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In this paper we study the third-order nonlinear optical response due to transitions between excitonic levels
in two-dimensional transition metal dichalcogenides. To accomplish this we use methods not applied to the
description of excitons in two-dimensional materials so far and combined with a variational approach to describe
the 1s excitonic state. The aforementioned transitions allow us to probe dark states which are not revealed in
absorption experiments. We present general formulas capable of describing any third-order process. The specific
case of two-photon absorption in WSe2 is studied. The case of the circular well is also studied as a benchmark
of the theory.
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I. INTRODUCTION

Since graphene [1] was first studied, the family of two-
dimensional (2D) materials has been expanding, and other
materials such as hexagonal-boron nitride (hBN) [2], phos-
phorene [3], and transition metal dichalcogenides (TMDs) [4],
such as MoS2, MoSe2, WS2, and WSe2, have gained consid-
erable attraction over the years. These last ones correspond
to semiconducting materials with a direct band gap of about
1.5 eV [5], and are currently extensively studied due to their
remarkable electronic and optical properties.

Like other 2D materials, the optical properties of TMDs
are strongly dependent on their excitonic response [6]. When
a material is optically excited, if the photon energy is large
enough, electrons may be removed from the valence band
to the conduction band. The electron promoted to the con-
duction band and the hole left in the valence band form a
quasiparticle due to the Coulomb-like interaction between
them. This particle is similar to a hydrogen atom, and it is
termed an exciton. Contrary to their three-dimensional (3D)
counterparts, where the energy spectrum is well described by
a Rydberg series, excitons in 2D materials present a more
complex energy landscape as a consequence of the nonlocal
dielectric screening of the interaction potential between the
electron and the hole [7]. Also, their reduced dimensionality
leads to more tightly bound excitonic states, which are stable
even at room temperature [8].

When studying the optical properties of TMDs two distinct
regimes can be identified. The first one corresponds to the case
where optical excitation induces transitions from the excitonic
vacuum to a given state of the exciton, and is termed the
excitonic interband regime. This regime is the origin of the
well-known peaks in an absorption spectrum, corresponding
to transitions from the excitonic vacuum to different s states

of the exciton [9]. In recent years, nonlinear optical effects
originated from interband transitions have been the topic of
many works, both experimental and theoretical. The study of
nonlinearities in MoS2 was explored in Refs. [10–13], while
Refs. [14,15] studied similar effects in WS2 and Refs. [16,17]
in WSe2. A thorough comparison between the nonlinear re-
sponse of different TMDs is presented in Ref. [18]. Studies
on the effect of strain and the coupling to exciton-plasmons
have also been performed [19,20]. In Ref. [21] an analytical
study of the nonlinear optical response of monolayer TMDs
was presented. Due to their broken inversion symmetry TMDs
are not centrosymmetric (at least when stacked in an odd
number of layers), and as a consequence both even and odd
orders of nonlinear optical processes are always permitted
[22]. Moreover, these materials shown large nonlinear optical
coefficients [21], increasing their potential for applications,
such as optical modulators [23,24]. The possibility of char-
acterizing different properties of the 2D material from their
nonlinear optical response has also been considered [25,26].
The second regime one should consider when studying the
optical properties of these systems is associated with tran-
sition between the excitonic energy levels themselves, and
we label it as the intraexciton regime. This type of excita-
tion can be experimentally realized in a pump-probe setup,
where first the pump laser populates the 1s exciton state
and then the probe induces transitions from the 1s to the
remaining bound states of the exciton (see Fig. 1). Recently,
in Ref. [27], this type of procedure was implemented to
characterize the linear optical response of WSe2 in the in-
traexciton regime, and probe the excitonic dark states which
are not accessible from luminescence methods. Contrary to
the interband regime, the nonlinear response associated with
optical transitions when the ground state is already populated
remains vastly unstudied. Its comprehension could unlock
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FIG. 1. Schematic representation of the two photon absorption
process in WSe2 excitons when the 1s excitonic state is already
populated.

new degrees of freedom exploitable in nonlinear optical
applications.

Our goal with this paper is to provide a theoretical frame-
work based on the ideas presented in Refs. [28–32], which
allows the description of third-order nonlinear optical pro-
cesses in the intraexciton regime, namely the two photon
absorption (TPA) for excitons in WSe2. Contrarily to the
approach of a sum over states usually found from time-
dependent perturbation theory, where different excited wave
functions are needed, our approach only requires the 1s wave
function, which can be accurately described using variational
techniques [33,34]. We then expand the perturbed wave func-
tion directly in a basis. It follows that, formally, our approach
is equivalent to a sum of states computation approximating
excited states by expanding in the same basis. However, the
present approach is conceptually simpler. The text is orga-
nized as follows. In Sec. II we present the general method used
to compute the nonlinear third-order optical susceptibility.
This corresponds to a generalization of the approach presented
in Ref. [35] where the linear response was studied. In Sec. III
we focus on the more interesting problem of excitons in
WSe2, when the excitonic ground state is already populated
and the optical excitation induces transitions between the exci-
tonic levels. A section with our final remarks and Appendixes
close the paper.

II. NONLINEAR THIRD-ORDER OPTICAL RESPONSE

In the first part of this section we will give a detailed
description of a method to compute the third-order optical sus-
ceptibility of a given system. The only requirement is that the
ground-state wave function of the system is known (at least
approximately). This method contrasts with the usual sum
over states where both the ground-state and the excited-state
wave functions are needed. The presented approach is based
on Refs. [28–32] and corresponds to an extension of what
was recently used in Ref. [35] regarding the linear optical
response. In the second part of the section the problem of a
circular potential well will be studied as a first application of
the formalism. This example will set the stage for the posterior
study of two-dimensional excitons in WSe2.

A. Outline of the method

1. Third-order susceptibility

Since we will be interested in computing the third-order
nonlinear response, we start by introducing the expression

for the third-order optical susceptibility, as derived from per-
turbation theory. Throughout the work we will use atomic
units unless stated otherwise. Following Ref. [36] we write
the third-order susceptibility as

χ
(3)
αβγ δ (ωσ ; ω1, ω2, ω3)

= 1

3!
P

{ ∑
n,m,l �=0

〈0|dα|n〉〈n|dβ |m〉〈m|dγ |l〉〈l|dδ|0〉
(En0 − ωσ )(Em0 − ω2 − ω3)(El0 − ω3)

−
∑

n,m �=0

〈0|dα|n〉〈n|dβ |0〉〈0|dγ |m〉〈m|dδ|0〉
(En0 − ωσ )(Em0 − ω2)(Em0 + ω1)

}
,

(1)

where En0 = En − E0 is the energy difference between the
levels |n〉 and |0〉, d is the dipole moment, {α, β, γ , δ} are
indexes corresponding to different spatial orientations (x or y),
ωσ = ω1 + ω2 + ω3, P is the permutation operator of the
pairs (α,−ωσ ; β, ω1; γ , ω2; δ, ω3), and |n〉 corresponds to the
unperturbed states of the system, with |0〉 its ground state.
The direct application of Eq. (1) corresponds to the sum over
states approach. Since the different sums run over all the
excited states of the system, this way of calculating the optical
susceptibility presents the major drawback of requiring the
knowledge of all the excited-state wave functions, at least in
a naive approach. (Obviously one can expand the unknown
eigenstates in a complete basis and obtain the expansion co-
efficients. This latter approach can be seen as an alternative
to the method developed in Appendix A). Although in simple
systems the exact wave functions may be trivially known, in
more complex ones they may be elusive (this is precisely the
case of excitons in 2D materials to be discussed ahead).

In order to avoid the usual sum over states method, we
follow the ideas of Refs. [28–32]. Doing so, we write the
time-dependent Schrödinger equation

[H0 + d · E (t )]|ψ (t )〉 = i
∂

∂t
|ψ (t )〉, (2)

where H0 corresponds to the unperturbed Hamiltonian of a
given system (this may contain a kinetic and a potential term),
d · E (t ) describes the interaction of the system with an exter-
nal time-dependent harmonic electric field E (t ) in the dipole
approximation, and |ψ (t )〉 is the state vector of the system
in the presence of the external electric field. Note that the
electric field E corresponds to the probe in a pump-probe type
of experiment. Next, we expand |ψ (t )〉 in powers of E as

|ψ〉 = |0〉e−iE0t + Eα|ψα〉e−i(E0−ωa )t

+ EαEβ |ξαβ〉e−i(E0−ωa−ωb)t + · · · , (3)

where Eαeiωat refers to an harmonic electric field applied
along the α direction (either x or y) with frequency ωa, E0

is the energy of the unperturbed ground state of the system,
and |ψα〉 and |ξαβ〉 are yet to be determined. Inserting this in
the time-dependent Schrödinger equation and grouping equiv-
alent terms in E , up to second order in the electric field, we
find the following three equations:

0 = (H0 − E0)|0〉, (4)

0 = (H0 − E0 + ωa)|ψα〉 + dα|0〉, (5)

0 = (H0 − E0 + ωa + ωb)|ξαβ (ωa, ωb)〉 + dβ |ψα (ωa)〉. (6)
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The first one simply states the eigenvalue relation for the
ground state of the system in the absence of the external
electric field. The second and third ones define the |ψα〉 and
|ξαβ〉, respectively. Expanding these two states in the basis of
the eigenstates of H0 one easily arrives at

|ψα (ωa)〉 = −
∑
n �=0

〈n|dα|0〉
En − E0 + ωa

|n〉, (7)

|ξαβ (ωa, ωb)〉 = −
∑
n �=0

〈n|dβ |ψα (ωa)〉
En − E0 + ωa + ωb

|n〉, (8)

where we assumed 〈0|ψα〉 = 0 and 〈0|ξαβ〉 = 0. The first
requirement corresponds to choosing a coordinate system
placing 〈0|d|0〉 at the origin, which is always possible. The
second assumption will be discussed further ahead. Now we
note that with the introduction of |ψα〉 and |ξαβ〉 we are able
to rewrite Eq. (1) as

χ
(3)
αβγ δ = 1

3!
P{−〈ψα (−ω∗

σ )|dβ |ξδγ (−ω3,−ω2)〉
+ 〈0|dα|ψβ (−ωσ )〉〈ψγ (−ω∗

2 )|ψδ (ω1)〉}. (9)

Determining |ψα〉 and |ξαβ〉 allows us to obtain the third-order
susceptibility through the computation of only three matrix
elements. Note that we are considering the possibility of the
frequencies to be complex valued. We do so in order to obtain
both the real and imaginary parts of χ (3). This is achieved by
shifting the energies by a small imaginary part, that is ω →
ω + iδ.

2. Computing the new state vectors

Computing |ψα〉 and |ξαβ〉 using Eqs. (7) and (8) would
reverse our progress, and leave us again with a problem requir-
ing the evaluation of a sum over states. To continue with the
calculations, we follow Ref. [28] and introduce the functionals

J = 〈ψα (ω)|H0 − E0 + ω|ψα (ω)〉
+ [〈ψα (ω)|dα|0〉 + c.c.] (10)

and

K = 〈ξαβ (ωa, ωb)|(H0 − E0 + ωa + ωb)|ξαβ (ωa, ωb)〉
+ [〈ξαβ (ωa, ωb)|dβ |ψα (ωa)〉 + c.c.]. (11)

Finding the extrema J with respect to |ψα〉 and K with re-
spect to |ξαβ〉 allows us to explicitly compute these new state
vectors.. Moreover, we note that the extremization of these
functionals is equivalent to directly solving Eqs. (5) and (6),
where |ψα〉 and |ξαβ〉 were first introduced.

Since we will be interested in 2D systems, the first step in
our procedure is to confine our system within a disk of radius
R. If the problem we are interested in is not naturally bounded,
we can first force it to be defined inside a disk of finite
radius, and later chose R � 1 and check the convergence of
the results by varying R. This procedure is always possible as
long as the wave functions vanish for a large enough distance
away from the origin. After this is done we can expand |ψα〉
and |ξαβ〉 in a Fourier-Bessel series with a normalized radial
basis

jln(r) =
√

2Jl
( zlnr

R

)
Jl+1(zln)R

, (12)

where Jl (z) is the Bessel function of the first kind of lth order,
zln corresponds to the nth zero of Jl (z), and R is the radius of
the disk where the problem is defined. In terms of this basis,

ψα (ω; r) = 1√
2π

N∑
n=1

∑
l=±1

cα
ln(ω) jln(r)eilθ

= 1√
2π

N∑
n=1

[
cα
+,n(ω)eiθ − cα

−,n(ω)e−iθ
]

j1n(r)

(13)
and

ξαβ (ωa, ωb; r) = 1√
2π

N∑
n=1

∞∑
l=−∞

ζ
αβ

ln (ωa, ωb) jln(r)eilθ ,

(14)

where N is the number of functions in the radial basis, cα
ln and

ζ
αβ

ln are the expansion coefficients, and (r, θ ) are polar coor-
dinates. Although we choose to work with a Fourier-Bessel
basis, other options could have been used, e.g., orthogonal
polynomials or Sturmian functions. Now we insert these ex-
pressions in the definitions of J and K and minimize each
functional with respect to the cα

ln and ζ
αβ

ln , respectively. Doing
so we arrive at two linear system of equations whose solutions
define the expansion coefficients. In Appendix A we give the
detailed description of the necessary steps to obtain the linear
system of equations, which is numerically well behaved and
can be easily solved. Also discussed in Appendix A is the
implication of the condition 〈0|ξαβ〉 = 0, which imposes a
restriction on the coefficient ζ

αβ

01 , requiring special care when
dealing with the term l = 0 in the functional K.

B. The case of the circular well

Now, as a first application of the ideas presented so far,
we will study the problem of a circular well. This study will
allow for a concrete application of the general expressions
previously derived, as well as gaining some intuition that will
prove helpful when the excitonic problem is studied ahead.

Consider a particle with mass μ trapped inside a circular
well of radius R. The Hamiltonian of such a system reads

H = − 1

2μ
∇2, 0 � r/R < 1. (15)

The eigenstates are given by

ψnm(r, θ ) = 1√
2π

jmn(r)eimθ . (16)

Following common practice, we label n as the principal quan-
tum number and m as the angular quantum number. The
energy spectrum reads

Enm = 1

2μ

(
zmn

R

)2

. (17)

The ground-state wave function is ψGS(r) = j01(r)/
√

2π .
There are many nonlinear third-order optical processes

[37]. To be definitive, let us now focus on a specific third-order
nonlinear optical process. We will be interested in computing
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FIG. 2. Plot of the two-photon absorption (TPA) third-order sus-
ceptibility as a function of the photon energy for a particle with mass
μ = 1 in a circular well of radius R = 1. Both quantities are pre-
sented in atomic units (a.u.). The resonances marked with the orange
lines correspond to transitions from the ground state (1s) to the states
2s and 3s with the absorption of two photons. The resonances marked
with the green lines are associated with the transitions 1s → 1d and
1s → 2d . A small imaginary shift was introduced in the photon
frequency ω, that is, ω → ω + iδ with δ = 0.02 a.u. N = 5 basis
functions were used.

the xxxx component of the two photon absorption (TPA) third-
order susceptibility χTPA

xxxx (ω) = χ (3)
xxxx(−ω; ω,−ω,ω). Using

Eq. (9) we write

χTPA
xxxx = 1

3!
P{−〈ψx(−ω∗)|dx|ξxx(−ω,ω)〉

+ 〈0|dx|ψx(−ω)〉〈ψx(−ω∗)|ψx(ω)〉}. (18)

To obtain the TPA spectrum we need only compute ψx and
ξxx using the procedure discussed previously, and then eval-
uate three matrix elements. A detailed description of this is
given in Appendix B. Considering μ = 1 and R = 1, using
N = 5 basis functions, and accounting for all the necessary
permutations in Eq. (18), we obtain the results depicted in
Fig. 2. This value of N already allows the results to converge;
increasing it produces no change in the TPA spectrum. In
order to obtain the real and imaginary parts of χTPA

xxxx (ω) we
introduced a small imaginary shift in the frequency ω, i.e.,
ω → ω + iδ. The resonances that appear in Fig. 2 have two
distinct origins, the ones marked with the orange lines corre-
spond to transitions from the ground state (which we call the
1s state) to other s states (where the angular quantum number
is m = 0) with the absorption of two photons; the ones marked
with the green lines are associated with transitions from the
ground state to d states (m = 2), due to the absorption of two
photons. As the principal quantum number of the final state
increases, the oscillator strength of the transition decreases
and the resonances become less pronounced. One of the main
advantages of studying the circular well lies in its parabolic

energy spectrum [see Eq. (17)], since the energy levels are sig-
nificantly separated, allowing for an effortless identification of
the relevant optical transitions.

III. TWO-PHOTON ABSORPTION
FOR EXCITONS IN WSe2

In the current section we will discuss the interesting topic
of 2D excitons in WSe2. More accurately, we will study the
third-order optical response associated with transitions from
the ground state (1s) to excited states of the 2D exciton. This
problem is the natural extension of the work done in [35] and
the computed physical quantity can be measured experimen-
tally in a pump-probe experiment.

The Hamiltonian that describes the excitonic problem
reads

H0 = − 1

2μ
∇2 + VRK(r), (19)

where μ is the reduced mass of the electron-hole pair, ∇2 is
the 2D Laplacian, and VRK(r) is the Rytova-Keldysh potential
[38,39]

VRK = − π

2r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (20)

where κ is the mean dielectric constant of the media above and
below the TMD, r0 is an intrinsic parameter of the 2D material
which can be interpreted as an in-plane screening length and
is related to the effective thickness of the material, and H0

and Y0 are the Struve function and the Bessel function of the
second kind, both of order 0, respectively. This potential is
the solution of the Poisson equation for a charge embedded in
a thin film. For large distances the Rytova-Keldysh presents
a Coulomb −1/κr tail, but diverges logarithmically near the
origin.

Contrary to the circular well, or even the hydrogen atom,
the 2D excitonic problem does not offer a simple analytical
solution. In fact, computing the wave functions of the different
excitonic states is an involved problem, where the wave func-
tions are only known either numerically or semianalytically
(where the wave functions can be computed analytically up to
a set of numerical coefficients). In the present approach, per-
turbed wave functions are computed directly by expanding in
a basis without the intermediate step of finding excited states.
We have shown that in order to apply the formalism presented
in Sec. II only the wave function of the exciton ground state is
required. Finding this wave function is a considerably simpler
task, and in order to work with an analytical expression we
follow a variational approach. To obtain accurate results for
the optical susceptibility, it is necessary to use an appropriate
ground-state wave function. It is thus imperative that our vari-
ational ansatz produces an excellent description of the exact
solution. A first proposal for the variational ansatz, inspired
by the 2D hydrogen atom, could be a single exponential such
as exp(−ar), where a is a variational parameter. Although
this already produces a good description of the exact ground-
state wave function, we turn to Ref. [33], where a more
sophisticated double exponential ansatz was proposed:

ψGS(r) = 1√
N

(e−ar + be−aγ r ), (21)
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FIG. 3. Comparison between the excitonic ground-state wave
function obtained exactly (using a shooting algorithm), and the ones
obtained with the single and double variational ansatz. The values
of the variational parameters were obtained from the minimization
of the expected value of the Hamiltonian of Eq. (20). The values of
Table I were used.

with a, b, and γ variational parameters and N a normalization
constant. As one can observe in Fig. 3, where the exact wave
function is compared with the single and double exponential
ansatz for excitons in WSe2, Eq. (21) produces an outstanding
description of the exact solution, the latter computed with a
numerical shooting algorithm. As we have already noted in
Sec. II, the domain of our problem should be enclosed within
a disk of finite radius for numerical stability.

As in the case of the circular well, let us consider the xxxx
component of the TPA susceptibility associated with transi-
tions from the 1s to the excited excitonic states. Its general
expression was already given in Eq. (18). To evaluate the
TPA spectrum we return once more to the problem of extrem-
izing the J and K functionals (see Appendixes A and B).
A difference relative to the circular well lies in the value of
ζ01. The orthogonality of Bessel functions on a disk implied
that ζ01 = 0 for the circular well. For the excitonic problem no
simple rule applies, and the value of ζ01 must be determined
from Eq. (A9).

Using the parameters given in Table I the TPA spectrum for
WSe2 on diamond was computed; its plot is depicted in Fig. 4.
The value of R was chosen such that ψGS(R) ≈ 0. A small
value for the radius modifies the results due to the effect of the
confinement, while a large value suppresses this effect with
the cost of increased computational work. We found that R =
2500 allows an accurate description of the excitonic problem,
while keeping the method efficient.

Analyzing Fig. 4 we observe a similar result to the one
found for the circular well. In order to clearly identify the
optical transitions behind each resonance we computed the
energy of the different excitonic states using a shooting al-

TABLE I. Parameters used to compute the TPA spectrum due
to intraexcitonic transition in WSe2. All the quantities are given in
atomic units. The values of μ, κ , and r0 were taken from Ref. [27].
The value of R was chosen in order to have ψGS(R) ≈ 0. The value
of N allowed the results to converge.

μ κ r0 R N

0.167 3.32 51.9 2500 150

FIG. 4. Real and imaginary parts of the TPA susceptibility (nor-
malized to its maximum valued) for two different degrees of disorder
(0.5 and 2 meV). The resonances correspond to transitions from the
1s to the 2s, 3s, and 4s states (marked in orange) and to the 3d , 4d ,
and 5d states (marked in green) with the absorption of two photons.
A diagram of the optical transitions behind the resonances is also
depicted.

gorithm, and from there the energies of the transitions from
the 1s to other states were computed. This allowed us to assert
that the resonances in Fig. 4 are due to transitions from the
ground state (1s) to the 2s, 3s, and 4s states (marked in orange)
and to the 3d , 4d , and 5d states (marked in green) with the
absorption of two photons. Note, however, that computation of
the binding energies is not necessary to identify the underlying
transition behind each of the main resonances. This has been
done here purely to demonstrate that the method provides
physically accurate results. By recalling that the excitonic 1s
state has no angular dependence, it is immediately clear from
dipole induced transitions selection rules that the numerators
in the definition of the susceptibility in Eq. (1) must be either
of the form 〈1s| · · · |np〉〈np| · · · |ms〉〈ms| · · · |kp〉〈kp| · · · |1s〉
or 〈1s| · · · |np〉〈np| · · · |md〉〈md| · · · |kp〉〈kp| · · · |1s〉, with n,
m, and k referring to the principal quantum numbers of the
exciton state and s, p, and d labeling the angular dependence.
Hence, from dipole selection rules, one already expects the
appearance of the resonances associated with transitions from
the 1s to other s and d states. Knowing this, the least energetic
resonance in the relevant energy window could be assigned
to the 1s → 2s transition, as this lies clearly below the other
ones; the next resonance could be ascribed to a 1s → 3d tran-
sition, and so on. The identification of the optical transitions
behind each resonance was also facilitated by the intuition
gained by studying the circular well, where similar selection
rules apply.

To obtain the real and imaginary parts of the TPA suscep-
tibility a small imaginary part was included on the photon en-
ergy ω → ω + iδ, where the parameter δ phenomenologically
parametrizes the broadening of the excitonic level. As ex-
pected, increasing the value of δ leads to broader and less
intense resonances. For large values of δ a nonphysical shift
of the resonance starts to appear, which is one of the main

235412-5



HENRIQUES, KAMBAN, PEDERSEN, AND PERES PHYSICAL REVIEW B 103, 235412 (2021)

FIG. 5. Comparison of the TPA spectrum for three different di-
electric environments, κ = 3.32 (TMD on diamond), κ = 3, and
κ = 2.5 (TMD on quartz).

limitation of our approach. Currently it is possible to study
this kind of system with a linewidth of about 20 meV for a
sample on glass [40], and for encapsulated systems at low
temperatures spectral broadening as low as 2 meV can be
achieved [41]. From the results depicted in Fig. 4, where the
maximum broadening is 2 meV, we expect that experimental
measurements of the TPA performed on encapsulated systems
should be able to clearly capture the resonances originated
by the 1s → 2s, 1s → 3d , and 1s → 3s transitions. In order
to capture more resonances it is necessary to decrease the
linewidth, or change the studied material to another where the
excitonic resonances are further apart (such as hBN).

So far we have only discussed the case of WSe2 on di-
amond. If other TMDs had been considered, such as MoS2,
MoSe2, and WS2, the results would be qualitatively identical
to the ones found for WSe2. This is so due to the similar-
ities between the excitonic response of these systems. The
main difference between the susceptibilities of these TMDs
would be on the relevant energy window, since excitons have
slightly different binding energies in each TMD as a result
of the differences in the reduced mass μ and the screening
parameter r0 that enters in the Rytova-Keldysh potential. The
linewidth of the resonances should also be expected to vary
slightly from one TMD to another. Something which is also
worth considering is the role of dielectric screening from
the environment, characterized by the constant κ entering in
the interaction potential. In Fig. 5 we study the role of the
dielectric environment on the TPA spectrum of WSe2, by
considering the experimentally relevant cases where WSe2 is
placed on diamond κ = 3.32 and on quartz κ = 2.5, as well as
an intermediate case with κ = 3 (used just for reference). As
the dielectric screening from the environment is reduced, that
is, as κ decreases, the excitons become more tightly bound.
As a consequence of the larger binding energy, the energy
difference between the 1s and the excited excitonic states in-
creases. This behavior is reflected in Fig. 5, where we observe
a blueshift of the resonances as κ decreases. Moreover, one
also sees from Fig. 5 that as the dielectric screening increases,
the intensity of the resonances also increases. We identify this
as a consequence of the larger spacial extension of the wave

functions when the dielectric screening increases resulting in
larger dipole matrix elements.

Since the phenomena we are studying are experimentally
accessed with pump-probe experiments, one crucial aspect to
consider is the 1s exciton density. Initially, when the pump
laser acts on the system, excitons quickly populate the 1s
state. This population decreases with time as a result of dif-
ferent recombination processes, such as radiative or Auger
recombination. Hence, in an experimental realization of such
an experiment, the time delay between the application of
the pump and probe lasers should play a significant role
in the results, because of the decay of the 1s population.
Furthermore, the exciton density is also of importance due
to possible exciton-exciton interactions. When the exciton
density is large, the overlap of the exciton wave functions
may be significant, and as a consequence new phenomena,
which we have not accounted for, should appear. Based on
Ref. [27], where the 1s → 2p transitions were studied, one
should expect exciton-exciton interactions to lead to renor-
malization of the resonances as well as modifications in their
linewidth. These effects should be increasingly more notice-
able as the overlap of the exciton wave functions increases.
Since the wave functions tend to be more extended in real
space as the principal quantum number increases, one should
expect resonances involving highly energetic excited states
(for example, the 3d state and above) to suffer more from
exciton-exciton interaction, than the resonances originated by
transitions to the first excited states. This, however, should not
be a too much of a problem, since the more energetic excited
states lead to small oscillator strengths, and their resonances
are hardly resolved in realistic experiments. A simple way of
estimating the possible effect of the exciton-exciton interac-
tions is to compare the exciton Bohr radius of the 1s state,
easily obtained with the variational ansatz of Eq. (21), with
the inverse square root of the exciton density (similarly to
the Mott criterion). We stress that the Mott criterion should
only be taken as a qualitative reference, since the picture of
excitons as well-defined quasiparticles may already be com-
promised below the threshold it establishes. Nonetheless, this
criterion should still be helpful to predict the relevance of
exciton-exciton interactions.

IV. CONCLUSION

In this work, following the ideas of Refs. [28–32], we
developed a method to study nonlinear third-order processes
involving transitions from the 1s to excited excitonic states.
The usual approach to this type of problem would require
the knowledge of several excited states in order to compute
the different matrix elements that appear in Eq. (1). The ex-
cited states wave functions are often computed by expanding
them in a given basis, e.g., Bessel-Fourier, followed by the
diagonalization of the Hamiltonian. This yields the sets of
coefficients that define the wave functions of the different
excited states, which can then be used to evaluate the many
matrix elements in the sum over states. At odds with this
procedure, our approach avoids the sum over states, and
requires only three wave functions: the ground state wave
function, which can be described using a variational ansatz
with high accuracy (see Fig. 3); and two wave functions de-
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fined by Eqs. (7) and (8) which we determined through an
expansion in a Bessel-Fourier basis.

The main result of our work is the TPA spectrum which
presents resonances associated with transitions from the 1s
state to the remaining s states as well as from the 1s to the
d states with the absorption of two photons. In high purity
systems different resonances should be resolvable. However,
in systems with a significant spectral broadening only the
1s → 2s resonance should be identifiable. When the role of
dielectric screening was studied, a blueshift of the resonances
was observed with decreasing dielectric constant, in agree-
ment with the increased exciton binding energy and higher
energy separation between the ground state and the excited
states. We focused on the case of excitons in WSe2, but other
materials may easily be explored using the method.

Although we focused primarily on the xxxx component of
the TPA susceptibility, we presented general formulas capable
of describing any third-order process. To do so one only needs
to combine Eq. (9) with the discussion presented in Appendix
A. However, most of the components are automatically zero
since we are considering isotropic systems (all of those χi jkl

with an odd number of x or y indexes vanish from symmetry).
Also, since the x and y directions are equivalent, the xxxx
and yyyy components are equivalent, as well as the xxyy and
yyxx, and so on. In the end we can reduce the number of
components to the xxxx, xxyy, xyxy, and xyyx. When the
last three components are summed, the first one should be
recovered. Besides TMDs, other systems could also be studied
with this method, such as quantum dots, quantum wells, and
even bulk materials.

ACKNOWLEDGMENTS

N.M.R.P. acknowledges support by the Portuguese Foun-
dation for Science and Technology (FCT) in the framework
of the Strategic Funding UIDB/04650/2020. J.C.G.H. ac-
knowledges the Center of Physics for a grant funded by
the UIDB/04650/2020 strategic project and POCI-01-0145-
FEDER-028887. N.M.R.P. acknowledges support from the
European Commission through the project “Graphene-Driven
Revolutions in ICT and Beyond” (Ref. No. 881603, CORE
3), COMPETE 2020, PORTUGAL 2020, FEDER, and
the FCT through projects POCI-01-0145-FEDER-028114,
PTDC/NAN-OPT/29265/2017. H.C.K. and T.G.P. gratefully
acknowledge financial support by the Center for Nanostruc-
tured Graphene (CNG), which is sponsored by the Danish
National Research Foundation, Project No. DNRF103.

APPENDIX A: COMPUTING THE NEW STATE VECTORS

In this Appendix we will give a detailed description of
how to obtain the linear systems whose solution defines the
state vectors |ψα〉 and |ξαβ〉. Let us consider the H0 to be the
unperturbed Hamiltonian of a given system which in general
can be written as

H0 = − 1

2μ
∇2 + V (r), (A1)

where the first term, with μ a mass term and ∇2 the 2D Lapla-
cian, corresponds to the kinetic energy, and V (r) corresponds

to the potential energy. Here we consider a central potential
for which the ground state may be expressed as ψGS(r) =
RGS(r)/

√
2π . Inserting Eqs. (13) and (A1) into Eq. (10) one

finds

J =
N∑

n=1

∑
l=±

cα
ln

(
cα

ln

)∗
[

1

2μ

(
zln

R

)2

− E0 + ω

]

+
N∑

n=1

N∑
k=1

∑
l=±

cα
ln

(
cα

lk

)∗V (l )
kn

+ 1

2

N∑
n=1

∑
l=±

[
(δα,x − ilδα,y)

(
cα

ln

)∗S (l )
n + c.c.

]
, (A2)

where c.c. stands for complex conjugated and the following
integrals where introduced:

V (l )
kn =

∫ R

0
jlk (r)V (r) jln(r)rdr, (A3)

S (l )
n =

∫ R

0
jln(r)RGS(r)r2dr. (A4)

The first one corresponds to the matrix elements of the poten-
tial between different basis functions, while the second one is
proportional to dipole transitions between the ground state of
the unperturbed system and the functions of the basis. Further-
more, we note that V (l )

kn is symmetric, that is, V (l )
kn = V (l )

nk . We
have omitted the argument of the coefficients cα

ln to simplify
the notation, however one should keep in mind that these are
ω-dependent quantities.

Now, differentiating J with respect to the coefficients
(cα

ln)∗, we obtain a linear system of equations whose solution
determines the coefficients themselves. In matrix notation the
linear system reads

M(l )(ω)cα
l (ω) = − 1

2 (δα,x − ilδα,y)S(l ), l = ±1, (A5)

where

[M(l )(ω)]i j = δi jg
(l )
j (ω) + V (l )

i j , (A6)

with

g(l )
j (ω) = z2

l j

2μR2
− E0 + ω, (A7)

and

[S(l )]T = [
S (l )

1 ,S (l )
2 , . . . ,S (l )

N

]
,

[cα
l (ω)]T = [cα

l1(ω), cα
l2(ω), . . . , cα

lN (ω)].

Let us emphasize that to obtain the coefficients that define
|ψα〉 we need only compute the vector S(l ) and the matrix
M(l ). The most expensive part of the numerical computation
is the calculation of all the V (l )

i j . However, since V (l )
i j is inde-

pendent of ω this only needs to be computed once, regardless
of the value of ω one wishes to use. The fact that V (l )

i j is
symmetric also greatly reduces the number of integrals that
need to be evaluated. Finally, we point out that when α = x we
have cx

+,n = −cx
−,n, since M(+) = M(−) and S(+) = −S(−).

Following the same reasoning, when dealing with the y direc-
tion we have cy

+,n = cy
−,n, due to the term ilδα,y which changes

sign when l changes sign.
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With the problem associated with the functional J taken
care of, let us move on to the functional K. Once again
we choose to work in a Fourier-Bessel basis. Now, let us
recall that in the beginning, following Eq. (8), we assumed
〈0|ξαβ (ωa, ωb)〉 = 0. In order to satisfy this, we must have

N∑
n=1

ζ
αβ

0n (ωa, ωb)
∫ R

0
j0n(r)RGS(r)rdr = 0, (A8)

where all the reaming terms in the definition of ξαβ are
guaranteed to vanish from the angular integration, since for
an isotropic system we have an isotropic ground-state wave
function. This condition can be put in the equivalent form

ζ
αβ

01 (ωa, ωb) = −
N∑

n=2

ζ
αβ

0n (ωa, ωb) fn, (A9)

where

fn =
∫

j0n(r)RGS(r)rdr∫
j01(r)RGS(r)rdr

.

Thus, hereinafter, we no longer consider ζ
αβ

01 as an inde-
pendent variable, but rather as a parameter defined from the
remaining ζ

αβ

0n . Inserting Eq. (14) in Eq. (11), and once again
using the definition for H0 given in Eq. (A1), one finds after
some algebra

K =
N∑

n=1

∞∑
l=−∞

ζ
αβ

ln

[
ζ

αβ

ln

]∗
g(l )

n (ωa + ωb)

+
N∑

n,m=1

∞∑
l=−∞

ζ
αβ

lm

[
ζ

αβ

ln

]∗V (l )
nm

+ 1

2

N∑
n,m=1

∑
s=±

{
cα

sm

[
ζ

αβ

0n

]∗T (0,s)
nm (δβ,x + isδβ,y)

+ cα
sm

[
ζ

αβ

s2,n

]∗T (s2,s)
nm (δβ,x − isδβ,y) + c.c.

}
, (A10)

where c.c. stands for complex conjugated, g(l )
n and V (l )

nk were
defined in Eqs. (A7) and (A3), respectively, and we introduced

T (l,s)
nm =

∫ R

0
jln(r) jsm(r)r2dr, (A11)

which is associated with the dipole transition amplitude be-
tween the functions of the basis. This integral has an analytical
solution given by∫ 1

0
Jν (αr)Jν+1(βr)r2dr = αJν+1(α)

(α2 − β2)2
[−2βJν (β )

+ (α2 − β2)Jν+1(β )], (A12)

for any ν given that Jν (α) = 0. When β is such that Jν+1(β ) =
0 (which is our case) the last term vanishes. From Eq. (A11)
we conclude that T (l,s)

nk is not symmetric, since T (l,s)
nk �= T (l,s)

kn .
Since these integrals have analytical solutions, the lack of
symmetry does not significantly impact the numerical effi-
ciency of our approach. Once again, to simplify the notation,
we have omitted the arguments of the coefficients cα

lm and ζ
αβ

ln .
With the functional K in its current form we can differen-

tiate it with respect to the ζ
αβ

ln and obtain a linear system in a

similar fashion to what was previously done for the functional
J . However, we should remember that in order to satisfy
the relation 〈0|ξαβ (ωa, ωb)〉 = 0 the coefficient ζ

αβ

01 must be
treated with care, since according to Eq. (A9) it is a function
of the remaining ζ

αβ

0n . Thus, it is convenient to deal with the
cases where l = 0 and l �= 0 separately.

Starting with the l = 0 case, we substitute ζ
αβ

0n in Eq. (A10)
by its definition, given in Eq. (A9), and differentiate the re-
sult with respect to the (ζ αβ

0n )∗, with n � 2. Proceeding as
described one finds the following linear system defining the
coefficients ζ

αβ

0n with n � 2:

[F + M(0)(ωa + ωb)] · ζ
αβ

0 (ωa, ωb)=−Wαβ

0 (ωa) + fαβ

0 (ωa),
(A13)

where M(0)(ωa + ωb) is defined as before, and

(F )i j = [
g(0)

1 (ωa + ωb) + V (0)
11

]
fi f j − V (0)

i1 f j − fiV (0)
1 j ,

(A14)

Wαβ

0 = 1

2

∑
s=±

(δβ,x + isδβ,y)T (0,s) · cα
s , (A15)

(
fαβ

0

)
n = 1

2
fn

N∑
m=1

∑
s=±

cα
smT

(0,s)
1m (δβ,x + isδβ,y), (A16)

with (T (0,s) )i j = T (0,s)
i j , and

[
ζ

αβ

0

]T = [
ζ

αβ

02 , ζ
αβ

03 , . . . , ζ
αβ

0N

]
.

We note that the vectors ζ
αβ

0 , Wαβ

0 , and fαβ

0 are (N − 1) × 1;
the vector cα

s is N × 1; the matrices F and M(0) are (N − 1) ×
(N − 1), and the matrix T (0,s) is (N − 1) × N . The solution of
this system gives the ζ

αβ

0n with n � 2, from which the value of
ζ

αβ

01 can be computed.
Having dealt with the delicate case of l = 0 we can now

study the contributions originating from the cases where l �=
0. Since no restrictions are imposed on coefficients with l �= 0
this is a simpler problem. Returning to Eq. (A10), and differ-
entiating K with respect to the (ζ αβ

ln )∗, with n � 1 and l �= 0,
one finds

M(l )(ωa + ωb) · ζ
αβ

l (ωa, ωb) = −Wαβ

l (ωa), l �= 0,

(A17)

where M(l ) and ζ
αβ

l are defined as before, only this time they
are N × N and N × 1, respectively. The definition of Wαβ

l (ωa)
reads

Wαβ

l (ωa) = 1
2δl,2(δβ,x − iδβ,y)T (2,1) · cα

+(ωa)

− 1
2δl,−2(δβ,x + iδβ,y)T (2,1) · cα

−(ωa), l �= 0.

(A18)

This linear system is numerically well behaved and, therefore,
can be solved with any linear-algebra numerical package. Its
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solution gives the coefficients ζ
αβ

l , with l �= 0, necessary to
compute |ξαβ〉. Comparing Eq. (A17) with Eq. (A13), we
observe that their structure is very much alike, the only dif-
ference being the appearance of fαβ

0 and F in Eq. (A13).
These two terms have their origin on the restriction imposed
by the condition 〈0|ξαβ (ωa, ωb)〉 = 0, and thus do not appear
in Eq. (A17). For both cases where l = 0 and l �= 0, it is nec-
essary to first solve the problem associated with the functional
J in order to obtain the coefficients cα

l (ωa). Moreover, it is
clear that the terms with l = ±2 play a distinct role in the
problem. In fact, the only relevant terms are the ones with
l = 0,±2, since only they yield finite matrix elements when
the susceptibility is computed. Terms with different values
of l vanish when the angular part of the matrix elements
is calculated. Finally, we note that since M(2) = M(−2) and
Wαβ

2 = Wαβ

−2 when α = β, we have ζ
αβ

2 = ζ
αβ

−2 when α = β.

If α �= β, then ζ
αβ

2 = −ζ
αβ

−2.

APPENDIX B: DETAILS ON THE CIRCULAR
WELL PROBLEM

In this Appendix we give a detailed description of the
necessary calculations to compute the TPA of the circular
well. We start by writing the wave function ψx(ω, r) as

ψx(ω, r) =
√

2

π

N∑
n=1

cx
+,n(ω) j1n(r) cos θ, (B1)

where we used the fact that cx
+,n = −cx

−,n (see Appendix A).
Regarding the wave function ξxx(ω1, ω2; r), and using
Eq. (14), we obtain

ξxx(ω1, ω2; r) = 1√
2π

N∑
n=1

{
ζ xx

0n (ω1, ω2) j0n(r)

+ 2ζ xx
2n (ω1, ω2) j2n(r) cos 2θ

}
,

(B2)

where the relation ζ xx
2n = ζ xx

−2n was used (see Appendix A). To
obtain χTPA

xxxx (ω) we have to compute three different types of
matrix elements, which can be written in a fairly compact
form using Eqs. (B1) and (B2):

〈ψx(ω∗
2 )|ψx(ω1)〉 =

N∑
n=1

cx
+,n(ω∗

2 )∗cx
+,n(ω1), (B3)

〈0|dx|ψx(ω1)〉 = cx
+(ω1) · S(+), (B4)

〈ψx(ω∗
1 )|dx|ξxx(ω2, ω3)〉

= ([
ζxx

0 (ω2, ω3)
]T · T (0,1)

+ [
ζxx

2 (ω2, ω3)
]T · T (2,1)) · cx

+(ω∗
1 )∗, (B5)

where the vector S(+) and the matrices T were first introduced
when the functionals J and K were studied. The fact that
these only need to be computed once, but appear in different
instances of the calculation contributes to the simplicity and
efficiency of the approach.

The only thing left to do is to compute all the necessary
coefficients cx

+, ζxx
0n, and ζxx

2n. Since inside the disk where
the problem is defined the potential vanishes, all the terms

containing V (l )
nk disappear; this significantly simplifies the

computation of the coefficients. The cx
+ are given by

[cx
+(ω)] j = − 1

2g(+)
j (ω)

[S(+)] j, 1 � j � N. (B6)

It is easily verified that these coefficients quickly approach
zero even for modest values of N . This is a direct consequence
of the fast decay of S (+)

j as j increases. To compute the
ζxx

0n the first thing to note is that for the circular disk, where
the ground-state wave function is proportional to the Bessel
function J0(z01r/R), all the f j vanish, due to the orthogonality
relation of Bessel functions on a disk. As a consequence,
ζ xx

01 = 0. The remaining ζxx
0n follow from

ζxx
0 (ωa, ωb) = −[M(0)(ωa + ωb)]−1 · T (0,1) · cx

+(ωa), (B7)

where ζxx
0 is a (N − 1) × 1 vector. This becomes a N × 1

vector once the value of ζ xx
01 = 0 is introduced. The inverse of

the matrix M(0) is simply given by [M(0)]−1
j = 1/g(0)

j . Finally,
to compute the ζxx

2n one uses

ζxx
2 (ωa, ωb) = − 1

2 [M(2)(ωa + ωb)]−1 · T (2,1) · cx
+(ωa), (B8)

where [M(2)]−1
j = 1/g(2)

j . The fast convergence of the cx
+ aides

the convergence of the various ζxx coefficients.
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