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Dynamical leakage of Majorana mode into side-attached quantum dot
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We study a hybrid structure, comprising a single-level quantum dot attached to a topological superconducting
nanowire, analyzing dynamical transfer of the Majorana quasiparticle onto the normal region. Motivated by
the recent experimental realization of such a heterostructure and its investigation under stationary conditions
[Schneider et al., Nat. Commun. 11, 4707 (2020)] where the quantum dot energy level can be tuned by gate
potential, we examine how much time is needed for the Majorana mode to leak into the normal region. We
estimate that for typical hybrid structures this dynamical process would take about 20 ns. We propose a feasible
empirical protocol for its detection by means of the time-resolved Andreev tunneling spectroscopy.
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I. MOTIVATION

Topological superconductors, hosting the Majorana bound-
ary modes, are currently of interest both for basic science
[1–3] and for potential applications [4,5]. Topological pro-
tection and a non-Abelian character make them promising
candidates for the realization of stable qubits [6] and quan-
tum computations [7]. Signatures of their fractional statistics
can be tested, for instance, by a sequence of charge-transfer
operations using the quantum dots attached to a topological
superconductor [8–10]. Such dynamical transfer of the charge
between the quantum dot and topological superconductors
might enable non-Abelian operations on the Majorana bound
states [11,12].

Development of time-resolved spectroscopies with their
resolution down to the subpicosecond regime allows us to
probe the physical structures in response to an abrupt change
in the model parameter(s) or other nonequilibrium conditions
[13]. Such dynamics was recently investigated in topological
phases by a number of groups considering fermionic [14–16]
and bosonic [17] systems. In particular, dynamical teleporta-
tion due to the nonlocality of the zero-energy boundary modes
has been explored [18], and it has been shown that dynamical
techniques based on the noise measurements could unam-
biguously identify the true Majorana quasiparticles [19–22].
Time-dependent measurements have also been proposed to
detect topological invariants of the higher-order topological
superconductor, harboring the corner states [23].

Hybrid structures consisting of the topological supercon-
ducting nanowires side attached to the quantum dots allow
for tunable control of the zero-energy bound states [24–26].
Their variations with respect to the gate potentials or magnetic
field could discriminate the true Majorana quasiparticles from
the trivial Andreev bound states, appearing accidentally at
zero energy [27]. More complex magnetic-superconducting
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heterostructures enable the coexistence of the localized and
chiral modes [28].

Here we analyze a dynamical transfer of the Majorana
mode from the superconducting nanowire to the quantum
dot (Fig. 1) driven by (i) their sudden coupling and (ii) an
abrupt change in the quantum dot (QD) energy level imposed
by an external gate potential. We examine the characteristic
timescales associated with such dynamical Majorana leakage
into the quantum dot region and show that a time-resolved
process provides valuable insight into effective quasiparticles
of the topological hybrid structures.

This paper is organized as follows. In Sec. II we intro-
duce the microscopic model and outline the procedure for
studying the time-dependent evolution. Next, in Sec. III, we
consider dynamical properties of the quantum dot isolated
from the normal lead, �N =0, or superconducting lead, �S =
0. Section IV presents the time-dependent signatures of the
Majorana quasiparticle leaking onto the quantum dot for the
setup sketched in Fig. 1. In Sec. V we provide realistic es-
timations of the characteristic time and energy scales which
could be practically verified experimentally. Finally, Sec. VI
summarizes the main results.

II. FORMULATION OF THE PROBLEM

We study dynamical properties of the heterostructure
comprising the quantum dot deposited on an s-wave
superconductor and weakly coupled to another metallic lead
that can be thought of as a scanning tunneling microscope
(STM) tip. The quantum dot is additionally coupled to the
topological superconducting nanowire, hosting the Majorana
end modes (Fig. 1). Our considerations aim to determine the
characteristic time needed for development of the Majorana
features transmitted into the QD region. In particular, we shall
investigate (i) the quantum evolution driven by the abrupt
formation of the hybrid structure, inspecting the zero-energy
features appearing for various positions of the quantum
dot energy level, and (ii) how long it takes to qualitatively
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FIG. 1. Schematic representation of the considered system com-
prising a quantum dot (QD) deposited between metallic (N) and
superconducting (S) electrodes and side coupled to one end of a
monoatomic chain hosting Majorana edge state represented by η1.
The additional electrode stands for gate voltage Vg tuning of the
quantum dot’s energy level.

transform the existing Majorana signatures after a sudden
change in the QD level.

It was predicted [29] that in a QD attached to a topolog-
ical superconductor the zero-energy quasiparticle would be
transmitted to the normal region. The first empirical evidence
for such Majorana leakage was reported by Deng et al. [24]
and was recently reported for the STM method by Schneider
et al. [26]. Quantum-dot-topological-superconductor hybrid
structures have been studied by a number of groups (see
Ref. [30] for a survey). In N-QD-S configurations (where N
indicates a normal metal and S is a superconductor; Fig. 1)
such a leakage process qualitatively depends on the QD level
[31,32]. Namely, when the energy level is away from zero,
the signatures of the Majorana mode are manifested by the
peak appearing in the density of states, thereby enhancing
the zero-bias conductance. Contrary to such a picture, when
the QD level happens to be near zero energy, the quantum
interference induces the fractional Fano-type depletion in the
QD spectrum [33]. Dynamical changeover from one regime
to another has not been analyzed yet, and that is the main
purpose of our present study.

A. Microscopic scenario

Let us start by formulating the microscopic model and
presenting the computational method used for the determi-
nation of time-dependent quantities. We describe our hybrid
structure (Fig. 1) by the following Hamiltonian:

Ĥ = ĤQD +
∑

β

(Ĥβ + T̂QD−β ) + ĤMQD, (1)

where ĤQD refers to the QD, Ĥβ denote the metallic (β =
N) and superconducting (β = S) leads, and ĤMQD stands for
the zero-energy Majorana quasiparticles and coupling of one
of them to the QD. The normal lead can be treated as a
Fermi sea, ĤN = ∑

k,σ ξNkĉ†
Nkσ

ĉNkσ , where ĉ†
Nkσ

(ĉNkσ ) is the
creation (annihilation) of the σ spin electron whose energy
ξNk = εNk − μN is measured from the chemical potential μN .
The superconducting electrode is taken in BCS-type form,
ĤS = ∑

k,σ ξSk ĉ†
Skσ

ĉSkσ − ∑
k (�Sĉ†

Sk↑ĉ†
Sk↓ + H.c.), where �S

is the isotropic pairing gap. Itinerant electrons are hy-

bridized with the quantum dot through the term T̂QD−β =∑
k,σ (Vβkd̂†

σ ĉβkσ + H.c.). We introduce the coupling func-
tions �β = 2π

∑
k |Vβk|2δ(ω − ξβk ), assuming them to be

constant in the low-energy regime.
In regard to the quantum dot we represent it by the single-

level impurity term ĤQD = ∑
σ εd d̂†

σ d̂σ , where d̂†
σ (d̂σ ) is the

creation (annihilation) operator of spin σ =↑, ↓ electrons.
We focus on the low-energy regime |ω| � �S , where the
fermion degrees of freedom outside the pairing gap can be
integrated out. Their influence simplifies to the induced pair-
ing ĤS + T̂QD−S ≈ �d (d̂↓d̂↑ + H.c.) with the on-dot potential
�d = �S/2 [34–36].

The “proximitized” QD is thus effectively modeled by

ĤQD + ĤS + T̂QD−S =
∑

σ

εd d̂†
σ d̂σ + �d (d̂↓d̂↑ + H.c.). (2)

Restricting our considerations to the low-energy regime
(within meV around the chemical potential), we describe the
topological superconductor by

ĤMQD = iεmη̂1η̂2 + λ(d↑η̂1 + η̂1d̂†
↑), (3)

where the self-Hermitian operators η̂1 and η̂2 represent the
Majorana end modes and εm stands for their overlap. The last
part appearing in Eq. (3) accounts for hybridization of the left-
hand side Majorana quasiparticle with the quantum dot, where
λ is the coupling strength. For convenience we recast the
Majorana operators by the standard fermion operators defined
via η̂1 = 1√

2
( f̂ + f̂ †), η2 = −i√

2
( f − f †). This transformation

implies that (3) can be rewritten as

ĤMQD = εm f̂ † f̂ + tm(d̂†
↑ − d̂↑)( f̂ + f̂ †) (4)

with the shorthand notation tm = λ/
√

2.

B. Outline of the computational method

Fingerprints of the Majorana mode can be practically ob-
served in the quantum dot region by examining the charge
current Iσ (V, t ) induced via a N-QD-S junction by the bias
voltage V . Its differential conductance Gσ (V, t ) = d

dV Iσ (V, t )
can be obtained numerically using the following expression
for the current:

Iσ (V, t ) = −e

〈
dN̂Nσ

dt

〉
= − ie

h̄
〈[Ĥ , N̂Nσ ]〉. (5)

Since all parts of the Hamiltonian (1), except T̂QD−N , commute
with the number operator N̂Nσ , the tunneling current (5) reads

Iσ (V, t ) = −ie

h̄

∑
k

[VNk〈d̂†
σ (t )ĉNkσ (t )〉 − H.c.]

= 2e

h̄
Im

[∑
k

VNk〈d̂†
σ (t )ĉNkσ (t )〉

]
. (6)

To simplify the notation, from now on we set h̄ = e = 1.
Additionally, we choose the chemical potential of the super-
conductor as a convenient reference level (μS = 0); thus, a
biased setup is characterized by μN = eV . Since the itinerant
electrons refer here solely to the metallic lead, for brevity we
skip the subindex N appearing in ĉ(†)

Nkσ
, VNk , and ξNk .
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Using the standard expression for ĉkσ (t ) [37],

ĉkσ (t ) = ĉkσ (0)e−iξkt − iVk

∫ t

0
dτe−iξk (t−τ )d̂σ (τ ), (7)

and imposing the wide band limit approximation, we get

Iσ (t ) = 2Im

[∑
k

Vk〈d̂†
σ (t )ĉkσ (0)〉 − i

�N

2
〈n̂σ (t )〉

]
. (8)

Here 〈· · · 〉 denotes the statistically averaged value. In or-
der to determine the current (6) one needs the correlation
function 〈d̂†

σ (t )ĉkσ (0)〉 and the time-dependent QD occupancy
〈d̂†

σ (t )d̂σ (t )〉 ≡ nσ (t ).
To find these quantities we employ the equation of motion

approach [37] and make use of the fourth-order Runge-Kutta
method to solve numerically the appropriate set of differ-
ential equations. Traditionally, such a procedure applied to
any correlation function generates a sequence of additional
functions for which the next equations of motion must be
constructed until they are finally closed (or terminated). For
the uncorrelated QD embedded in our heterostructure this
approach mixes the operators d̂ (†)

σ and f̂ (†) with the op-
erators of the normal lead electrons. They have the form∑

k Vk〈Ô(t )ĉkσ (0)〉, where Ô stands for one of the follow-
ing six operators: d̂↓, d̂†

↓, d̂↑, d̂†
↑, f̂ , and f̂ †. We thus have

to determine 12 momentum-dependent correlation functions
fki(t ) = 〈Ô(t )ĉkσ (0)〉 and 9 momentum-independent expecta-
tion values fi(t ) = 〈Ô(t ) ˆ̃O(t )〉, which are listed explicitly in
the Appendix (see Table II).

In our treatment the parameters, such as the coupling tm and
the energy level εσ , can either be static or may depend on time
in an arbitrary way. For a numerical solution of the coupled
differential equations (A1) and (A2) we assumed the initial
empty quantum dot nσ (0) = 0 and imposed 〈 f̂ †(0) f̂ (0)〉 = 1.
We assume that at t = 0 the constituents of our setup were
disconnected from each other; therefore, initial values of the
functions f4−9(0) and fki(0) were zero.

III. DYNAMICS OF AN ISOLATED QD

To understand the typical timescales (discussed in Sec. IV)
it would be instructive to consider first the dynamics of a
quantum dot isolated from external lead(s). In the case �N = 0
one can analytically determine the time-dependent operators
d̂†

σ (t ), d̂σ (t ), f̂ †(t ), and f̂ (t ), solving the Heisenberg equations
with the use of the Laplace transforms [37]. The general
analytical expressions are rather lengthy; therefore, we restrict
ourselves to the time-dependent observables for εd = 0. The
QD operators then take the following form:

d̂↑(t ) = d̂↑(0)
1

2
L3(t ) + d̂↓(0)

iω1

2
L2(t )

+ d̂†
↑(0)

1

2
L4(t ) − d̂†

↓(0)
iω1

2
L1(t )

+ [ f̂ (0) + f̂ †(0)]
itm
2

[L2(t ) − L1(t )], (9)

where

L1/2(t ) = sin (ω1t )

ω1
± sin (ω2t )

ω2
, (10)

L3/4(t ) = cos (ω1t ) ± cos (ω2t ), (11)

and ω1 = �d , ω2 =
√

�2
d + 4t2

m. Using d̂†
↑(t ) = [d̂↑(t )]†, we

can express the QD occupancy by

n↑(t ) = n↑(0)
1

4
[cos (ω1t ) + cos (ω2t )]2

+ n↓(0)
1

4

[
sin (ω1t ) − ω1

ω2
sin (ω2t )

]2

+ [1 − n↓(0)]
1

4

[
sin (ω1t ) + ω1

ω2
sin (ω2t )

]2

+ [1 − n↑(0)]
1

4
[cos (ω1t ) − cos (ω2t )]2

+ t2
m

ω2
2

sin2 (ω2t ). (12)

Equation (12) shows that QD occupancy oscillates in time
with the characteristic frequencies dependent on tm and �d =
�S/2. Similar harmonic oscillations occur in the correlation
functions as well. As a useful example we present the mixed
function 〈d†

↑(t ) f (t )〉 obtained for nσ (0) = 0, assuming n f (t =
0) ≡ 〈 f̂ †(0) f̂ (0)〉 = 1,

〈d†
↑(t ) f (t )〉 = i

tm
ω2

sin (ω2t ) cos2
(ω1

2
t
)

− i
ω1tm
ω2

2

sin (ω1t ) sin2
(ω2

2
t
)
. (13)

A. The case with �N = 0, �S = 0

Let us focus on the simplest possible case, when the QD is
completely isolated from both external reservoirs (�N = 0 =
�S) and it is coupled (at t = 0) solely to the Majorana mode.
For the initial condition nσ (0) = 0 the analytic expression
(12) simplifies to sin2(tmt ), whereas the mixed function (13)
becomes i

2 sin(2tmt ). Under such circumstances both these
expectation values evolve in time through harmonic oscil-
lations with the characteristic period T = π

tm
. The dot-chain

coupling tm is thus a natural unit for the frequency of quantum
oscillations. It is worth noticing that for exemplary coupling
tm = 1 μeV the period of such oscillations would be about
2 ns.

This timescale, however, does not refer to stable devel-
opment of the Majorana mode in the quantum dot spectrum
because the charge oscillates back and forth between the dot
and chain. To achieve such stationary limit Majorana leakage
(reported experimentally [24,26]) one needs some relaxation
processes. They can be provided by coupling the quantum dot
to a continuum spectrum of the metallic lead or by activating
the quasiparticle states of a superconductor from outside the
pairing gap (the latter would be hardly probable at temper-
atures safely lower than Tc). Figure 2 presents the damped
quantum oscillations computed numerically for the QD oc-
cupancy and the correlation function for a few finite values
of �N . We note that if the coupling �N is comparable to
tm, the expectation values reach their equilibrium within the
timescale comparable to the period of a single oscillation. We
clearly notice that by connecting the dot to a continuum the
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FIG. 2. The time-dependent QD occupancy n↑(t ) (top) and imag-
inary part of the mixed function 〈d̂†

↑(t ) f̂ (t )〉 (bottom) obtained in the
absence of the superconducting lead (�S = 0) for εd = 0, assuming
�N/tm = 0.01 (blue line), 0.1 (orange line), and 1 (green line). Bias
voltage is assumed to be zero.

hybrid structure gradually evolves towards its stationary limit
via a sequence of the damped quantum oscillations with an
exponential factor e−�N t , preserving their period.

B. The case with �N = 0, �S �= 0

Taking into account the coupling of the QD to the super-
conducting lead (�S 
= 0) the time-dependent QD occupancy
is a superposition of two quantum oscillations with frequen-
cies ω1 and ω2 [see Eq. (12)]. In particular, for the initial
conditions nσ (0) = 0 and n f (0) = 1 one obtains

n↑(t ) = 1

2

[
1 − cos(ω1t )cos(ω2t ) + ω1

ω2
sin(ω1t )sin(ω2t )

]
.

(14)

This time dependence originates from electron oscillations
(i) between the quantum dot and topological chain and (ii)
between the quantum dot and superconducting substrate.
Physically, they manifest dynamical interplay between the
zero-energy Majorana mode (of the topological nanowire) and
a pair of finite-energy Andreev states (of QD proximitized to
a conventional superconductor). Interference of such oscilla-
tions with different frequencies gives rise to the appearance
of the beating pattern, whose period is approximately equal to
π/�d . Such an effect is illustrated by the blue line in Fig. 3.
In the absence of the metallic lead (�N = 0) this oscillatory
behavior is not damped; that is, the charge occupancy of the
QD does not saturate to any equilibrium value. Equilibration
could eventually be achieved by coupling the quantum dot
to a continuum spectrum of the metallic lead. Illustration
of such an effect is presented by the orange line in Fig. 3
obtained numerically for �N = 0.1tm. The coupling �N can

FIG. 3. The time-dependent occupancy n↑(t ) obtained analyti-
cally for �N = 0 (blue line) and numerically for �N = 0.1tm (orange
line), assuming εd = 0, �d = 0.1tm. The green dashed line is the
envelope function 1

2 (1 + e−�N t ) due to the relaxation caused by the
continuum states of the metallic lead.

hence be regarded as the relevant energy unit, characterizing
the efficiency of the relaxation processes.

Although the influence of the Majorana mode on the quan-
tum dot is not prevented in the absence of the metallic lead
(�N = 0), the stationary buildup of such a quasiparticle can
be realized only when the relaxation processes occur. We have
shown in this section that such dynamics would be charac-
terized by two typical timescales: (i) quantum oscillations
(whose period depends on tm) and (ii) the Majorana quasipar-
ticle development (governed by �N ). In particular, when �N

is comparable to tm, the relaxation time might be comparable
to the period of quantum oscillations. Below we show that
both these timescales would be observable in the tunneling
conductance.

IV. TIME-RESOLVED MAJORANA FEATURES

The most profound consequence of bringing the quantum
dot in contact with a topological superconductor is the emer-
gence of the zero-energy quasiparticle in the spectrum of the
QD. This feature (measurable by charge transport through
the N-QD-S circuit) is a signature of the Majorana mode. The
dynamical leakage process provides information about the
time required to perform logical operations with the use of
the Majorana quasiparticles.

A. Dynamical Majorana leakage

Let us estimate the time required to transfer the zero-
energy mode onto the QD region after abruptly coupling
the quantum dot to the topological chain. Until t = 0 all
parts of our setup (Fig. 1) are assumed to be completely
disconnected, and the quantum dot is unoccupied. Thus,
our initial conditions are 〈d̂†

σ (0)d̂σ (0)〉 = 0, 〈d̂↓(0)d̂↑(0)〉 =
0, 〈ĉ†

kσ
(0)ĉkσ (0)〉 = fFD(εk − eV ), and the mixed terms

〈Ô(0)ĉkσ (0)〉 = 0. At t = 0+ the QD is abruptly connected to
external reservoirs by the couplings �β . To ensure the subgap
quasiparticle states are well separated, we impose the asym-
metric couplings (�S = 3�N ). The superconducting proximity
leads to a gradual buildup of the in-gap Andreev bound states.
We noticed that these states reach their equilibrium positions
and amplitudes after time t � h̄/�N [37].

Later, after the Andreev states are safely stabilized, we
abruptly connect the quantum dot to the topological super-
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FIG. 4. The time-dependent differential conductance as a func-
tion of bias V (horizontal axis) and time t (vertical axis) obtained
for εd = �N . At t = 0 the quantum dot is abruptly connected to
the external leads (imposing �S = 3�N ) when the Andreev bound
states (ABSs) begin to emerge. Once the position and amplitude of
ABSs are established at t = 20h̄/�N , the quantum dot is additionally
connected to the topological superconductor, assuming tm = 0.5�N .
From this moment onward the zero-energy peak gradually emerges,
signalizing the Majorana leakage into the quantum dot region. For
the chosen set of model parameters this zero-energy feature sta-
bilizes its shape after approximately 15–20 units of time, i.e., at
t � 40h̄/�N .

conductor. For computations we assume tm = 0.5�N , but a
more detailed discussion of the influence of tm on the time
required for the Majorana zero mode (MZM) to leak onto the
QD region is given in Sec. V B. Starting from t = 20h̄/�N ,
the Majorana mode gradually leaks to the QD region, as
manifested by the enhancement of the zero-bias conductance
(Fig. 4). We can notice that its amplitude is established within
the time interval �t ∼ 15 − 20h̄/�N . This result brings us
the needed information on the characteristic time of the Ma-
jorana leakage. We need to keep in mind, however, that the
coupling of the QD to the metallic reservoir �N in different
experimental realizations can take various values. To estimate
the order of magnitude of the leakage time (in nanoseconds),
in Sec. V A we compare the qualitative results with typical
energy scales used in experiments on in-gap states and hybrids
comprising quantum dots and topological superconducting
chains.

B. Quench-driven dynamics

The transient evolution discussed in Sec. IV A allowed us
to estimate the time required for the MZM leakage. Abrupt
coupling of the QD to the topological superconductor would,
however, hardly be feasible in practice. A more realistic sce-
nario could rely on employing the gate voltage potential to
vary the QD’s energy level in a controlled manner. Depend-
ing on the specific value of εd , the Majorana mode should
be evidenced either by the interferometric depletion (when
εd � 0) or constructive enhancement (for |εd |  tm) of the
zero-bias tunneling conductance [31,32]. To provide an exper-
imentally verifiable result we propose to test how long it takes
to transform the ditch into the peak feature. The time needed
for such a changeover can subsequently be compared with the
timescale of the MZM leakage driven by abrupt coupling of
the QD to the topological chain.

FIG. 5. Time-resolved differential conductance obtained for
�S = 3�N , tm = 0.5�Nθ (t − 10 h̄

�N
), and QD energy level εd =

1.5�Nθ (t − 25 h̄
�N

), where θ is the step function. Like in Fig. 4, we
initially couple the QD to the external N/S leads, imposing the en-
ergy level εd = 0. After t = 10h̄/�N the quantum dot is connected to
the topological superconductor, inducing the destructive interference
ditch in the zero-bias conductance. At t = 25h̄/�N we subsequently
lift the QD energy level to εd = �N , and from this moment onward
the ditch transforms into the zero-bias peak. This feature establishes
after approximately 15h̄/�N , i.e., at t � 40h̄/�N .

For this purpose we consider the following three-step pro-
cedure. (i) As before, we start by forming the N-QD-S circuit
with the initial energy level εd = 0 and let the Andreev bound
states become established. (ii) Once the differential conduc-
tance saturates at its static value (at t � 10h̄/�N fluctuations
become almost negligible), we couple the quantum dot to
the topological chain. After a certain amount of time the
interference ditch appears in the zero-bias conductance. (iii)
When ‘the dust is settled’ we abruptly lift the QD energy
level to εd = 1.5�N by applying the gate voltage. In this way
the destructive interference will gradually be replaced by the
conventional MZM leakage regime.

We have estimated that this transition takes approximately
�t = 15[ h̄

�N
]. Such a timescale to transform one Majorana

feature to another is comparable to the time interval needed for
the emergence of the zero-energy peak after abrupt coupling
of the QD to the topological superconductor (see Fig. 5).
Observation of such a dynamical changeover could thus in-
directly probe the MZM leakage time itself. In Sec. V we
provide a quantitative evaluation of this characteristic time,
having in mind the typical energy scales in experiments used
with various quantum dots coupled to superconductors and/or
topological superconductors.

V. QUANTITATIVE EVALUATIONS

To deliver reliable information on the timescale in tangible
units one has to take into account the specific energy scales
for the experimentally achievable setups in the analysis of
the Andreev/Majorana bound states. Let us consider a few
realistic examples.

A. Typical energy scales and timescales

The energy gap of conventional (s-wave) superconduc-
tors, which are often used in experiments with quantum dots,
varies from a few tens to hundreds of μeV. For instance, the
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vanadium electrode used in Ref. [38] was characterized by
�S � 0.55 meV. The energy gap of the titanium electrode
used by Deacon et al. [39] was about 152 μeV. In the present
context the proximity-induced on-dot pairing gap, which is
roughly equal to �S [35], would be more useful. Its value in
the experiment performed by Jünger et al. [40] varied from 10
to 165 μeV, whereas in the setup of Deng et al. [24] using
Ti/Al its magnitude was 250 μeV.

To observe well-pronounced subgap states the hybridiza-
tion with the metallic electrode �N (which controls the inverse
lifetime) should be considerably smaller than both �S and �S .
For this reason we have enforced �N � �S; otherwise, the
in-gap states would overlap with each other. In numerous ex-
periments devoted to investigations of the in-gap bound states,
such coupling to the metallic electrode �N was kept about 10
or 100 times smaller than �S . For example, Ref. [38] reported
the experimental value �N � 50 μeV. In our present approach
(where �N is used as the energy unit) we thus assume the
following realistic value: �N � 5–50 μeV, implying the time
unit h̄

�N
� 0.125–1.25 ns. Taking such quantities into account,

the time of MZM leakage into the quantum dot region �
15[ h̄

�N
] (estimated for tm = 0.5�N ) would be approximately

2–20 ns. Transport measurements have temporal resolution
in the subpicosecond regime [13], so this dynamical process
should be observable in real time.

One should note that the coupling tm between the QD and
topological superconducting chain is expressed in terms of
�N . To reconcile the specific influence of tm on the Majorana
leakage time, we shall briefly analyze in Sec. V B a few
representative values. In regard to a quantitative effect of the
hybridization �S we have checked that its influence on the
Majorana mode leakage time into the QD region is rather
negligible.

B. Influence of tm

Figure 6 shows the time-resolved differential conductance
obtained for several values of the dot-chain hybridization tm.
We clearly notice that the zero-energy feature develops more
rapidly for stronger couplings tm. Besides this zero-energy
mode one also observes that the Andreev quasiparticle states
split into two branches. One of them (the low-energy Andreev

branch) is located at ±
√

�2
d + ε2

d . The other one (high-energy
branch), arising from hybridization with the Majorana mode,

is formed at ±
√

�2
d + ε2

d + (2tm)2, in agreement with the
static solution predictions [31,32].

To quantify the time interval needed for formation of the
zero-energy Majorana feature we have fitted (Fig. 7) the
difference between the initial and final (t = ∞) zero-bias
conductances by an exponential function,

G(0, t ) = G(0,∞) − [G(0,∞) − G(0, t1)]e−(t−t1 )/τ , (15)

where the initial moment t1 = 20. The phenomenological
parameter τ characterizes the temporal interval, in which a
mismatch between the initial conductivity and the equilibrium
conductance diminishes e times. Values of such a numerically
evaluated parameter τ indicate that the development of the
MZM features occurs faster the stronger tm is. A few examples
are listed in Table I.

FIG. 6. Evolution of the differential conductance obtained for
the setup shown in Fig. 1, assuming the couplings tm = 0.25�N (top
left), 0.5�N (top right), 1�N (bottom left), 1.5�N (bottom right). The
quantum dot is abruptly hybridized with the Majorana end mode at
t = 20h̄/�N . We used the model parameters �S = 3�N , εd = �N .

VI. SUMMARY

We have investigated the time-resolved development of the
Majorana features transmitted onto the quantum dot due to

FIG. 7. Blue dots represent the time evolution of the zero-bias
differential conductivity obtained for �S = 3�N , energy of the quan-
tum dot εσ = �N , and quantum-dot-chain couplings tm = 0.25�N

(top left), 0.5�N (top right), 1�N (bottom left), 1.5�N (bottom right).
Quantum dot is abruptly connected to Majorana mode at time t =
20h̄/�N . Red dashed lines represent exponential fitting function with
the characteristic time scale τ .
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TABLE I. Leakage time τ obtained for several couplings tm.

tm[�N ] τ [h̄/�N ]

0.25 8.2
0.5 6.7
0.75 5.4
1 4.6
1.5 3.8

its coupling to the topological superconductor. For its feasible
detection we have considered the tunneling of charge through
a circuit in which the quantum dot is strongly hybridized with
the bulk superconductor and weakly coupled to the normal
metallic lead. Our hybrid structure can be realized in practice,
depositing the topological nanowire (for instance, a chain of
magnetic Fe atoms) with a side-attached quantum dot (e.g.,
nonmagnetic atom) on the surface of a conventional super-
conductor [26,41]. Approaching the QD with the conducting
STM tip, its low-energy quasiparticles could be observed in
the differential conductance, originating from the Andreev
(particle-to-hole) scattering that is efficient in the low-bias
regime, which is smaller than or comparable to the supercon-
ducting gap.

We have evaluated the characteristic time needed for induc-
ing the Majorana features in the zero-bias conductance. When
the QD energy level is distant from the chemical potential, the
Majorana leakage is manifested by enhancement of the differ-
ential conductance. In the opposite limit, when the quantum
dot level is near the chemical potential, the Majorana mode
has a detrimental influence on the subgap spectrum of the QD,
producing the interferometric dip structure. We have evaluated
the time interval during which these features emerge after (i)
abrupt coupling of the quantum dot to the topological super-
conducting nanowire and (ii) a sudden change in the quantum
dot energy level by the external gate potential. For empirically
realistic parameters we have found that the emergence of the
Majorana features would take, in both cases, about 2–20 ns, in
perfect agreement with estimations obtained by a full count-
ing statistics analysis [11]. This dynamical process should be
detectable with the use of currently available state-of-the-art
tunneling spectroscopies.

Precise control of the topological superconducting hy-
brid structures assembled by the STM technique [26] is
very promising for measurements of the Majorana and An-
dreev quasiparticle timescales, e.g., manifested in response
to a quench of the energy levels imposed by external gate
potentials. The tight-binding parameters (listed in the sup-
plementary information of Ref. [26]) imply the Majorana
leakage time is faster than nanoseconds. Obviously, such an
effect has not been observed in the stationary STM mea-
surements. Nonetheless, we are confident that time-dependent
signatures of the zero-energy (Majorana) and finite-energy
(Andreev/Shiba) quasiparticles can be detected for this par-
ticular hybrid system, e.g., in response to the gate potential
abruptly applied to Co atoms. Under such circumstances the
time-dependent differential conductance should reveal the
major qualitative features shown by us in Figs. 4 and 5.
In summary, the experimental results in Ref. [26] can be

regarded as a proof of concept, confirming that the spatial
profile (and, hopefully, dynamical signatures too) of the Majo-
rana modes can be precisely controlled by the state-of-the-art
STM method. For feasible means to probe the characteristic
timescales, we suggest imposing the steplike gate potentials
onto the nontopological part (Co atoms) of this hybrid struc-
ture. Such dynamics seems to be fast enough to guarantee
the practical realizations of braiding protocols designed for
Majorana quasiparticles.

Our estimations have been done for zero temperature,
but we have checked that temperature has a negligible in-
fluence on the Majorana leakage time. In future studies it
would be worthwhile to consider the correlated quantum dot,
where the superconducting proximity effect competes with the
Coulomb repulsion qualitatively affecting the in-gap bound
states. In particular, they may cross one another at the so-
called, zero-π transition. Their dynamical interplay with the
Majorana mode would require more sophisticated many-body
techniques (e.g., a time-dependent numerical renormalization
approach), which is beyond a scope of our study.
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APPENDIX: EQUATIONS OF MOTION

In this Appendix we present explicitly all the correlation
functions appearing in the equation of motion approach when
computing the time-dependent QD occupancy nσ (t ) and the
charge current Iσ (V, t ). The complete list is given in Table II.

TABLE II. The list of 12 momentum-dependent functions fki and
9 momentum-independent functions fi constituting a closed set of the
equations of motion.

fi fki

f1 = 〈d̂†
↑(t )d̂↑(t )〉 fk1 = 〈d̂†

↑(t )ĉk↑(0)〉
f2 = 〈d̂†

↓(t )d̂↓(t )〉 fk2 = 〈d̂↑(t )ĉk↓(0)〉
f3 = 〈 f̂ †(t ) f̂ (t )〉 fk3 = 〈d↑(t )ĉk↑(0)〉
f4 = 〈d̂↓(t )d̂↑(t )〉 fk4 = 〈d†

↓(t )ĉk↓(0)〉
f5 = 〈d̂†

↑(t ) f̂ (t )〉 fk5 = 〈 f̂ †(t )ĉk↑(0)〉
f6 = 〈d̂†

↑(t ) f̂ †(t )〉 fk6 = 〈 f̂ (t )ĉk↑(0)〉
f7 = 〈d̂↓(t ) f̂ (t )〉 fk7 = 〈 f̂ (t )ĉk↓(0)〉
f8 = 〈d̂↓(t ) f̂ †(t )〉 fk8 = 〈 f̂ †(t )ĉk↓(0)〉
f9 = 〈d̂†

↑(t )d̂↓(t )〉 fk9 = 〈d̂↓(t )ĉk↓(0)〉
fk10 = 〈d̂†

↑(t )ĉk↓(0)〉
fk11 = 〈d̂↓(t )ĉk↑(0)〉
fk12 = 〈d̂†

↓(t )ĉk↑(0)〉
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The corresponding set of coupled equations of motion for the momentum-dependent fki functions is given by

dfk1

dt
=

(
iε↑ − �N

2

)
fk1 + i

�S

2
fk11 + itm( fk5 + fk6) + iVkeiξkt fFD[(ξk − eV ), T ],

dfk2

dt
=

(
−iε↑ − �N

2

)
fk2 − i

�S

2
fk4 − itm( fk7 + fk8),

dfk3

dt
=

(
−iε↑ − �N

2

)
fk3 − i

�S

2
fk12 − itm( fk5 + fk6),

dfk4

dt
=

(
iε↓ − �N

2

)
fk4 − i

�S

2
fk2 + iVkeiξkt fFD[(ξk − eV ), T ],

dfk5

dt
= iεm fk5 + itm( fk1 − fk3),

dfk6

dt
= −iεm fk6 + itm( fk1 − fk3),

dfk7

dt
= −iεm fk7 + itm( fk10 − fk2),

dfk8

dt
= iεm fk8 + itm( fk10 − fk2),

dfk9

dt
=

(
−iε↓ − �N

2

)
fk9 + i

�S

2
fk10,

dfk10

dt
=

(
iε↑ − �N

2

)
fk10 + i

�S

2
fk9 + itm( fk7 + fk8),

dfk11

dt
=

(
−iε↓ − �N

2

)
fk11 + i

�S

2
fk1,

dfk12

dt
=

(
iε↓ − �N

2

)
fk12 − i

�S

2
fk3, (A1)

and for the momentum-independent fi functions it is correspondingly given by

df1

dt
= 2Im

[
−�S

2
f4 + tm( f5 + f6) + Sk1 − i�N

2
f1

]
,

df2

dt
= 2Im

[
−�S

2
f4 + Sk4 − i�N

2
f2

]
,

df3

dt
= 2Im[tm( f6 − f5)],

df4

dt
= [−i(ε↑ + ε↓) − �N ] f4 − i

�S

2
(1 − f1 − f2) − itm( f7 + f8) + i(Sk2 − Sk11),

df5

dt
=

[
i(ε↑ − εm) − �N

2

]
f5 + i

�S

2
f7 + itm( f3 − f1) + iS∗

k5,

df6

dt
=

[
i(ε↑ + εm) − �N

2

]
f6 + i

�S

2
f8 + itm(1 − f1 − f3) + iS∗

k6,

df7

dt
=

[
−i(ε↓ + εm) − �N

2

]
f7 + i

�S

2
f5 − itm( f4 + f9) + iSk7,

df8

dt
=

[
−i(ε↓ − εm) − �N

2

]
f8 + i

�S

2
f6 − itm( f4 + f9) + iSk8,

df9

dt
= [−i(ε↓ − ε↑) − �N ] f9 − itm( f7 + f8) + i(S∗

k12 − Sk10), (A2)

where Ski = ∑
k Vke−iξkt fki. We have solved these equations numerically, subject to the initial occupancies f1(0) = f2(0) = 0

and f3(0) = 1. This choice of initial parameters is not crucial for the asymptotic results obtained in the case �N 
= 0. Additionally,
the values of the functions f4−9(0) and fki(0) are assumed to be zero, which corresponds to the situation where all parts of our
setup are disconnected at t = 0.
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