (30)

Inserting Eq. (30) in to Eq. (16) we will obtain the expression
for the ELR due to the ξ -order ODP

PODP
ξ = gh̄

(
Dξ

λ

)2

4πneρα2
c

∑
λ,η′,η

IODP
η′η (ξ )δ(Eη′ − Eη − h̄ωλ0)

× f (Eη )[1 − f (Eη + h̄ωλ0)], (31)

where

IODP
η′η (ξ ) =

∫ ∞

0
q1+2ξ dq�Nλ0|Jη′η(u)|2. (32)

In the case of Fröhlich interaction, due to the complex depen-
dence of CLO(q) on the wave vector [see Eq. (29)], the results
for LO phonon interaction should be evaluated numerically.

The result for the �ξ (q) is shown in Fig. 5 with the used
input parameters for zeroth-order ODP in all the TMDCs
shown in Table II and additionally in MoS2 the first-order
ODP and Fröhlich interaction are considered with the param-
eters D1

TO = 4.0 eV [29], h̄ω0,TO = 48.6 meV, and h̄ω0,LO =
48.9 meV [51]. We can see from Fig. 5(a) that the �(q) for the
zeroth-order ODP displays the highest value, followed by that
of the Fröhlich, both of them are much higher than that for the
first-order one. This is in agreement with the magneto-optical
absorption coefficients (MOAC) feature reported in the MoS2
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FIG. 5. The electron-optical phonon scattering rate, �(q), versus
phonon wave vector q for: (a) different interactions, (b) different Te,
(c) different ne, and (d) different materials. The results are evaluated
for Zs, Zv �= 0, d�z = (λv − λc )/4 at B = 5 T.

monolayer [43]. At small q, the �(q) is comparable to τp

in MoS2 monolayer, which is estimated based on the first-
principle calculations in the range of τp ∼ 1–5.1 ps [52,53],
and then the �(q) for the Fröhlich and the zeroth-order ODP
reduce with the increase of the phonon wave vector, while the
�(q) for the first-order ODP slightly increases with increasing
q. However, the �(q) due to all three interaction mecha-
nisms quickly reduce when q � 0.5 × 108 m−1. Besides, the
electron-optical phonon scattering rate, for zeroth-order ODP
(homopolar), is found to increase with increasing temperature
and electron density [see Fig. 5(c)]. We can see from Fig. 5(d)
that the scattering rate in MoSe2 displays the strongest among
the four materials, while the WS2 shows the smallest. This is
similar to that reported in previous work for the zero-field case
[47].

Figure 6 displays the dependence of the nonequilibrium
distribution Nλ0 in MoS2 on the phonon wave vector for dif-
ferent interaction mechanisms, Te, τp, and ne. Each curve has
a maximum in the neighborhood of qm where phonon heating
is most significant. Similar to the �(q) shown in Fig. 5, we
can see from Fig. 6(a) that the Nλ0 is found to be the biggest
for the zeroth-order ODP, followed by that of the Fröhlich,
while that is the smallest for the first-order ODP. The peak
values are found to increase with the increasing Te [panel (b)],
τp [panel (c)], and ne [panel (d)]. The increase of the phonon
distribution Nλ0 with the increasing temperature is in good
agreement with the usual prediction. The value of the Nλ0 is
very small at the low-temperature (Te � 50 K) and is only sig-
nificant in the high-temperature regime. This means that the
contribution of the optical phonons to the ELR is only appre-
ciable in the high-temperature region. In the low-temperature
regime (Te � 50 K), their contributions could be neglected in

FIG. 6. The nonequilibrium distribution Nλq in Eq. (17) in MoS2

versus phonon wave vector q for: (a) different interactions, (b) differ-
ent Te, (c) different τp, and (d) different ne. The results are evaluated
for Zs, Zv �= 0, d�z = (λv − λc )/4 at B = 5 T and T = 4.2 K.

comparison to those of the acoustic phonons [see Fig. 9(a)].
In Figs. 6(c) and 6(d), the number of hot phonons are found to
enhance with increasing phonon lifetime and electron density,
respectively. This is similar to the observations made in zero
field ELR study in MLG [14], BLG [19,20], and in monolayer
MoS2 [23]. Because the bigger phonon lifetime and/or the
bigger electron density will generate a larger number of hot
phonons.

The ELR due to optical phonons as a function of the
magnetic field is shown in Fig. 7. Overall, with increasing
magnetic field, the magnetic length αc decreases, leading to
an increase of the ELR, as illustrated in all the four panels.
We can realize from the delta function in Eq. (31) that the
spectrum of the ELR would give peaks whenever optical
phonon energy is equal to an integer multiple of inter-Landau
level energy, i.e., h̄ωλ0 = k(Eη′ − Eη ), k = 1, 2, 3, . . . [26].
Therefore the ELR due to optical phonon interaction also
displays the oscillatory feature with the magnetic field. This is
similar to that observed in GaAs quantum well [26]. The effect
of different coupling mechanisms on the ELR is shown in
Fig. 7(a). We can see that the ELR induced by homopolar via
zeroth-order ODP, PHP, and LO via Fröhlich coupling, PLO,
phonons dominate that induced by TO phonon via first-order
ODP, PTO. This is in agreement with the MOAC [43] and the
resistivity [40] features reported in the MoS2 monolayer. The
ELR induced by homopolar optical phonon for different Te is
shown in Fig. 7(b). We can see that the PHP increases with in-
creasing temperature. The very small values of the PHP at Te =
50 K are the result of the very small number of hot phonons
at the low-temperature regime as predicted in Fig. 6(b). The
effect of the phonon lifetime and the electron density on
the ELR is displayed in Figs. 7(c) and 7(d), respectively.
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FIG. 7. The ELR in MoS2 versus magnetic field for (a) different
coupling mechanisms, (b) different Te, (c) different τp, and (d) differ-
ent ne. The results are evaluated for Zs, Zv �= 0, d�z = (λv − λc )/4
at T = 4.2 K.

The ELR for τp = 0 ps refers to the case of without hot
phonon effect. With increasing τp and ne, the number of hot
phonons increases [see Figs. 6(c) and 6(d), respectively]. Con-
sequently, the optical-phonon heating process would be more
rapid, leading to the fact that a part of the optical phonons
would be reabsorbed and therefore reducing the ELR. This is
similar to that of the zero-field ELR in MoS2 monolayer [23]
and in Dirac semimetal Cd3As2 [24].

For the effect of different monolayer TMDCs, we can see
from Fig. 8 that the ELR in MoSe2 shows the largest, followed
by that of MoS2 while the WS2 displays the smallest. This is
similar to carrier energy dependence of the zero-field scatter-
ing rate [47]. The energy conservation condition in Eq. (31)

FIG. 8. The ELR in TMDCs monolayer due to zeroth-order ODP
interaction versus magnetic field B for Zs, Zv �= 0, d�z = (λv −
λc )/4 at ne = n0, Te = 300 K, T = 4.2 K, and τp = 5 ps.

FIG. 9. The ELRs versus electron temperature for (a) different
coupling mechanisms, (b) different materials, and [(c) and (d)] dif-
ferent electron densities. The results are evaluated for Zs, Zv �= 0,
d�z = (λv − λc )/4 at B = 5 T and T = 4.2 K.

helps us to understand that the peak positions in WSe2 appear
on the left-hand side among the four materials, followed by
that of WS2 while those in MoS2 locate on the right-hand side
as shown in Fig. 8.

In Fig. 9(a), we show the contribution to the ELR in
MoS2 monolayer from different coupling mechanisms for
ne = n0, where the Pop is for τp = 5 ps. Here, we note that
Pac = PADPs + PPEs means the total contribution of both LA
and TA phonons due to DP and PE coupling mechanisms
where the screening effect is taken into account. Similarly, the
Pop = PHP + PLO + PTO denotes the total contribution from
the homopolar (zeroth-order ODP), LO (Fröhlich), and TO
(first-order ODP) phonons. The PT = Pac + Pop is the total
contribution from the acoustic and the optical phonons. At the
low electron temperature region, the Pac increases rapidly and
dominates the ELR to the Pop, and then Pac increases slowly at
higher Te. This behavior of the Pac can be understood from the
Te dependent result of ELR due to individual acoustic-phonon
contribution as shown in Fig. 4. On the contrary, at the low
Te region, the contribution of the Pop is extremely weak. The
Pop begin to contribute to ELR significantly at T � 50 K.
Above this temperature, the Pop cross over the value of the
Pac to dominate the ELR with further increasing temperature.
Consequently, at the low temperature, the total ELR is mainly
contributed from the Pac while the main contribution is from
the Pop at the high-temperature region. This is similar to that
reported in previous works [23,24]. The value of Te where
the Pop starts its significant contribution to the ELR depends
on the coupling mechanism and the materials as well. With
the smallest energy value, the TO phonon via first-order ODP
starts its contribution to the ELR earlier than that of the LO
phonon via Fröhlich coupling, and the homopolar phonon
via zeroth-order ODP. In contrast,with the strongest coupling
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strength, the zeroth-order ODP dominates the ELR over the
Fröhlich and the first-order ODP ones in the higher temper-
ature region. We also find that application of magnetic field
enhances the Pop significantly. For example, at Te = 300 K
and ne = n0, we find from Fig. 9(a) that Pop ∼ 4.6 × 1011

eV/s at B = 5 T as compared to Pop ∼ 1 × 1011 eV/s at τp =
5 ps for zero field in the third panel of Fig. 7 of Ref. [23].

The ELR for different materials is shown in Fig. 9(b). With
the smallest optical phonon energy, the WSe2 firstly starts its
contribution to the ELR, followed by that of the MoSe2, while
the MoS2 is the latest. However, with its strongest coupling
strength, the MoS2 dominates the ELR over the others at the
higher Te, followed by that of the MoSe2, while the WSe2

displays the smallest.
The ELRs in MoS2 monolayer induced by both acous-

tic and optical phonons for different electron densities are
shown in Figs. 9(c) and 9(d) for τp = 0 and 5 ps, respectively.
Overall, the ELRs are found to decrease with increasing ne.
This is similar to the ne dependence of the zero-field ELR
in monolayer [7] and bilayer graphene [19] as well as in
MoS2 [23] but different from that in Dirac semimetal Cd3As2

[24], where the Pac is found to increase with increasing ne.
In the case of τp = 0 (without hot phonon effect), the ELR is
weakly sensitive with the change of ne [see Fig. 9(c)], while
the reduction of the ELR with increasing ne is more clear in
the case of τp = 5 ps (with hot phonon effect) [see Fig. 9(d)].
This means that the hot phonon effect enhances the sensitivity
of the ELR due to optical phonons to the changes in electron
densities.

IV. CONCLUSIONS

We have studied the hot electron ELR, considering the in-
teraction of electrons with both acoustic and optical phonons,
in monolayer TMDCs in the presence of a transverse magnetic
field. The ELR is evaluated through the rate of change of the
phonon distribution function Nλq. The acoustic phonons are
considered for both TA and LA modes via both DP and PE
coupling mechanisms. The effects of the magnetic fields, the
electron temperature, and the electron density on the ELR are
investigated. At low Te, the ELRs due to both acoustic and
optical phonons display oscillatory behavior with a magnetic
field where the Pac is dominant. The oscillations in Pac have
the same origin as the Shubnikov-de Haas oscillations, as

reported in GaAs quantum wells [26]. In the BG regime, the
Pac

λ shows a pronounced Pac
λ ∝ T 4

e temperature dependence
with the unscreened TA-DP phonon dominating the other
acoustic-phonons contribution. This law of the temperature
dependent-Pac

λ will transform to the linear behavior in the EP
regime. Among the four materials, the Pac(Pop) shows the
largest in MoS2 while it is smallest in WS2 in the low (high)
electron temperatures.

At the high electron temperatures, the ELR is governed by
scattering of optical phonons, Pop, with the hot phonon effect
being taken into account. For the optical phonons, we have the
contributions from the homopolar and TO phonon via zero-
and first-order DP, respectively, as well as the LO-phonon via
Fröhlich interaction, where the zeroth-order ODP is dominant
over the Fröhlich and the first-order ODP. The peaks in the
Pop are observed when an integer multiple of inter-Landau
level energy matches with the optical-phonon energy. The Pop

increases with increasing electron temperature and magnetic
field but decreases with increasing phonon lifetime and elec-
tron density. Moreover, the hot phonon effect enhances the
sensitivity of the ELR due to optical phonons to the changes in
electron densities. In general, we find that ELR due to acoustic
and optical phonons are significantly enhanced in presence
of a large B. This observation makes the magnetic field an
additional knob to tune ELR.

For a more thorough analysis of the optical phonon heating,
we also reported the behaviors of the electron-optical phonon
scattering rate � and the number of hot phonons Nλ0. The Nλ0

enhances with increasing temperature, the phonon lifetime,
and the electron density and displays the largest in MoSe2.

We believe that ELR in magnetic field is another impor-
tant tool to investigate el-ph interaction and determine optical
phonon energies, similar to the magneto-phonon resonance in
semiconductors [54], 2DEG in heterojucntions [55], mono-
layer MoS2 [40], and monolayer graphene [56]. We hope
that our predictions would be useful for orientation in the
experimental observations.
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