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Negative quasiparticle shifts in phosphorene quantum dots
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It is commonly believed that electron correlations would open up a quasiparticle gap in semiconductors.
Contrary to this intuitive expectation, here we reveal that phosphorene quantum dots (PQDs) may exhibit just
the opposite effect. By using a configuration interaction approach beyond the conventional double-excitation
scheme, quasiparticle energies are calculated for hexagonal and rectangular PQDs in various dielectric environ-
ments. For the hexagonal PQD with a nominal gap of 2.26 eV, it is found that the quasiparticle shift decreases by
more than 500 meV and eventually becomes negative when the effective dielectric constant is reduced from 20.0
to 5.0. For other trapezoidal, triangular, and rectangular PQDs, the quasiparticle shift exhibits a similar amount
of decrement after the same change in the dielectric environment. Furthermore, the calculation by adopting
the Rytova-Keldysh potential, which may be more suitable to describe two-dimensional screening, also shows
a very similar result, although with smaller decrement of the quasiparticle shift. The origin of this anomalous
quasiparticle shift is believed to be related to the long-range electron-electron interactions in the distinctive lattice
structure of PQDs, as a similar phenomenon has never been found in graphene quantum dots.
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I. INTRODUCTION

Generally speaking, the quasiparticle (QP) serves as the
single most important concept to understand complicated
phenomena in optical and transport processes in solids [1].
Narrowly speaking, QP energies are closely related to those
required to add or remove one electron from the system and
can be formulated within the many-body perturbation formal-
ism [2]. The QP gap, also known as fundamental or transport
gap, defined as the difference between ionization potential
and electron affinity, is usually established by photoemission
or inverse photoemission spectroscopy [3]. In the meantime,
during the optical absorption process, the QP effect [4] com-
bined with the excitonic effect [5] determines the optical gap
of a many-electron system, although the total number of elec-
trons in the system remains unchanged. In low-dimensional
nanostructures such as graphene nanoflakes [6], electron cor-
relations open up the QP gap, which is already enhanced by
the quantum confinement effect [7]. Since the QP effect arises
from the electron-electron interactions, it is commonly be-
lieved that a reduced screening effect would naturally increase
the QP gap of the system.

For two-dimensional (2D) bulk semiconductors, a linear
scaling relation has been shown between the QP gap �qp and
the exciton binding energy EX [8], specifically, �qp ≈ 4EX

[9]. For 2D nanostructures, one needs to subtract the nominal
single-particle gap �sp from the QP gap �qp to define the QP
shift as

�qs = �qp − �sp, (1)
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in order to separate the QP effect from the quantum confine-
ment effect appropriately. For graphene nanoflakes, the QP
shift has been revealed to be almost identical to the exciton
binding energy, i.e., �qs ≈ EX [10], leaving the optical gap
insensitive to the dielectric environments. In regard to exci-
tons, it is fairly obvious that their binding energies increase
when the screening effect is weakened. Back to QPs, it seems
to be straightforward that the QP shift shall have the same
behavior as the exciton binding energy. That is to say, the QP
shift would always be positive. Specifically, if the screening
effect can be described by an effective dielectric constant
κ , �qs(κ−1) would be an always positive and monotonically
increasing function. This has been proven to be true for mono-
layer transition metal dichalcogenides WS2 and WSe2 [11]
and graphene nanoflakes [12].

For phosphorene quantum dots, however, here we will
show that �qs(κ−1) is not an always monotonically increasing
function and can even becomes negative as κ decreases. Since
its first successful fabrication [13], layered black phosphorus
(BP) or phosphorene nanostructures have a shown fascinat-
ing optical properties which promise potential applications
in optoelectronics [14,15]. Moreover, phosphorene quantum
dots (PQDs) are reported to be successfully prepared from
the bulk BP crystal using liquid exfoliation methods [16]. The
nanostructures fabricated by such a facile top-down approach
in solution or glass can be as small as 5 nm in lateral size
and 2–4 layers in thickness [17–19]. It is predicted that PQDs
may reach an energy conversion efficiency of as high as 20%
in solar energy conversion [20] and are thus very suitable to
be an alternative candidate for highly efficient solar cells [21]
as well as for ultrafast fiber lasers [22].

The studies of electronic structure have been reported for
monolayer [23] and bilayer [24,25] PQDs. In the meantime,
the optical response of phosphorene and PQDs have been
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FIG. 1. Quasiparticle shifts calculated as a function of the inverse
of the effective dielectric constant by using the Rytova-Keldysh
potential (circular dots) or the conventional Coulomb interaction
potential (diamond dots) for a hexagonal phosphorene quantum dot
as depicted in the inset. The nominal gap of the PQD is 2.26 eV.

investigated by using the first-principles approach [26] as well
as the empirical tight-binding method [27,28]. It has been
recently reported that optical gaps in PQDs could be greatly
suppressed by the strong screening effect [29]. There are two
major factors playing an important role in determining the
optical gap, namely, QP and excitonic effects. Since the latter
has a quite transparent dependence on the dielectric environ-
ment, suppression of the optical gap can only be induced by
the collapse of the QP gap.

II. MODEL AND METHOD

A schematic view of the first model system, a hexagonal
phosphorene quantum dot, is shown in the inset of Fig. 1. The
total number of phosphorus atoms is N = 104. The single-
particle states in the monolayer PQD are calculated by using
a tight-binding (TB) model with the parametrization obtained
from ab initio calculations within the GW approximation as
follows [30]:

Ĥe =
N∑

i=1

∑
σ

Eiσ c†
iσ ciσ +

N∑
i, j

∑
σ

(ti jc
†
iσ c jσ + H.c.), (2)

where Eiσ is the energy of the electron at site i with spin
σ , and ti j is the hopping parameter between the ith and jth
sites. It is noted that this is an effective one-band TB model,
i.e., only one electron per phosphorus atom is included and
therefore the total number of electrons, Ne, is equal to N for a
charge neutral system. Due to the lattice symmetry, the on-site
energies Eiσ are equivalent for all lattice sites and are thus set
to zero. There are a total of five intralayer hopping parameters,
and the most important ones are those among the in-plane
and out-of-plane nearest neighbors. The dangling bonds are
passivated by ten hydrogen atoms to prevent the edge states
from appearing in the middle of the energy spectrum [31].

It is noted that this TB parametrization reproduces both
electron and hole states within the region of about 0.3 eV from
the � point, which is considered to be well suited for the study

of excitonic states in optical transitions [32]. The spin-orbit
interaction is neglected in the tight-binding Hamiltonian be-
cause the coupling only induces a very small correction to the
energy levels. Moreover, a recent experimental work reports
layer-dependent exciton binding energies in few-layer black
phosphorus and determines that a freestanding BP monolayer
yields a large exciton binding energy of about 0.8 eV [33].
For comparison, we have studied the excitonic states by using
the same TB model [29] and predict that the exciton binding
energy shall reach 0.9–1.0 eV for a triangular PQD with
minimum dielectric screening effect.

The single-particle states are obtained as ψk = ∑N
i=1 ai

k|i〉
by solving the TB Hamiltonian. The nominal band gap of the
quantum dot, i.e., the energy separation between HOMO and
LUMO, is found to be �sp = 2.26 eV, which is much larger
than that of a bulk phosphorene sheet due to the quantum
confinement effect. The system of Ne interacting electrons, as
described by

Ĥ =
Ne∑

m=1

Ĥe(m) +
Ne∑

m<n

V̂ (|rm − rn|), (3)

shall be solved by a configuration interaction (CI) ap-
proach. All the 2D artificial materials, including graphene
and phosphorene, share one unique advantage over conven-
tional three-dimensional semiconductors, i.e., the strength of
electron-electron interactions inside the nanostructures sub-
stantially relies on their embedding dielectric environment.
Here the intersite (long-range) Coulomb interaction between
electrons m and n is screened by the effective dielectric
constant κ from the substrate or solution. When rm = rn,
the on-site (short-range) Coulomb energy, U0, is basically
an interaction energy between two electrons occupying the
same 3p orbital. As a first-principles calculation has already
shown that this energy for the 2p orbital in a carbon atom is
17.0 eV [34] while the radius of a phosphorus atom is about
three times larger than a carbon one, we hereby set U0 to be
17.0/3 ≈ 5.5 eV.

In a two-dimensional system, the electron screening can
be substantially different from that in the three-dimensional
counterpart. In this sense the Rytova-Keldysh (RK) potential
[35,36] is often regarded as a better description of long-range
electron-electron interaction when monolayer transition-metal
dichalcogenides (TMDs) or graphene is suspended in air or
encapsulated between dielectric materials, taking the follow-
ing form:

V̂ (r) = k
πe2

2r0

[
H0

(
r

r0/κ

)
− Y0

(
r

r0/κ

)]
, (4)

where H0 and Y0 are the zero-order Struve and Neumann
special functions, r0 = 2πχ2D is the screening length, and the
in-plane polarizability χ2D is set to be 4.1Å [37].

With both the long-range and short-range parts of the
interactions setting up, one can define the Coulomb matrix
elements as follows:

Ui jkl = 〈ψi(1)ψ j (2)|V̂ (|r1 − r2|)|ψk (1)ψl (2)|〉. (5)

The previously obtained single-particle states are used to
construct a series of many-particle configurations (Slater
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determinants), such as

	m = {
φm1 , φm2 , . . . , φmNe

}
, (6)

on which the many-particle wave functions are expanded and
solved by the CI approach [12]. The QP gap can be obtained
thereafter by

�qp = μ(Ne + 1) − μ(Ne), (7)

where the chemical potentials of the system μ(Ne) and
μ(Ne + 1) are defined by

μ(Ne) = Eg(Ne) − Eg(Ne − 1),

μ(Ne + 1) = Eg(Ne + 1) − Eg(Ne). (8)

III. RESULTS AND DISCUSSION

By including up to the fourth order (m = 4) of excitations
among the Ns = 40 single-particle states, the total number of
configurations reaches beyond 22 million, and the resulting
CI matrix is solved with our parallel algorithm to obtain the
energy levels of the many-electron system. The quasiparticle
shift concerns only the ground-state energies of systems with
various numbers of electrons, and in the meantime the energy
of the ground state calculated by the CI approach often shows
rapid convergence. At κ = 5.0, for example, �qs, calculated
by using fewer single-particle states (Ns = 36, m = 4), gives
a value only higher than about 0.05%. By including up to the
fifth order of excitations (m = 5), the difference between the
results is also about 0.05%. Hereby, the calculation by using
(Ns = 40, m = 4) is believed to give well-converged results.

Figure 1 plots the QP shifts �qs as a function of the in-
verse of the effective dielectric constant κ−1 by using the RK
potential (circular dots) for the hexagonal PQD, as depicted
in the inset. For comparison, the result obtained by using
the conventional Coulomb interaction potential (ke2/κr) are
shown in diamond dots. As the RK potential is known to better
describe the electron-electron interactions in two-dimensional
systems only when the screening effect is not weak, here we
decide to keep the upper limit of κ−1 to around 0.2. In this
case, our CI method shall be good enough to obtain satisfying
results.

At first �qs is seen to increase with the weakening screen-
ing effect, or decreasing κ in both the RK and conventional
Coulomb potentials, as usually expected. However, around
κ = 15.0, the QP shifts are found to reach their maximum
values and start to decrease when the screening effect is fur-
ther suppressed. This is an accelerated decrease, which finally
leads to that �qs becomes negative at around κ = 6.9 in the
case of conventional Coulomb potential. For the RK potential,
the decrease is slower and the QP shift turns out to be negative
when κ � 5.0. The results obtained by using the two different
screening models are seen to be quite similar when κ−1 is
small and start to deviate from each other until κ � 10.0,
which is expected because the RK potential would reduce to
the conventional Coulomb potential in the presence of a strong
screening effect.

As the QP effect arises from the electron-electron interac-
tions, it is usually taken for granted that the QP gap �qp shall
become larger when the interaction intensity or κ−1 increases
and the corresponding shift �qs shall be always positive.

FIG. 2. Quasiparticle shifts calculated as a function of the inverse
of the effective dielectric constant for a trapezoidal phosphorene
quantum dot as depicted in the inset. The nominal gap of the PQD is
2.1 eV.

However, here we reveal that �qs(κ−1) no longer remains a
monotonically increasing function, and surprisingly, the QP
shifts may even become negative when κ is small enough.

To make sure that the anomalous behavior of �qs(κ−1)
is universal for PQDs and not only true for some particular
systems, we carry out similar calculations for other PQDs of
different geometries, i.e., trapezoid, triangle, and rectangle.
Figure 2 plots the QP shift as a function of the inverse of the
effective dielectric constant calculated for a trapezoidal PQD
as depicted in the inset. The total number of phosphorus atoms
is N = 124 in this system, which is a little larger than the pre-
vious hexagonal one. For simplicity, only the result obtained
by using the Coulomb potential is depicted. �qs(κ−1) is found
to exhibit very similar behavior, i.e., at first increasing, quite
rapidly reaching its maximum at around κ = 14.7, afterwards
almost linearly decreasing. When κ � 6.3, the QP shift is seen
to become negative. Both points are seen to be quite close to
the previous system.

Figure 3 plots the QP shift as a function of the inverse of the
effective dielectric constant calculated by using the Coulomb
potential for a triangular PQD as depicted in the inset. There
are N = 5 rings along the zigzag edge of the dot, and the total
number of phosphorus atoms is N = 80 in this system. It is a
little smaller than the two previous dots. Again, �qs(κ−1) is
found to exhibit very similar behavior, i.e., at first increasing,
quite rapidly reaching its maximum at around κ = 9.3, and
afterwards almost linearly decreasing. When κ � 4.7, the QP
shift is seen to become negative. Both points are seen to be
much smaller than the previous systems.

Lastly, we discuss the rectangular PQD. Figure 4 plots the
QP shifts calculated as a function of the inverse of the effective
dielectric constant for a rectangular PQD as depicted in the
inset. The size of the PQD is similar to the first system, and
the total number of phosphorus atoms is 98. Here, the results
obtained by using both the conventional Coulomb interaction
potential and RK potential are shown for comparison. The
dependence of the QP shifts on the screening intensity in this
rectangular PQD is found to be quite similar to the previous
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FIG. 3. Quasiparticle shifts calculated as a function of the inverse
of the effective dielectric constant for a triangular phosphorene quan-
tum dot as depicted in the inset. The nominal gap of the PQD is
2.44 eV.

systems. The result by using the conventional Coulomb poten-
tial shows that �qs becomes negative at around κ = 6.9 while
that obtained from the RK potential turns out to be negative
until κ � 6.0. Compared with the first hexagonal system, the
results obtained by using the two different interaction models
are seen to deviate from each other at a smaller value of κ

(8.0).
The anomalous behavior of �qs(κ−1) has now been seen in

the PQDs with all four geometries. Except for the triangular
dot, the values of κ at which the quasiparticle shift becomes
negative are quite close to each other for all the PQDs. After
seeing the geometrical effect, it is worthwhile to study the
dimensional dependence of the quasiparticle shift. Figure 5
plots the quasiparticle shifts calculated by using the Coulomb
potential as a function of the size of triangular PQDs (number

FIG. 4. Quasiparticle shifts calculated as a function of the inverse
of the effective dielectric constant for a rectangular phosphorene
quantum dot as depicted in the inset. The nominal gap of the PQD is
2.48 eV.

FIG. 5. Quasiparticle shifts calculated as a function of the size
of triangular phosphorene quantum dot for the effective dielectric
constant set as 5.0. The total number of atoms starts from 30 in the
smallest PQD to 200 in the largest one. Correspondingly, the nominal
gap of PQDs decreases from 3.28 to 1.99 eV. The lines depicted are
only to guide the eye.

of rings along the zigzag edge). At the effective dielectric
constant set to be κ = 5.0, �qs is seen to change from 0.70 eV
in the smallest PQD (Ne = 30) to −0.156 eV in the largest dot
(Ne = 200). Although the dependence is not totally monotonic
and is sometimes oscillating, we find that the quasiparticle
shift roughly decreases with the size of PQDs.

Hereby we see that the QP shift exhibits complicated
dependence on the intensity of long-range electron-electron
interactions. To find how �qs relies on the short-range inter-
actions or the on-site Coulomb energy U0, we fix κ−1 at 0.12
and calculate the dependence of �qs on U0. Figure 6 plots the
relative change of the QP shift calculated as a function of the
on-site Coulomb energy for the same rectangular PQD. Unlike

FIG. 6. The relative change of the quasiparticle shift calculated
as a function of the on-site Coulomb energy when κ−1 = 0.12 for
the rectangular phosphorene quantum dot, as depicted in Fig. 4. The
nominal gap of the PQD is 2.48 eV.
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FIG. 7. At various values of the cut-off distance in the RK in-
teraction potential, quasiparticle shifts calculated as a function of
the inverse of the effective dielectric constant for the rectangular
phosphorene quantum dot with a nominal gap of 2.48 eV.

�qs(κ−1), as previously revealed, the QP shift is now shown
to increase monotonically with the on-site interaction energy,
which has been expected in the first place.

Now it is clear that the long-range interactions shall be
responsible for the anomalous dependence of �qs on the
screening intensity and even the negative QP shifts. To explore
further, we introduce a cut-off distance R to the RK interaction
potential V (r), i.e., V (r) = 0 when r � R. At various values
of R we calculate the dependence �qs(κ−1) to see which part
of the potential leads to the negative �qs. Figure 7 plots the re-
sults for three different values of the cut-off distance, namely,
R = 3.0 Å, R = 9.0 Å, and R = ∞. The last one corresponds
to no cut-off in the interaction potential, which is already
shown in Fig. 4 and depicted here only for comparison.

In BP nanostructures, the nearest and next nearest distances
among the P atoms are given by 2.22 Å and 2.24 Å, respec-
tively. Hence the case of R = 3.0 Å represents the typical
short-range interaction, and the corresponding �qs(κ−1) is
shown to be a monotonically increasing function. It is within
the expectation, judging from the result on the on-site energy
as shown in Fig. 6. In this rectangular PQD model, the maxi-
mum distance among the atoms is about 27.0 Å. The case of
R = 9.0 Å is therefore related to the typical middle-range in-
teraction. Compared with the no cut-off case (R = ∞), the QP
shift is seen to reach its climax much earlier and then decrease
more rapidly. It is quite surprising, as one expected a simple
dependence of the QP shift on the cut-off distance. Although
it is hard to separate the contributions of different parts of the
interaction potential from each other, in regard to the QP shift,
one may draw a conclusion that the origin of this anomalous
QP shift shall be related with the long-range electron-
electron interactions in the distinctive lattice structure of
PQDs.

To obtain a more quantitative understanding of how the
long-range interactions affect the QP shift, we calculate
�qs(R) at a fixed κ . Figure 8 plots the QP shifts calculated as a
function of the cut-off distance in the RK interaction potential

FIG. 8. Quasiparticle shifts calculated as a function of the cutoff
distance in the RK interaction potential at κ = 5.0 for the rectangular
phosphorene quantum dot with a nominal gap of 2.48 eV. The lines
depicted are only to guide the eye.

at κ = 5.0 for the same PQD model. As the distances among
the atoms in the BP lattice take discrete values, the curvature
detail of the dependence is irrelevant, and the lines depicted
are only to guide the eye. It is noted that the low-distance
part of the results has no physical meaning and is shown
here only for comparing the effects of small and large cut-off
distances.

As can be seen from the result, �qs exhibits quite a com-
plicate dependence on the screening length or the cut-off
distance in the interaction potential. At first, one finds that
the QP shift would definitely be enhanced if the potential
consists of only the short-range part. However, beyond about
R = 5.0 Å, the middle-range part of the interaction potential
is seen to suppress �qs quite rapidly until around R = 13.0 Å.
Beyond this point, the potential tail actually becomes very
weak. However, it is shown that the long-range part of the
interaction potential enhances the QP effect in almost the
same manner as the short-range part does. In spite of that,
the QP shift remains negative if all the parts of the interaction
potential are taken into account.

IV. CONCLUSION

In summary, we have investigated quasiparticle effect in
phosphorene quantum dots by using a configuration inter-
action approach beyond the conventional double-excitation
scheme. Contrary to the common belief that enhanced elec-
tron correlations would open up a quasiparticle gap, for the
hexagonal PQD with a nominal gap of 2.26 eV, we have shown
that the quasiparticle shift decreases from 0.22 to −0.30 eV
when the effective dielectric constant is reduced from 20.0 to
5.0. For other trapezoidal, triangular, and rectangular PQDs,
we have found that the QP shift exhibits a similar amount
of decrement after the same change in the dielectric environ-
ment. We reiterate that a similar phenomenon has not been
found in other 2D nanostructures such as graphene quantum
dots. After examining the dependence of the QP shift in
the interaction potential with different cut-off distances, we
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believe that the origin of this anomalous quasiparticle shift is
related with the long-range electron-electron interactions in
the distinctive lattice structure of PQDs.
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[34] T. O. Wehling, E. Şaşıoğlu, C. Friedrich, A. I. Lichtenstein,

M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805
(2011).

[35] N. S. Rytova, Proc. MSU Phys. Astron. 3, 30 (1967).
[36] L. V. Keldysh, JETP Lett. 29, 658 (1979).
[37] M. N. Brunetti, O. L. Berman, and R. Y. Kezerashvili,

Phys. Rev. B 100, 155433 (2019).

235405-6

https://doi.org/10.1088/1361-6633/aa9bc4
https://doi.org/10.1103/PhysRevB.85.125307
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevLett.113.107401
https://doi.org/10.1016/j.cplett.2018.03.069
https://doi.org/10.1103/PhysRevLett.115.066403
https://doi.org/10.1103/PhysRevLett.118.266401
https://doi.org/10.1039/C6CP05825F
https://doi.org/10.1088/2053-1583/ab072a
https://doi.org/10.1063/1.4823829
https://doi.org/10.1038/nnano.2014.35
https://doi.org/10.1038/ncomms5458
https://doi.org/10.1021/nl5008085
https://doi.org/10.1002/adom.201670045
https://doi.org/10.1002/anie.201409400
https://doi.org/10.1039/C5CC09150K
https://doi.org/10.1038/srep27307
https://doi.org/10.1021/acs.nanolett.5b04593
https://doi.org/10.1016/j.cplett.2017.07.033
https://doi.org/10.1038/srep42357
https://doi.org/10.1088/2053-1583/2/4/045012
https://doi.org/10.1063/1.4982235
https://doi.org/10.1103/PhysRevB.96.155425
https://doi.org/10.1007/s11467-015-0468-y
https://doi.org/10.1021/acs.jpclett.5b02457
https://doi.org/10.1103/PhysRevB.96.085436
https://doi.org/10.1103/PhysRevB.97.205424
https://doi.org/10.1103/PhysRevB.92.085419
https://doi.org/10.1103/PhysRevB.93.199906
https://doi.org/10.1103/PhysRevB.94.165419
https://doi.org/10.1126/sciadv.aap9977
https://doi.org/10.1103/PhysRevLett.106.236805
http://jetpletters.ru/ps/1458/article_22207.shtml
https://doi.org/10.1103/PhysRevB.100.155433

